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Abstract
Singular integral operators play an important role in approximation theory and
harmonic analysis. In this paper, we consider a weighted Lebesgue space Lp,w , define
a modified Gauss–Weierstrass singular integral on it, and study direct and inverse
approximation properties of the operator followed by a Korovkin-type approximation
theorem for a function f ∈ Lp,w . We use the modulus of continuity of the functions to
measure the rate of convergence.
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1 Introduction
The approximation of functions by singular integrals is a significant topic in the theory of
partial differential equations and integro-differential equations. The Gauss–Weierstrass
singular integral is closely connected to the initial value problem of the heat equation
for an infinite rod [5, pp. 125–126]. Furthermore, this integral has practical applications
in signal and image processing, serving as a Gaussian blur and low-pass filter [11]. In this
study, we focus on the approximation properties of a modified Gauss–Weierstrass singular
integral in weighted spaces.

Let w be a positive weight function defined on R that satisfies the following conditions:
(1) w(x) is an even function on R and nonincreasing for x > 0;
(2) Wε(s) =

∫ ∞
0 e–st2 1

w(t+ε) dt < ∞, s ≥ 0, ε ≥ 0;

(3) sup
x∈R

(
w(x)

w(x–h)

)
≤ 1

w(h) , h ∈ R.

For 1 ≤ p < ∞ and given a weight function w, we denote by Lp,w the set of all real valued
functions f defined on R for which |wf |p is Lebesgue integrable on R. For p = ∞ and given
weight function w, we denote by L∞,w the set of all real valued functions f for which wf is
a uniformly continuous and bounded function on R.
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For 1 ≤ p ≤ ∞, the norm of f ∈ Lp,w is defined as

||f ||p,w =

⎧
⎨

⎩

(
∫
R

|w(x)f (x)|pdx)1/p, 1 ≤ p < ∞;
sup
x∈R

w(x)|f (x)|, p = ∞.

We define a modified Gauss–Weierstrass singular integral W ∗
r,n(f , x) of a function f ∈ Lp,w

as follows:

W ∗
r,n(f , x) =

1√
4πr

∫

R

f (sn(x) + t)e
–t2
4r dt, x ∈ R, r > 0, (1)

where r := r(n) → 0 as n → ∞ and sn(x), n ∈N is a sequence of functions such that sn(x) →
x as n → ∞, that is, for any ε > 0, there exists a positive integer n0 such that |sn(x) – x| < ε

for all n ≥ n0(ε) and s′
n(x) = 1.

Also the kth derivative of W ∗
r,n(f , x) is defined by

W (k)
r,n (f , x) =

1√
4πr

∫

R

f (k)(sn(x) + t)e
–t2
4r dt.

If sn(x) = x, then W ∗
r,n(f , x) reduces to the classical Gauss–Weierstrass singular integral

Wr,n(f , x) =
1√
4πr

∫

R

f (x + t)e
–t2
4r dt, x ∈R, r > 0.

For f ∈ Lp,w, its modulus of continuity of order j is defined by

ωj(f , Lp,w, t) = sup
0≤|k|≤t

||�j
k f (x)||p,w, j ∈ Z

+,

where �
j
k f (x) =

∑j
m=0(–1)j–m( j

m
)
f (x + mk).

We denote by �2 the set of all real valued functions μ, where μ is continuous and
nondecreasing, satisfies μ(0) = 0 and μ(t)

t2 is nonincreasing for all positive values of t [20,
pp. 93–97]. For given 1 ≤ p ≤ ∞ and μ ∈ �2, we define the weighted Hölder space Hp,w,μ

of order j to be the set of all functions f in Lp,w for which

||f ||p,w,μ = sup
h>0

(
||�j

hf (.)||p,w

μ(h)

)

< ∞.

The norm in Hp,w,μ space is defined by

||f ||∗p,w,μ = ||f ||p,w + ||f ||p,w,μ. (2)

We note that for f ∈ Hp,w,μ,

ωj(f , Lp,w, t) ≤ μ(t)||f ||p,w,μ.

In particular, if w(x) = e–2ax2 , a > 0, then Lp,w = Lp,a, Hp,w,μ = Hp,a,μ, and the corresponding
norms are defined by ‖.‖p,w = ‖.‖p,2a and ‖.‖p,w,μ = ‖.‖p,2a,μ [21]. Further, for sn(x) = x – a

2n ,
a > 0 and r = 1

4n , n ∈N our operator defined in (1) reduces to (W ∗
n f )(x) [21, p. 90].
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We obtain the following important upper estimates for the norm of W ∗
r,n(f , x).

For any ε > 0 and for any fixed n ≥ n0(ε) ∈N, using the properties of w and f ∈ L∞,w, we
have

||W ∗
r,n(f , x)||∞,w = sup

x∈R

(
w(x)|W ∗

r,n(f , x)|)

= sup
x∈R

(

w(x)
∣
∣
∣
∣

1√
4πr

∫

R

f (sn(x) + t)e
–t2
4r dt

∣
∣
∣
∣

)

≤ 1√
4πr

sup
x∈R

(∫

R

∣
∣
∣
∣

w(x)
w(sn(x) + t)

w(sn(x) + t)f (sn(x) + t)
∣
∣
∣
∣ e

–t2
4r dt

)

≤ 1√
πr

(∫ ∞

0

1
w(ε + t)

e
–t2
4r dt

)

||f ||∞,w

=
1√
πr

Wε

(
1
4r

)

||f ||∞,w.

