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1 Introduction
McMillan first introduced a symplectic map to describe the motion of a particle through a
periodically repeated focusing system containing lumped nonlinear impulses [1]. McMil-
lan map is not only a model of accelerator lattice, but is at the core of general symplec-
tic dynamics of the plane. Zolkin et al. considered the McMillan sextupole and octupole
integrable mappings and provided complete description of all stable trajectories includ-
ing parametrization of invariant curves [2]; the second one is sometimes referred to as
canonical McMillan map. Both of them are the natural extensions of the optical function
formalism used in accelerator physics. Gubser et al. obtained new analytic solutions de-
scribing motions of closed segmented strings in AdS3 in terms of elliptic functions, which
exactly solve instances of the McMillan map [3]. Danilov et al. deduced a generalization
of the McMillan map to N-body nonlinear integrable system, which can be realized in
particle accelerators [4]. The McMillan map exhibits plentiful dynamical behaviors such
as bifurcations, asymptotic stability, and various kinds of chaotic attractors depending on
the choice of its coefficients [5]. The standard form of the McMillan map is a rational
integrable mapping of the form

H(x, y) = (y, –x +
α + βy
1 – y2 ),

where α and β are constants. The map possesses the following biquadratic integral:

x2y2 – (x2 + y2) + βxy + α(x + y) = K.
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Here, K is a parameter that indicates each invariant curve in a two-dimensional phase
plane.

The McMillan map is also known as the autonomous discrete Painlevé II equation. Dis-
crete versions of the Painlevé equations occur frequently in problems in mathematical
physics. For example, the discrete Painlevé I equation has been obtained in the theory of
orthogonal polynomials [6]. The Bäcklund transformation of the continuous Painlevé IV
equation led to corresponding discrete Painlevé IV equation [7]. Similarity reduction [8]
of the modified KdV equation led to the discrete Painlevé II equation given by

xn+2 = –xn +
a + ζn+1xn+1

1 – x2
n+1

. (1)

This map also has been found from unitary matrix models of quantum gravity [9]. When
ζn+1 is a constant and not a function of variable n, (1) is referred to as the autonomous dis-
crete Painlevé II equation. It admits a two-parameter family of finite-order meromorphic
solutions, which is an indicator of integrability in difference equations [10]. In this paper,
we consider the following second order difference equation

xn+2 = γ xn +
α + βxn+1

1 – x2
n+1

, (2)

where –1 < γ < 1 or –3 < γ < –1, α ≥ 0, and β is a real number. Recurrence (2) is precisely
the McMillan map for γ = –1. Recurrence (2) can be expressed equivalently by the planar
mapping

F(x, y) = (y,γ x +
α + βy
1 – y2 ). (3)

Here, we investigate the asymptotic stability of equilibrium of the perturbed McMillan
map (2) by the quasi-Lyapunov function method (see [11]). The bifurcation and asymp-
totic stability of equilibrium of difference equations are considered in numerous papers
(see [11–14] and the references cited therein). For example, Merino proved the global at-
tractivity of a difference equation via Lyapunov function method (see [14]).

2 Lyapunov function, equilibria, and 2-cycle
Many researchers [2–4] studied various properties of solutions of rational integrable maps
using the parametrization of the invariant curves. Similarly, to investigate the asymptotic
stability for the mapping F of (3), we introduce a function V as follows:

V (x, y) = x2y2 – x2 – y2 +
2β

1 – γ
xy +

2α

1 – γ
(x + y), (4)

where –1 < γ < 1 or –3 < γ < –1, α ≥ 0, and β is a real number. It is obvious that V (x, y) = K
is the biquadratic integral of the mapping H for γ = –1. Now we present some propositions
of the function V (x, y) in a two-dimensional phase plane.
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Note that γ �= –1, then a direct computation shows the following relation:

V (x, y) – V (F(x, y)) = V (x, y) – V (y,γ x + α+βy
1–y2 )

= y2[x2 – (γ x + α+βy
1–y2 )2] – x2 + (γ x + α+βy

1–y2 )2 + 2β

1–γ
y[x – (γ x + α+βy

1–y2 )]
+ 2α

1–γ
[x – (γ x + α+βy

1–y2 )]
= (x – γ x – α+βy

1–y2 )[ 1+γ

1–γ
(α + βy) – (1 + γ )x(1 – y2)]

= 1+γ

(1–γ )(y2–1) [(1 – γ )x(1 – y2) – (α + βy)]2.