For f ∈ Lp,w, 1 ≤ p < ∞, using the generalized Minkowski inequality and the properties of
w, we have

||W ∗
r,n(f , x)||p,w =

(∫

R

|w(x)W ∗
r,n(f , x)|pdx

) 1
p

=
(∫

R

∣
∣
∣
∣w(x)

1√
4πr

∫

R

f (sn(x) + t)e
–t2
4r dt

∣
∣
∣
∣

p

dx
) 1

p

≤ 1√
4πr

(∫

R

e
–t2
4r

×
(∫

R

∣
∣
∣
∣

w(x)
w(sn(x) + t)

w(sn(x) + t)f (sn(x) + t)
∣
∣
∣
∣

p

dx
) 1

p
dt

)

.

Since the derivative of sn(x) is uniformly bounded, the substitution sn(x) + t = u yields

||W ∗
r,n(f , x)||p,w ≤ 1√

4πr

(∫

R

e
–t2
4r

1
w(ε + t)

(∫

R

∣
∣w(u)f (u)

∣
∣p du

) 1
p

dt

)

≤ 1√
πr

(∫ ∞

0

1
w(ε + t)

e
–t2
4r dt

)

||f ||p,w

=
1√
πr

Wε

(
1
4r

)

||f ||p,w.

Thus, we have

||W ∗
r,n(f , x)||p,w ≤ 1√

πr
Wε

(
1
4r

)

||f ||p,w, n ≥ n0(ε) ∈N, 1 ≤ p ≤ ∞.

Using similar calculations, for f ∈ Lp,w, 1 ≤ p ≤ ∞, with f (k) ∈ Lp,w, we can prove that

||W (k)
r,n (f , x)||p,w ≤ 1√

πr
Wε

(
1
4r

)

||f (k)||p,w, n ≥ n0(ε) ∈N, 1 ≤ p ≤ ∞. (3)
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Now, for f ∈ Hp,w,μ, 1 ≤ p < ∞, we have

||W ∗
r,n(f , x)||p,w,μ = sup

h>0

||�j
h(W ∗

r,n(f , x))||p,w

μ(h)

= sup
h>0

‖W ∗
r,n

(
�

j
hf (x)

)
‖p,w

μ(h)

≤ 1√
πr

Wε

(
1
4r

)

sup
h>0

||�j
h(f (x))||p,w

μ(h)

=
1√
πr

Wε

(
1
4r

)

||f ||p,w,μ. (4)

Combining (4) and (2), we get

||W ∗
r,n(f , x)||∗p,w,μ ≤ 1√

πr
Wε

(
1
4r

)

||f ||∗p,w,μ, n ≥ n0(ε) ∈N, 1 ≤ p ≤ ∞.

Hence, for any ε > 0, the integral W ∗
r,n(f , x), n ≥ n0(ε) ∈N is a well-defined bounded linear

operator on the spaces Lp,w and Hp,w,μ whenever Wε

( 1
4r

)
exists. An analogous property

of integral (1) for w(x) = e–2ax2 and sn(x) = x – a
2n , a > 0, n ∈ N can be seen in [21, p. 91,

Lemma 2.3].
These operators are very useful in approximation theory, and their approximation prop-

erties have been studied by many researchers [6–8, 14, 17]. This study has further been ex-
tended to different weighted spaces [1, 4, 21, 22]. More precisely, Yilmaz [22] investigated
the problem for the Gauss–Weierstrass singular integral within the space Lp,w, 1 ≤ p ≤ ∞,
where w(x) = e–a|x|2 , a > 0. The same author [21] also studied the approximation properties
of the operator defined in (1) with w(x) = e–a|x|2 and sn(x) = x – a

2n , a > 0, n ∈N. Bogalska et
al. [4] studied the approximation properties of the Gauss–Weierstrass singular integral for
functions of two variables in the exponentially weighted space, and Agratini et al. [1] stud-
ied the problem in the polynomial weighted space and calculated the rate of approximation
using the weighted modulus of continuity. They also proved that the operators defined in
(1) give the faster convergence results as compared to classical Gauss–Weierstrass opera-
tors with sn(x) = x – a

2n , a > 0, n ∈ N [1, pp. 1195–1197]. Some important linear operators
based on the Kantorovich-type modification can be found in [2] and [12]. In these arti-
cles, the authors explored direct theorems related to generalized Baskakov operators for
the class of functions having a derivative coinciding almost everywhere with a function of
bounded variation. Grewal et al. [10] investigated the approximation properties of a gen-
eral family of positive linear operators defined on [0,∞] in weighted spaces by utilizing
the weighted modulus of continuity. Some researchers [13, 15, 16] introduced a new type
of sequence of linear positive operators for approximating Lebesgue integrable functions.
Shvai et al. [18] studied approximation properties of the Gauss–Weierstrass singular op-
erators in the neighborhood of a point of R. Bardaro et al. [3] defined a class of operators
that fixes exponential functions. They proved the Korovkin-type approximation theorem
and a Voronovskaja-type formula for such operators.