We denote by T = {(x, y)|(1 – γ )x(1 – y2) = α + βy, (x2 – 1)(y2 – 1) �= 0}, then the equalities
V (x, y) = V (F(x, y)) and F(x, y) = (y, x) hold for (x, y) ∈ T . Now we consider the set T . For
each point (x, y) ∈ T , we have

V (x, y) – V (F2(x, y)) = V (x, y) – V (F(y, x)) = V (x, y) – V (x,γ y + α+βx
1–x2 )

= x2[y2 – (γ y + α+βx
1–x2 )2] – y2 + (γ y + α+βx

1–x2 )2 + 2β

1–γ
x[y – (γ y + α+βx

1–x2 )]
+ 2α

1–γ
[y – (γ y + α+βx

1–x2 )]
= 1+γ

(1–γ )(x2–1) [(1 – γ )y(1 – x2) – (α + βx)]2.

To obtain the fixed points and 2-cycle of the mapping F of (3), we consider the following
set of equations:

{
(1 – γ )x(1 – y2) = α + βy,
(1 – γ )y(1 – x2) = α + βx.

(5)

For simplicity of presentation, we use G to denote the set of solutions of (5), i.e., G =
{(x, y)|(1 – γ )x(1 – y2) = α + βy, (1 – γ )y(1 – x2) = α + βx}. It follows that inequality
V (F(x, y)) �= V (x, y) or V (F2(x, y)) �= V (x, y) holds for each (x, y) ∈ R

2 \ {G ∪ L}, where L
denotes the set {(x, y)|(x2 – 1)(y2 – 1) = 0}.

Proposition 1 Let (x, y) be a point of the set G \L. Then this point (x, y) is a fixed point or
2-cycle of the mapping F of (3).

Proof Choose (x, y) ∈ G \L such that x = y. Then

F(x, y) = (y,γ x +
α + βy
1 – y2 ) = (y, x) = (x, y).

That is, this point (x, y) is a fixed point of the mapping F . Now we consider each (x, y) ∈
G \L with x �= y. It follows that F(x, y) = (y, x) �= (x, y) and

F2(x, y) = F(y,γ x +
α + βy
1 – y2 ) = F(y, x) = (x,γ y +

α + βx
1 – x2 ) = (x, y).

It turns out that this point (x, y) is a 2-cycle of F . This completes the proof. �

Next we find the elements of the set G \L and their existence regions (see Fig. 1).

Theorem 2 Suppose that –3 < γ < –1 or –1 < γ < 1, α ≥ 0, and β ∈R. Then the following
statements are true.
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(i) If 4
27 (1 – β

1–γ
)3 < ( α

1–γ
)2, β �= α, or (α,β) = (0, 1 – γ ), then there exist a 2-cycle and an

equilibrium point of the mapping F , where the fixed point lies on � : x – y = 0.
(ii) If 1

4 (1 – γ ) < β = α, then the set G \L is empty.
(iii) If 0 < 4

27 (1 – β

1–γ
)3 = ( α

1–γ
)2, α �= 1

4 (1 – γ ), and α �= 2(1 – γ ), then there exist a 2-cycle
and two equilibrium points of the mapping F , where the fixed points lie on �.

(iv) If 4
27 (1 – β

1–γ
)3 > ( α

1–γ
)2, 4( β

1–γ
+ 1) > –( α

1–γ
)2, and β �= ±α, then there exist a 2-cycle

and three equilibrium points of the mapping F , where the fixed points lie on �.
(v) If ( α

1–γ
, β

1–γ
) ∈ {(0, 0), ( 1

4 , 1
4 ), (2, –2)}, then the mapping F has a unique fixed point,

which lies on �.
(vi) If 0 < –β = α, α �= 2(1 – γ ) or 0 < β = α < 1

4 (1 – γ ), then there exist two equilibrium
points of the mapping F , which lie on �.

(vii) If 4( β

1–γ
+ 1) ≤ –( α

1–γ
)2 and ( α

1–γ
, β

1–γ
) �= (2, –2), then there exist three fixed points of

the mapping F , which lie on �.

Proof Let us first consider the solutions of system (5). Using the first equation in (5), we get
α = (1 – γ )x(1 – y2) – βy. Substituting it into the second equation of (5) gives the following
equality:

(1 – γ )(y – x2y – x + xy2) = β(x – y).