In this paper, we study the approximation properties of the integral defined in (1) in
the weighted Lebesgue spaces Lp,w and the weighted Hölder space Hp,w,μ with a certain
weight function. We also show that many of the theorems in the literature dealing with



Singh and Singh Journal of Inequalities and Applications         (2024) 2024:94 Page 5 of 17

approximation of functions by the Gauss–Weierstrass singular integrals are the special
cases of our results. We also prove the Korovkin-type results for functions belonging to
the space Lp,w. Finally, we prove the inverse approximation theorem for the space Lp,w.

2 Direct approximation theorems
In this section, we study the direct approximation theorems for the functions belonging to
classes Lp,w and Hp,w,μ, 1 ≤ p ≤ ∞, μ ∈ �. We obtain the upper estimates for the deviation
W ∗

r,n(f , x) – f (x) under respective norm in terms of ωj(f , Lp,w, r), j = 1, 2. We denote by r0

the maximum values of r for which W0
( 1

4r
)

exists.
In [19, p. 1554], the authors derived the following lemma for any function f ∈ Lp,w, 1 ≤

p ≤ ∞.

Lemma 2.1 Let f ∈ Lp,w, 1 ≤ p ≤ ∞. Then

ω2(f , Lp,w,λt) ≤ (1 + λ)2 1
w(λt)

ω2(f , Lp,w, t) for any λ, t > 0. (5)

Now, we state main theorems of this section.

Theorem 2.2 Let f ∈ Lp,w, 1 ≤ p ≤ ∞. Then, for any ε > 0, there exists n ≥ n0(ε) ∈ N such
that

||W ∗
r,n(f , x) – f (x)||p,w ≤ ω2(f , Lp,w, ε)

+
ω2(f , Lp,w, r)

(
√

4π )r 5
2

(

r2W0

(
1
4r

)

– (1 + 2r)W ′
0

(
1
4r

)

+
2r

w(1)

)

,

where r ∈ (0, r0].

Theorem 2.3 Let f ∈ Lp,w, 1 ≤ p ≤ ∞. Then, for any ε > 0, there exists n ≥ n0(ε) ∈ N such
that

||W ∗
r,n(f , x) – f (x)||p,w ≤ ω

(
f , Lp,ω, ε

)
+ ω

(
f , Lp,ω, r

) 1√
4πr

W0

(
1
4r

)

,

where r ∈ (0, r0].

Proof of Theorem 2.2 Using (1), we can write

W ∗
r,n(f , x) – f (x)

=
1√
4πr

∫

R

f (sn(x) + t)e
–t2
4r dt –

1√
4πr

∫

R

f (x)e
–t2
4r dt

=
1√
4πr

∫

R

(f (sn(x) + t) – f (x))e
–t2
4r dt (6)

=
1√
4πr

∫ 0

–∞
(f (sn(x) + t) – f (x))e

–t2
4r dt +

1√
4πr

∫ ∞

0
(f (sn(x) + t) – f (x))e

–t2
4r dt

=
1√
4πr

∫ ∞

0
(f (sn(x) – t) – f (x))e

–t2
4r dt +

1√
4πr

∫ ∞

0
(f (sn(x) + t) – f (x))e

–t2
4r dt
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=
1√
4πr

∫ ∞

0

(
f (sn(x) + t) – 2f (x) + f (sn(x) – t)

)
e

–t2
4r dt.

Using Lemma 2.1 and the generalized Minkowski inequality, we have

‖W ∗
r,n(f , x) – f (x)‖p,w

=
∣
∣
∣
∣

∣
∣
∣
∣

1√
4πr

∫ ∞

0

(
f (sn(x) + t) – 2f (x) + f (sn(x) – t)

)
e

–t2
4r dt

∣
∣
∣
∣

∣
∣
∣
∣
p,w

=
(∫

R

∣
∣
∣
∣w(x)

1√
4πr

∫ ∞

0
(f (sn(x) + t) – 2f (x) + f (sn(x) – t))e

–t2
4r dt

∣
∣
∣
∣

p

dx
) 1

p

=
1√
4πr

∫ ∞

0
e

–t2
4r

(∫

R

w(x)|f (sn(x) + t) – 2f (x) + f (sn(x) – t)|pdx
) 1

p
dt

=
1√
4πr

∫ ∞

0
e

–t2
4r ‖f (sn(x) + t) – 2f (x) + f (sn(x) – t)‖p,wdt

≤ 1√
4πr

∫ ∞

0
e

–t2
4r ω2

(
f , Lp,w, sn(x) – x + t

)
dt

≤ 1√
4πr

∫ ∞

0
e

–t2
4r ω2(f , Lp,w, |sn(x) – x + t|)dt

≤ 1√
4πr

∫ ∞

0
e

–t2
4r ω2(f , Lp,w, |sn(x) – x|)dt +

1√
4πr

∫ ∞

0
e

–t2
4r ω2(f , Lp,w, |t|)dt

≤ ω2(f , Lp,w, ε) +
ω2(f , Lp,w, r)√

4πr

∫ ∞

0
e

–t2
4r

(

1 +
t
r

)2 1
w(t)

dt for n ≥ n0(ε) ∈N

≤ ω2(f , Lp,w, ε)

+
ω2(f , Lp,w, r)√

4πr

(∫ ∞

0

1
w(t)

e
–t2
4r dt +

1
r2

∫ ∞

0

t2

w(t)
e

–t2
4r dt +

2
r

∫ ∞

0

t
w(t)

e
–t2
4r dt

)

≤ ω2(f , Lp,w, ε)

+
ω2(f , Lp,w, r)√

4πr

(

W0

(
1
4r

)

–
1
r2 W

′
0

(
1
4r

)

+
2
r

(
1

w(1)
– W ′

0

(
1
4r

)))

≤ ω2(f , Lp,w, ε) +
ω2(f , Lp,w, r)

(
√

4π )r 5
2

(

r2W0

(
1
4r

)

– (1 + 2r)W ′
0

(
1
4r

)

+
2r

w(1)

)

.

Hence the proof is completed. �

Proof of Theorem 2.3 Using (6) and the generalized Minkowski inequality, we have

‖W ∗
r,n(f , x) – f (x)‖p,w

=
∣
∣
∣
∣

∣
∣
∣
∣

1√
4πr

∫

R

(f (sn(x) + t) – f (x))e
–t2
4r dt

∣
∣
∣
∣

∣
∣
∣
∣
p,w

=
(∫

R

w(x)
∣
∣
∣
∣

1√
4πr

∫

R

(f (sn(x) + t) – f (x))e
–t2
4r dt

∣
∣
∣
∣

p

dx
) 1

p

≤ 1√
4πr

(∫

R

w(x)
(∫

R

|f (sn(x) + t) – f (x) + f (x + t) – f (x + t)|pe
–t2
4r dt

)

dx
) 1

p
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≤ 1√
4πr

(∫

R

e
–t2
4r

(∫

R

w(x)|f (sn(x) + t) – f (x + t)|pdx
) 1

p
dt

)

+
1√
4πr

(∫

R

e
–t2
4r

(∫

R

w(x)|f (x + t) – f (x)|pdx
) 1

p
dt

)

≤ 1√
4πr

(∫

R

e
–t2
4r ‖f (sn(x) + t) – f (x + t)‖p,ωdt

)

+
1√
4πr

(∫

R

e
–t2
4r ‖f (x + t) – f (x)‖p,ωdt

)

≤ 1√
4πr

(∫

R

e
–t2
4r ω

(
f , Lp,ω, ε

)
dt

)

+
1√
4πr

(∫

R

e
–t2
4r ω

(
f , Lp,ω, t

)
dt

)

.

≤ ω
(
f , Lp,ω, ε

)
+ ω

(
f , Lp,ω, r

) 1√
4πr

∫

R

(

1 +
t
r

)
1

w(t)
e

–t2
4r dt for n ≥ n0(ε) ∈ N

≤ ω
(
f , Lp,ω, ε

)
+ ω

(
f , Lp,ω, r

) 1√
4πr

∫

R

1
w(t)

e
–t2
4r dt

+ ω
(
f , Lp,ω, r

) 1
r
√

4πr

∫

R

t
w(t)

e
–t2
4r dt

≤ ω
(
f , Lp,ω, ε

)
+ ω

(
f , Lp,ω, r

) 1√
4πr

W0

(
1
4r

)

.

Hence the proof is completed. �

Remark 1 Theorem 2.2 provides the rate of approximation for the function f ∈ Lp,w if its
second modulus of continuity ω2(f , Lp,w, t) is known. Similarly, Theorem 2.3 determines
the rate of approximation for the function f ∈ Lp,w when its first modulus of continuity
ω(f , Lp,w, t) is given.

The following corollaries can be derived from Theorem 2.2 and Theorem 2.3.

Corollary 2.4 Let f ∈ Lp,w with f (k) ∈ Lp,w, 1 ≤ p ≤ ∞. Then, for any ε > 0, there exists
n ≥ n0(ε) ∈N such that

||W (k)
r,n (f , x) – f (k)(x)||p,w

≤ ω2(f , Lp,w, ε) +
ω2(f , Lp,w, r)√

4πr 5
2

(

r2W0

(
1
4r

)

– (1 + 2r)W ′
0

(
1
4r

)

+
2r

w(1)

)

and

||W (k)
r,n (f , x) – f (k)(x)||p,w ≤ ω

(
f , Lp,ω, ε

)
+ ω

(
f , Lp,ω, r

) 1√
4πr

W0

(
1
4r

)

,

where r ∈ (0, r0].