It follows that

(x – y)[(1 – γ )(1 + xy) + β] = 0.

Consequently, the solutions of (5) satisfy at least one of the equalities x = y and xy = –1 –
β

1–γ
.

Now we consider the case xy = –1 – β

1–γ
. Using this equality to eliminate β from the first

equation in (5) gives x + y = α
1–γ

. If ( α
1–γ

)2 + 4( β

1–γ
+ 1) > 0, then there are two distinct real

roots λ1 and λ2 of the quadratic equation X2 – α
1–γ

X – (1 + β

1–γ
) = 0. Therefore (λ1,λ2)

and (λ2,λ1) are the solutions of the set of equations (5). Note that the point (λ1,λ2) is
precisely an element of the setL for β = ±α. Proposition 1 tells us that there exists a 2-cycle
{(λ1,λ2), (λ2,λ1)} of the mapping F for β �= ±α and ( α

1–γ
)2 +4( β

1–γ
+1) > 0. If ( α

1–γ
)2 +4( β

1–γ
+

1) = 0, then there exists a repeated real root λ for the equation X2 – α
1–γ

X – (1 + β

1–γ
) = 0.

Using Proposition 1, we obtain that (λ,λ) is a fixed point of the mapping F for 4( β

1–γ
+ 1) =

( α
1–γ

)2 and ( α
1–γ

, β

1–γ
) �= (2, –2). If ( α

1–γ
)2 + 4( β

1–γ
+ 1) < 0, then there is no real solution (x, y)

of system (5) that satisfies xy = –1 – β

1–γ
.

Next we study the case x = y. Substituting it into the first equation in (5) gives the cubic
equation

z3 + (
β

1 – γ
– 1)z +

α

1 – γ
= 0. (6)

For simplicity of presentation, we define g(z) = z3 +( β

1–γ
–1)z + α

1–γ
and compute its deriva-

tive

g ′(z) = 3z2 + (
β

1 – γ
– 1).
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If β

1–γ
– 1 ≥ 0, then g ′(z) ≥ 0. Therefore, we obtain that the cubic equation (6) has a unique

real root z∗ for β

1–γ
– 1 ≥ 0. Notice that the equation g(z) = 0 has a solution –1 for β = α.

Therefore, the mapping F has a unique fixed point for β �= α and β

1–γ
– 1 ≥ 0, whereas

the set G \ L is empty for 1–γ

4 < β = α. If β

1–γ
– 1 < 0, then the equation g ′(z) = 0 has

two distinct real roots z̃1 =
√

1
3 (1 – β

1–γ
) and z̃2 = –

√
1
3 (1 – β

1–γ
). It is easy to show that

the equation g(z) = 0 has a unique real root for g(z̃1) > 0 and β

1–γ
– 1 < 0. That is, there

exists a unique fixed point (l1, l1) of the mapping F for 4
27 (1 – β

1–γ
)3 < ( α

1–γ
)2, β �= α and

β

1–γ
– 1 < 0. Moreover, we deduce that l1 < –2

√
1
3 (1 – β

1–γ
). However, the set G \L is empty

for 1
4 (1 – γ ) < β = α < 1 – γ . If g(z̃1) = 0 and β

1–γ
– 1 < 0, then the equation g(z) = 0 has

two distinct real roots l21 = z̃1 and l22 = –2
√

1
3 (1 – β

1–γ
). Therefore, the mapping F has two

fixed points for 0 < 4
27 (1 – β

1–γ
)3 = ( α

1–γ
)2, α �= 1

4 (1 –γ ) and α �= 2(1 –γ ). Finally, we consider
the subcase 4

27 (1 – β

1–γ
)3 > ( α

1–γ
)2. This means that β

1–γ
– 1 < 0, g(z̃1) < 0, and g(z̃2) > 0. It

turns out that the equation g(z) = 0 has three distinct real roots l31, l32, and l33 such that

–2

√
1
3

(1 –
β

1 – γ
) < l33 < –

√
1
3

(1 –
β

1 – γ
) < l32 <

√
1
3

(1 –
β

1 – γ
)

< l31 < 2

√
1
3

(1 –
β

1 – γ
).

(7)

Note that the equation g(z) = 0 has a solution 1 for β = –α. Therefore, the mapping F has
three fixed points for 4

27 (1 – β

1–γ
)3 > ( α

1–γ
)2 and β �= ±α. Nevertheless, for 4

27 (1 – β

1–γ
)3 >

( α
1–γ

)2 and 0 < β = α < 1–γ

4 , the mapping F has two fixed points. Similarly, there exist two
fixed points of F for 4

27 (1 – β

1–γ
)3 > ( α

1–γ
)2 and 0 > β = –α > –2(1 – γ ).

Since equation (6) has a triple root 0 when α = 0 and β = 1 – γ , we obtain that there
exist a 2-cycle and an equilibrium point of the mapping F for (α,β) = (0, 1 – γ ). It is easy
to show that the mapping F has a unique fixed point for ( α

1–γ
, β

1–γ
) ∈ {(0, 0), ( 1

4 , 1
4 ), (2, –2)}.

The above results are summarized in Theorem 2. �

Bifurcations of fixed points and 2-cycle are summarized in Fig. 1. The seven associated
existence regions are also marked on the parameter plane. Theorem 2 shows that a pitch-
fork bifurcation occurs when β

1–γ
passes through the point 1 along the line α

1–γ
= 0. When

β

1–γ
increasingly crosses L2, a 2-cycle of the mapping F appears. That is, L2 is a period-

doubling bifurcation curve. A complete hysteresis bifurcation arises as the parameter β

1–γ

is increased along the curve 1
2 ( β

1–γ
)2 = α

1–γ
– 1

4 in the range from –2 to 1
2 . For parameters

γ = –1, α = 0, and –2 ≤ β ≤ 2, the corresponding constant level sets V (x, y) = K of the
mapping F are provided in Fig. 5 by Zolkin et al. in [2].

3 Asymptotic stability of the perturbed McMillan map
In this section we employ the Lyapunov function V (x, y) in (4) to study the asymptotic
stability of the solutions of equation (2). We first find the local extreme values of V (x, y).
Notice that V (x, y) has continuous higher partial derivatives in R

2. Taking partial deriva-
tives and setting them equal to 0 gives

{
∂V
∂x = 2xy2 – 2x + 2β

1–γ
y + 2α

1–γ
= 0,

∂V
∂y = 2x2y – 2y + 2β

1–γ
x + 2α

1–γ
= 0.

(8)
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Figure 1 Bifurcation diagram for the perturbed McMillan map. Two critical curves L1: ( α
1–γ )2 = 4

27 (1 –
β

1–γ )3

and L2: 4(
β

1–γ + 1) = –( α
1–γ )2 . Label HB corresponds to hysteresis bifurcation. Pitchfork and period-doubling

bifurcations are marked with PF and PD

It is no difficult to see that this system of equations is equivalent to (5). That is, the
fixed points and periodic solution of the mapping F are the stationary points of V (x, y).
If 4

27 (1 – β

1–γ
)3 > ( α

1–γ
)2, then there exist three different solutions (l31, l31), (l32, l32), and

(l33, l33) for system (5) such that relations (7) and g(z̃1) < 0 hold. Note that we have
g( 1

2
α

1–γ
) = 1

2
α

1–γ
[( 1

2
α

1–γ
)2 + β

1–γ
+ 1] ≥ 0 for ( α

1–γ
)2 + 4( β

1–γ
+ 1) > 0. Therefore, for 4

27 (1 –
β

1–γ
)3 > ( α

1–γ
)2, ( α

1–γ
)2 + 4( β

1–γ
+ 1) > 0 and β

1–γ
> –2, we have 1

2
α

1–γ
≤ l32 < z̃1 =

√
1
3 (1 – β

1–γ
).

That is, in this case the relations

–(
β

1 – γ
+ 1) < (

1
2

α

1 – γ
)2 ≤ l2

32 <
1
3

(1 –
β

1 – γ
)

hold. Here we use the second partials test to determine the extreme values of V (x, y). The
second order partial derivatives are

A =
∂2V
∂x2 = 2y2 – 2, C =

∂2V
∂y2 = 2x2 – 2, and B =

∂2V
∂x∂y

= 4xy +
2β

1 – γ
.

The determinant of the Hessian is

AC – B2 = 4
[

(x2 – 1)(y2 – 1) – (2xy +
β

1 – γ
)2

]

= 4
[

1 – x2 – y2 – 3x2y2 –
4β

1 – γ
xy – (

β

1 – γ
)2

]
.
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Now we evaluate the determinant of the Hessian at the stationary point (l32, l32):

(AC – B2)
∣∣
(l32,l32) = –4

(
3l2

32 – 1 +
β

1 – γ

)(
1 +

β

1 – γ
+ l2

32
)

> 0.