Remark 2 Theorem 3.1 and Theorem 3.2 of [21, p. 92–94] are the particular cases of The-
orem 2.2 and Theorem 2.3, respectively, for w(x) = e–2ax2 and sn(x) = x – a

2n , a > 0, n ∈N.
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Corollary 2.5 Let f ∈ Hp,w,μ, 1 ≤ p ≤ ∞, and μ ∈ �2. Then, for any ε > 0, there exists
n ≥ n0(ε) ∈N such that

||W ∗
r,n(f , x) – f (x)||p,w

≤ μ(ε)||f ||∗p,w,μ +
μ(r)||f ||∗p,w,μ√

4πr 5
2

(

r2W0

(
1
4r

)

– (1 + 2r)W ′
0

(
1
4r

)

+
2r

w(1)

)

and

||W ∗
r,n(f , x) – f (x)||p,w ≤ μ(ε)||f ||∗p,w,μ + μ(r)||f ||∗p,w,μ

1√
4πr

W0

(
1
4r

)

for every r ∈ (0, r0].
Now, we shall give an analogue of Theorem 2.3 in the weighted Hölder space specified

by moduli of continuity. For η,μ ∈ �2, let us assume that φ(t) = μ(t)
η(t) , t > 0, is an increasing

function so that Hp,w,μ ⊂ Hp,w,η . With this notation, we state our next theorem as follows.

Theorem 2.6 Let f ∈ Hp,w,μ, 1 ≤ p ≤ ∞. Then, for any ε > 0, there exist n ≥ n0(ε) ∈N and
function Nε(r) such that

||W ∗
r,n(f , x) – f (x)||∗p,w,η ≤ Nε(r)φ(r)||f ||∗p,w,μ (7)

for every r ∈ (0, r0].

For the proof of Theorem 2.6, we need the following lemma.

Lemma 2.7 Let f ∈ Lp,w, 1 ≤ p ≤ ∞. Then

||f (x + h)||p,w ≤ 1
w(h)

||f ||p,w, h ∈R.

Proof For 1 ≤ p < ∞, we have

||f (x + h)||p,w =
(∫

R

|w(x)f (x + h)|pdx
) 1

p

=
(∫

R

|w(u – h)f (u)|pdu
) 1

p

=
(∫

R

∣
∣
∣
∣
w(u – h)

w(u)

∣
∣
∣
∣ |w(u)f (u)|pdu

) 1
p

≤ 1
w(h)

||f ||p,w,

in view of the properties of w.
Similarly, for p = ∞, we have

||f (x + h)||∞,w = sup
x∈R

w(x)
∣
∣f (x + h)

∣
∣

= sup
u∈R

w(u – h)
∣
∣f (u)

∣
∣
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= sup
u∈R

∣
∣
∣
∣
w(u – h)

w(u)

∣
∣
∣
∣w(u)

∣
∣f (u)

∣
∣

≤ 1
w(h)

||f ||∞,w.

Thus the proof is completed. �

Proof of Theorem 2.6 Let r be a fixed point in (0, r0] ∩ (0, 1]. Then, by using the definition
of weighted Hölder spaces and (2), we can write

||W ∗
r,n(f , x) – f (x)||∗p,w,η ≤ ||W ∗

r,n(f , x) – f (x)||p,w

+ sup
h∈(0,r]

||�2
h
(
W ∗

r,n(f , x) – f (x)
) ||p,w

η(h)

+ sup
h∈(r,1]

||�2
h
(
W ∗

r,n(f , x) – f (x)
) ||p,w

η(h)
. (8)

Now, we estimate the right-hand side of (8) by using Corollary 2.5 and Lemma 2.7. We
have

||W ∗
r,n(f , x) – f (x)||p,w ≤

(

1 +
1√
4πr

W0

(
1
4r

))

η(r)φ(r)||f ||∗p,w,μ, (9)

sup
h∈(0,r]

||�2
h
(
W ∗

r,n(f , x) – f (x)
) ||p,w

η(h)
≤

(

1 +
1√
πr

Wε

(
1
4r

))

φ(r)||f ||∗p,w,μ, (10)

and

sup
h∈(r,1]

||�2
h
(
W ∗

r,n(f , x) – f (x)
) ||p,w

η(h)

= sup
h∈(r,1]

‖W ∗
r,n(f , x + h) – f (x + h)‖p,w + ‖W ∗

r,n(f , x – h) – f (x – h)‖p,w

η(h)

–
2‖W ∗

r,n(f , x) – f (x)‖p,w

η(h)

≤ 1
w(1)

sup
h∈(r,1]

‖W ∗
r,n(f , x) – f (x)‖p,w

η(h)

≤ 1
w(1)

(

1 +
1√
4πr

W0

(
1
4r

))

φ(r)||f ||∗p,w,μ. (11)

Collecting all the estimates from (9) to (11) and using (8), we obtain (7), where
Nε(r) = max

{(
1 + 1√

4πrW0
( 1

4r
))

η(r),
(

1 + 1√
πrWε

( 1
4r

))
, 1

w(1)

(
1 + 1√

4πrW0
( 1

4r
))}

. �

3 Numerical example
In this section, we give an example to demonstrate the convergence of W ∗

r,n(f , x).
Let f (x) = ex2 and w(x) = e–ax2 , we can observe that f (x) ∈ L1,w for every a > 1. Now, if we

fix r = 1
4n and sn(x) = x + a

2n , n ∈N, then

W ∗
n (ex2 , x) =

√
n
π

∫

R

e
(
x+ a

2n +t
)2

e–nt2
dt =

√
n

n – 1
e
(
x+ a

2n
)2 n

n–1 . (12)
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Table 1 Approximation error for a = 2

a n Error

2 102 0.01836
103 0.0017787
104 0.0001773
105 1.7722× 10–5

106 1.7658× 10–6

107 1.3455× 10–7

108 1.3455× 10–8

Table 2 Approximation error for a = 3

a n Error

3 102 0.0099397
103 0.00094528
104 9.4052× 10–5

105 9.4074× 10–6

106 9.1193× 10–7

107 9.8958× 10–8

108 9.8958× 10–9

Figure 1 Error with respect to n for a = 3

Now

Error = ‖W ∗
n (ex2

, x) – ex2‖1,e–ax2 =
∫

R

e–ax2
(√

n
n – 1

e
(
x+ a

2n
)2 n

n–1 – ex2
)

dx.

In the above example, we used Matlab 7.0 for computations and figure creation. For large
values of n, Table 1 displays the approximation error by the operator W ∗

n (f , x) for a = 2
with the corresponding graphical representation shown in Fig. 1. Similarly, for a = 3, Ta-
ble 2 presents the approximation error by the operator W ∗

n (f , x), and Fig. 2 provides the
graphical depiction of this approximation error. The figures and tables indicate that as the
value of a increases from 2 to 3, the approximation error between the operator W ∗

n (f , x)
and the function f decreases with increasing n.
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Figure 2 Error with respect to n for a = 3

4 Korovkin-type approximation theorem
Agratini et al. [1] showed that (W ∗

n f )(x), n ≥ 1 is a sequence of linear operators on Lp,w, 1 ≤
p ≤ ∞. For ej = tj, t ∈ R, j ≥ 0, e0 = 1 works as a fixed point for the operator W ∗

r,n(f , x), n ≥ 1.
If one chooses w(x) = e2ax, a > 0, and sn(x) = x – a

2n , n ≥ 1, then W ∗
r,n fixes not only e0

but also w(x) [1, p. 1198, Lemma 6]. The authors [1, p. 1191, Lemma 2] also proved that
W ∗

r,n(e0, x) = 1, W ∗
r,n(e2, x) = sn(x), and W ∗

r,n(e2, x) = s2
n(x) + 1

2n , n ∈N.
Here, we study the Korovkin-type results for W ∗

r,n(f , x) in the space Lp,w, 1 ≤ p ≤ ∞,
where the weight function w ∈ Lp(R), 1 ≤ p ≤ ∞. More precisely, we prove the following.

Theorem 4.1 Let f ∈ Lp,w, 1 ≤ p ≤ ∞, such that w(x) is an even function on R and
∫ ∞

0 (w(x))pdx < ∞. Then, for any ε > 0, there exists n ≥ n0(ε) ∈N such that

(1) ‖W ∗
r,n(e0) – e0‖p,w = 0; (13)

(2) ‖W ∗
r,n(e1) – e1‖p,w ≤ 2ε

(∫ ∞

0
(w(x))pdx

) 1
p

; (14)

(3) ‖W ∗
r,n(e2) – e2‖p,w ≤ 2(ε + 2r)

(∫ ∞

0
(w(x))pdx

) 1
p

; (15)

and

lim
n→∞‖W ∗

r,n(f , x) – f (x)‖p,w = 0. (16)

Proof To prove (16), we have to show that

lim
n→∞‖W ∗

r,n(ej) – ej‖p,w = 0 for every j = 0, 1, 2. (17)
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Since W ∗
r,n(e0) = 1, (17) is already satisfied for j = 0. Using the triangle inequality, we have

W ∗
r,n(e1)(x) – e1(x) =

1√
4πr

∫

R
(sn(x) + t)e

–t2
4r dt –

x√
4πr

∫

R

e
–t2
4r dt

=
1√
4πr

∫

R

(sn(x) – x + t)e
–t2
4r dt

≤ ε√
4πr

∫

R

e
–t2
4r dt +

1√
4πr

∫

R

te
–t2
4r dt for n ≥ n0(ε) ∈N

= ε.

Similarly, we have

W ∗
r,n(e2)(x) – e2(x) =

1√
4πr

∫

R

(
(sn(x) + t)2 – x2) e

–t2
4r dt

≤ ε + 2r for n ≥ n0(ε) ∈N,

so that

‖W ∗
r,n(e1) – e1‖p,w =

(∫

R

|w(x)
(
W ∗

r,n(e1)(x) – e1(x)
) |pdx

) 1
p

= 2ε

(∫ ∞

0
(w(x))pdx

) 1
p

for n ≥ n0(ε) ∈N

and

‖W ∗
r,n(e2) – e2‖p,w =

(∫

R

|w(x)
(
W ∗

r,n(e2)(x) – e2(x)
) |pdx

) 1
p

= 2(ε + 2r)
(∫ ∞

0
(w(x))pdx

) 1
p

for n ≥ n0(ε) ∈N.