It is easy to see that the relations l2
32 < z̃2

1 = 1
3 (1 – β

1–γ
) < 1 hold for –2 < β

1–γ
< 1. Then

we obtain A |(l32,l32)= ∂2V
∂x2 |(l32,l32)= 2l2

32 – 2 < 0. Hence the function V attains a local max-
imum value at (l32, l32) for 4

27 (1 – β

1–γ
)3 > ( α

1–γ
)2, ( α

1–γ
)2 + 4( β

1–γ
+ 1) > 0, and –2 < β

1–γ
<

1. Note that there exists a 2-cycle {(λ1,λ2), (λ2,λ1)} of system (5) for ( α
1–γ

)2 + 4( β

1–γ
+

1) > 0, where λ1 = 1
2

α
1–γ

–
√

( 1
2

α
1–γ

)2 + 1 + β

1–γ
and λ2 = 1

2
α

1–γ
+

√
( 1

2
α

1–γ
)2 + 1 + β

1–γ
. It

can easily be checked that the relations V (z̃1, z̃1) ≥ V (–
√

1
3 (1 – β

1–γ
), –

√
1
3 (1 – β

1–γ
) ) and

V ( 1
2

α
1–γ

, 1
2

α
1–γ

) > V (λ1,λ2) hold for α
1–γ

≥ 0 and ( α
1–γ

)2 + 4( β

1–γ
+ 1) > 0. We define the set

D = {(x, y)|V (x, y) > Kpm}, where

Kpm =

⎧⎪⎨
⎪⎩

V (z̃1, z̃1), α = 0 and 0 ≤ β < 1 – γ ,
max{V ( 1

2
α

1–γ
, 1

2
α

1–γ
), V (z̃1, z̃1)}, α > 0 and β ≥ –α,

max{V (λ1,λ2), V (z̃1, z̃1)}, 0 ≤ α < –β .

It is easy to verify that there exists a fixed point (l32, l32) ∈ D of the mapping F for
4

27 (1 – β

1–γ
)3 > ( α

1–γ
)2, ( α

1–γ
)2 + 4( β

1–γ
+ 1) > 0 and –2 < β

1–γ
< 1. In fact, D is a union

of disjoint sets, we denote D̂ as a simple connected subset of D such that (l32, l32) ∈ D̂.
According to the definition of set D, it follows that D̂ ⊂ {(x, y)|x2 < 1, y2 < 1}. Note that
V (l32, l32) is a unique local maximum value in D̂. Then V (l32, l32) is the maximum value
in D̂. Obviously, if γ = –1, then V (F(x, y)) = V (x, y) for every point (x, y) ∈ D̂. That is, in
this case the level curve V (x, y) = K is an invariant of F . Therefore, every invariant curve
V (x, y) = K of F is a topological circle surrounding the equilibrium (l32, l32) for γ = –1 and
Kpm < K < V (l32, l32).

Theorem 3 Suppose that α ≥ 0, 4
27 (1 – β

1–γ
)3 > ( α

1–γ
)2, ( α

1–γ
)2 + 4( β

1–γ
+ 1) > 0, and –2 <

β

1–γ
< 1. Then the following statements are true:

(i) If –1 < γ < 1, then the equilibrium point l32 of equation (2) is stable and attracts
every solution of equation (2) with the initial values (x0, x1) ∈ D̂.

(ii) The equilibrium point l32 of equation (2) is unstable for –3 < γ < –1.

Proof Let {xn}∞n=0 be the solution of equation (2) with proper initial values x0 and x1, then
it is simple to show that F(xn, xn+1) = (xn+1, xn+2) for all n ≥ 0. Therefore, it suffices to study
the behavior of sequence {Fn(x0, x1)}∞n=1 starting from each point (x0, x1) ∈ D̂. Recall that
there exists a fixed point (l32, l32) of the mapping F for 4

27 (1– β

1–γ
)3 > ( α

1–γ
)2, ( α

1–γ
)2 +4( β

1–γ
+

1) > 0, and –2 < β

1–γ
< 1. Meanwhile, V (l32, l32) is the strict maximum of V in D̂.

We first consider the case –1 < γ < 1. It follows from –1 < γ < 1 that we deduce 1+γ

1–γ
> 0.

Using the fact that D̂ ⊂ {(x, y)|x2 < 1, y2 < 1}, we obtain that the inequality V (F2(x, y)) >
V (x, y) holds for each (x, y) ∈ D̂ \ {(l32, l32)}. Then the sequence {V (F2n(x0, x1))}∞n=1 is in-
creasing and bounded starting from each point (x0, x1) ∈ D̂. It turns out that lim

n→∞ V (F2n(x0,

x1)) = k̃. We first show that k̃ = V (l32, l32). If not, there would exist an initial point (x̃0, x̃1) ∈
D̂ such that lim

n→∞ V (F2n(x̃0, x̃1)) = k̃ < V (l32, l32). Defining E = {(x, y)|V (F2(x0, x1)) ≤ V (x,
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y) ≤ k̃, (x, y) ∈ D̂} and noting D̂ as a simple connected set, we obtain that E is a compact
closed and bounded set. Notice that the sequence {F2n(x̃0, x̃1)}∞n=1 is contained in E. It fol-
lows that there exists a subsequence {F2nl (x̃0, x̃1)}∞l=1 such that lim

l→∞
F2nl (x̃0, x̃1) = (x̃, ỹ) and

(x̃, ỹ) ∈ E. It is clear that (x̃, ỹ) �= (l32, l32) as k̃ < V (l32, l32). Because V and F are continu-
ous functions in D̂, it follows that V (x̃, ỹ) = lim

l→∞
V (F2nl (x̃0, x̃1)) = lim

n→∞ V (F2n(x̃0, x̃1)) = k̃.

Next we consider another subsequence {F2(F2nl (x̃0, x̃1))}∞l=1 of {F2n(x̃0, x̃1)}∞n=1. Note that
lim

l→∞
V (F2(F2nl (x̃0, x̃1))) = lim

n→∞ V (F2n(x̃0, x̃1)) = k̃ and V (F2(x, y)) > V (x, y) for (x, y) ∈ D̂ \
{(l32, l32)}, we obtain

k̃ = lim
l→∞

V (F2(F2nl (x̃0, x̃1))) = V (F2 lim
l→∞

(F2nl (x̃0, x̃1))) = V (F2(x̃, ỹ)) > V (x̃, ỹ) = k̃.

This leads to a contradiction. Thus we conclude that the relation lim
n→∞ V (F2n(x0, x1)) =

V (l32, l32) holds for (x0, x1) ∈ D̂. According to the fact that V (l32, l32) is the strict maxi-
mum of V in D̂, it follows that lim

n→∞ F2n(x0, x1) = (l32, l32) for each (x0, x1) ∈ D̂. Similarly, we
obtain that the fixed point (l32, l32) attracts every sequence {F2n+1(x0, x1)}∞n=1 with initial
point (x0, x1) ∈ D̂. Consequently, we infer that the equilibrium point l32 of equation (2)
attracts every solution of equation (2) with the initial values (x0, x1) ∈ D̂.

Finally, we consider the case –3 < γ < –1. It is apparent from –3 < γ < –1 that we ob-
tain 1+γ

1–γ
< 0. From the fact that D̂ ⊂ {(x, y)|x2 < 1, y2 < 1}, it follows that the inequality

V (F2(x, y)) < V (x, y) holds for each (x, y) ∈ D̂ \ {(l32, l32)}. Note that V (l32, l32) is the strict
maximum of V in D̂. Thus we are led to the conclusion that the equilibrium point l32 of
equation (2) is unstable for –3 < γ < –1. The proof is completed. �

Remark 4 Recall that there exists a 2-cycle {λ1,λ2} of equation (2) for ( α
1–γ

)2 + 4( β

1–γ
+ 1) >

0. In this case we compute the determinant of Hessian of V (x, y) at (λ1,λ2):

(∂2V
∂x2

∂2V
∂y2 –

( ∂2V
∂x∂y

)2
)∣∣∣

(λ1,λ2)
= –4

[
(

α

1 – γ
)2 + 4(

β

1 – γ
+ 1)

]
< 0.

It follows that V (λ1,λ2) is not an extreme value of function V (x, y). Similarly, we also de-
duce that V (λ2,λ1) is not an extreme value of V . In fact, the 2-cycle {(λ1,λ2), (λ2,λ1)} of
the mapping F possesses both stable and unstable manifolds.
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