Using [9, p. 1047, Theorem 1] and (13) to (15), we get (16). �

Corollary 4.2 Let f ∈ Lp,a, 1 ≤ p ≤ ∞. Then

lim
n→∞‖W ∗

r,n(f , x) – f (x)‖p,2a = 0.

This corollary is Theorem 3.4 of [21, p. 94] and can be obtained from Theorem 4.1 by
taking sn(x) = x – a

2n , n ∈N and w(x) = e–2ax2 .

5 Inverse approximation type theorem
Now, we shall prove the results that are related to inverse approximation by means of the
modified Gauss–Weierstrass singular integral W ∗

r,n(f , x). We denote by s0 the maximum
value of r for which Wε

( 1
4r

)
exists.

Theorem 5.1 Let f ∈ Lp,w, 1 ≤ p ≤ ∞, and suppose f (2) ∈ Lp,w. Then, for any ε > 0, there
exists n ≥ n0(ε) ∈ N such that

||W ∗
r,n(f , x) – f (x)||p,w ≤ μ(r) (18)
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and

||W (2)
r,n (f , x) – f (2)(x)||p,w ≤ μ(r), for every r > 0,

where μ is a given function belonging to �2. Then there exists a constant c(ε) > 0 such that

ω2(f , Lp,w, t) ≤ ct2
∫ 1

t

μ(x)
x4 dx

for all t ∈ (
0, 1

2
) ∩ (0, s0].

We need the following lemma for proving this result.

Lemma 5.2 Let f ∈ Lp,w, 1 ≤ p ≤ ∞, and suppose f (2) ∈ Lp,w. Then, for any ε > 0, there
exists n ≥ n0(ε) ∈ N such that

||�2
hW ∗

r,n(f , x)||p,w ≤ 1√
πr

Wε

(
1
4r

)

h2 1
w(h)

||f (2)||p,w

for every r ∈ (0, s0] and h ∈R.

Proof For 1 ≤ p < ∞, we have

||�2
hW ∗

r,n(f , x)||p,w =

(∫

R

∣
∣
∣
∣
∣
w(x)

∫ h
2

–h
2

∫ h
2

–h
2

W (2)
r,n (f , sn(x) + t1 + t2)dt1dt2

∣
∣
∣
∣
∣

p

dx

) 1
p

≤
(∫

R

∣
∣
∣
∣
∣
w(x)

∫ h
2

–h
2

∫ h
2

–h
2

W (2)
r,n (f , x + ε + t1 + t2)dt1dt2

∣
∣
∣
∣
∣

p

dx

) 1
p

≤
(∫

R

∫ h
2

–h
2

∫ h
2

–h
2

∣
∣
∣
∣
w(u – t1 – t2)

w(u)
w(u)W (2)

r,n (f , u)
∣
∣
∣
∣

p

dt1dt2du

) 1
p

.

Using the generalized Minkowski inequality and the properties of w, we get

||�2
hW ∗

r,n(f , x)||p,w ≤
(∫

R

∣
∣w(u)W (2)

r,n (f , u)
∣
∣p du

) 1
p
(∫ h

2

–h
2

∫ h
2

–h
2

1
w(t1 + t2)

dt1dt2

)

= ||W (2)
r,n (f , x)||p,w

(∫ h
2

0

∫ h
2

0

1
w(t1 + t2)

dt1dt2

)

≤ 1
w(h)

h2||W (2)
r,n (f , x)||p,w

≤ 1√
πr

Wε

(
1
4r

)

h2 1
w(h)

||f (2)||p,w

in view of (3).
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Similarly, for p = ∞, we have

||�2
hW ∗

r,n(f , x)||∞,w = sup
x∈R

(
w(x)|�2

hW ∗
r,n(f , x)|)

= sup
x∈R

(

w(x)

∣
∣
∣
∣
∣

∫ h
2

–h
2

∫ h
2

–h
2

W (2)
r,n (f , sn(x) + t1 + t2)dt1dt2

∣
∣
∣
∣
∣

)

= sup
x∈R

(

w(x)

∣
∣
∣
∣
∣

∫ h
2

–h
2

∫ h
2

–h
2

W (2)
r,n (f , x + ε + t1 + t2)dt1dt2

∣
∣
∣
∣
∣

)

≤
(

sup
u∈R

w(u)
∣
∣W (2)

r,n (f , u)
∣
∣
)

×
(∫ h

2

–h
2

∫ h
2

–h
2

sup
u∈R

(
w(u – t1 – t2)

w(u)

)

dt1dt2

)

≤ ||W (2)
r,n (f , x)||∞,w

∫ h
2

0

∫ h
2

0

1
w(t1 + t2)

dt1dt2

≤ 1
w(h)

h2||W (2)
r,n (f , x)||∞,w

≤ 1√
πr

Wε

(
1
4r

)

h2 1
w(h)

||f (2)||p,w

Hence the proof is completed. �

Proof of Theorem 5.1 We can find two natural numbers m and n such that 0 < 1
2n < 1

2m ≤
r0. For all x, h ∈ R and f ∈ Lp,w, we can write

�2
hf (x) = �2

hW ∗
2–m ,n(f , x) +

n–1∑

i=m

�2
h

(
W ∗

2–i–1,n(f , x) – W ∗
2–i ,n(f , x)

)

+ �2
h
(
f (x) – W ∗

2–n ,n(f , x)
)

. (19)

Using Lemma 5.2, we get

||�2
hW ∗

2–m ,n(f , x)||p,w ≤
√

2m

π
Wε

(
1

2–m+2

)

h2 1
w(h)

||f (2)||p,w.

Now,

�2
h

(
W ∗

2–i–1,n(f , x) – W ∗
2–i ,n(f , x)

)
= �2

hW ∗
2–i–1,n

(
f – W ∗

2–i ,n(f ), x
)

+ �2
hW ∗

2–i ,n

(
W ∗

2–i–1,n(f ) – f , x
)

so that

∣
∣
∣
∣
∣
∣�2

h

(
W ∗

2–i–1,n(f , x) – W ∗
2–i ,n(f , x)

)∣
∣
∣
∣
∣
∣
p,w

≤
∣
∣
∣
∣
∣
∣�2

hW ∗
2–i–1,n

(
f – W ∗

2–i ,n(f ), x
)∣
∣
∣
∣
∣
∣
p,w

+ ||�2
hW ∗

2–i ,n

(
W ∗

2–i–1,n(f ) – f , x
)

||p,w.
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Using Lemma 5.2, we get

||�2
h

(
W ∗

2–i–1,n(f , x) – W ∗
2–i ,n(f , x)

)
||p,w

≤
√

2i+1

π
Wε

(
1

2–i+1

)

h2 1
w(h)

||f (2) – W (2)
2–i ,n(f )||p,w +

√
2i

π
h2 1

w(h)
Wε

(
1

2–i+2

)

||W (2)
2–i–1,n(f ) – f (2)||p,w

≤
(

Wε

(
1

2–i+1

)

+ Wε

(
1

2–i+2

))
1

w(h)
h2

√
2i+1

π
μ(2–i). (20)

Using (18), we have

||�2
h
(
f (x) – W ∗

2–n ,n(f , x)
) ||p,w

≤ ‖f (x + h) – W ∗
2–n ,n(f , x + h)‖p,w + ‖f (x – h) – W ∗

2–n ,n(f , x – h)‖p,w

– 2‖f (x) – W ∗
2–n ,n(f , x)‖p,w

≤ 1
w(h)

‖f (x) – W ∗
2–n ,n(f , x)‖p,w +

1
w(–h)

‖f (x) – W ∗
2–n ,n(f , x)‖p,w + 2ω(2–n)

≤ 1
w(h)

μ(2–n) +
1

w(–h)
μ(2–n) + 2μ(2–n) ≤ 2

(
1

w(h)
+ 1

)

μ(2–n). (21)

Using (19) to (21), we get

||�2
h(f (x))||p,w ≤ 1

w(h)

(√
2m

π
Kh2||f (2)||p,w + h2K

n–1∑

i=m

√
2i+1

π
μ(2–i) + K ′μ(2–n)

)

, (22)

where K(ε) = max
m≤i≤n–1

{
Wε

( 1
2–m+2

)
,Wε

(
1

2–i+1

)
+ Wε

(
1

2–i+2

)}
and K ′ = 1 + w(0).

If t ∈ (
0, 1

2
) ∩ (0, r0], |h| ≤ t, m < n, and n is a natural number such that

2–n ≤ t < 2–n+1, then from (22) we obtain

ω2(f , Lp,w, t) ≤ d

(

t2 + t2
n–1∑

i=m

√
2i+1

π
μ(2–i) + μ(t)

)

, (23)

where d(ε) = max
2–n≤t<2–n+1

1
w(t)

{
23m+3K ||f (2)||p,w, K(ε), K ′

}
.

We can write

n–1∑

i=m

23iμ(2–i) ≤ 1
ln2

∫ 1

t

μ(x)
x4 dx. (24)

It is easy to find constants c1 and c2 such that

c1t2 ≤ μ(t) ≤ c2t2
∫ 1

t

μ(x)
x4 dx (25)

for all t ∈ (
0, 1

2
) ∩ (0, r0] and μ ∈ �2.

Collecting (23), (24), and (25), we obtain our result, where c(ε) = d
(
1 + 1

ln2 + c2
)
. �
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6 Conclusion
In the literature, numerous results have been obtained regarding the rate of approxima-
tion of functions in Hölder and Lebesgue spaces using the Gauss–Weierstrass singular
integral. Specifically, this study focuses on the approximation of functions in weighted
Lebesgue spaces and weighted Hölder spaces using the Gauss–Weierstrass singular inte-
gral. Another important category of theorems includes the Korovkin approximation type
theorems and inverse approximation theorems. We establish the Korovkin-type theorem
and the inverse approximation theorem for weighted Lebesgue spaces.
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