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1 Introduction and preliminaries

In 1912, it was established that for all continuous function g on the interval [0, 1] the clas-
sical Bernstein polynomials B;(g; z) converge uniformly to g (see [9]). In 1968, for the real
parameters ¢, 8 such that 0 < o < §, Stancu introduced another variant of Bernstein poly-

nomial known as Bernstein—Stancu operators By, g(g; z) such that (see [28])

Bs,a,ﬂ(g;z) = Z (i)zl(l —Z)S—ig <;:_2) , (1)

i=0

where z € [0,1], z € N, and Stancu in his investigation showed that B;, g is uniformly
convergent to the continuous function g in [0, 1].
In the year 2017, Chen et al. [12] proposed the generalization of Bernstein operators

with shape parameter o € [0, 1]. These operators are defined as follows:

Bia(@2) = Y gibsi(e;2), z€[0,1], 2)

i=0
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where g€ C[0,1] and g; = ¢ (é) For s > 2, the polynomial b ;(c; z) of degree s is defined by
lsl,o(ot;z) =1-g2 l;l,l(ot;z) =z, and

byi(e;2) =< ;2>(1—a)zi(1—z)s_i"l " (j :§>(1—a)zf-1(1 —2

+ C) az(1-2)"

and the binomial coefficient (}) is given by

s == if0<i<s,
(,>= o 3)

0 otherwise.

Mohiuddine et al. [19] provided the Kantorovich variant of operators (2). Numerous au-
thors have repeatedly presented various generalizations of the aforementioned operators
and established approximation results. For instance, Schurer modification of operators (2)
was covered in Ozger et al. [23].

In a more recent work, the Bernstein—Stancu polynomials are presented using shifted

knots with new parameters in the following way (see [13]):

(B (5 (. @ ! s+ay i
Ss’a’ﬂ(g’Z)_( s )g()(z s+f32> (S+/32 Z) g<5+ﬂl>, @

ay  s+ap
S+ﬂ2 ’ S+/32
a1 < B1 < Ba. Researchers in approximation processes have recently developed Bernstein

where z € | ] and «;, B;, i = 1,2, are positive real numbers provided 0 < ay <
type operators; for example, we choose [1, 21, 29]. The relevant results for this article
have been studied in various functional spaces such as Phillips operators via g-Dunkl
generalization [2], Approximation by a-Baskakov-Jain type operators [15], Durrmeyer-
type generalization of p-Bernstein operators [16], modified A-Bernstein polynomial [7],
Kantorovich g-Baskakov operators [6], Szdsz—Durrmeyer operators [5], Bézier bases with
Schurer polynomials [22], Stancu-type A-Schurer [4], A-Bernstein operators [10, 11], g-
Szasz—Durrmeyer type operators [26], Stancu variant of generalized Baskakov operators
[25], and modified Baskakov—Durrmeyer operators [24].

In this work, we highlight the following main notion. The fundamental definitions and
characteristics of Bernstein operators are covered in the first part. In the second part, we
employ the shifted knot parameters to construct a new family of generalized «-Bernstein
operators, including the Stancu—Kantorovich variation. We demonstrate that these new
operators are essential to the theory of uniform approximation. In the third, fourth, and
fifth sections, we examine the new operators’ shape-preserving features, rate of conver-
gence, and several direct theorems.

Recently, the authors have developed the Stancu variation of Bernstein—Kantorovich
operators based on the shape parameter « (fixed real) by [20] for the set of all continuous
functions defined on [0, 1].

i+1+s1

\7;5“ (g; Z)=(s+1+t) ZR:'D‘(Z) /:;11#1 g(t)dt, 5)
i=0

s+1+6
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where

R, (2) = <S . 2) (1-—a)Z (1-2) 1+ (j - ;) (1-a)z (1 -2~

S . .
+ <i)ocz‘ 1 -2,

and the parameters satisfy the condition 0 <s; <¢;.

2 Construction of operators

We offer an extension of Stancu type a-Bernstein—Kantorovich operators in this section,
exploring some approximation results through the use of shifted knots. Let 1 < p < oo,
I, = [%2321“, 32:11:55] and s > 2, s € N. Given J', : L,[0, 1] — L,(Z;), we define shifted knots
of a-Bernstein—Kantorovich—Stancu type polynomials (5) as follows: For every g € L, [0, 1]

and any fixed real «, we write

s i+ +1
. s +1+5\""! . T4
Jou(@2) = +1+5) (S-l-—l) 2(): Qs,a(z)/‘”[% g()de, (6)
i= 1 +1+s

) fo+l+s P ips :
where o =25 ¢, »; (i = 1,2) are positive real numbers, indeed 0 < ¢, < ¢ <

211 < 505 Itis very clear to note that if {3 = s = 0 then the «-Bernstein—Stancu variant of
Kantorovich polynomial is given in [20]. And in case of ¢; = £, = 51 = 355 = 0 the classic
a-Bernstein—Kantorovich polynomial is obtained in [19] and Qf, (2) is given as follows:

i s—i-1
QZ‘“(Z)=<S_,2>(1—06)(Z— & ) (QHH —Z)
’ i s+ 1+s s+ 1+s
-2 {2 i1 ;z +1+s s=i
+1 . Q1-a)|z- -z
i—2 sy +1+s wy+1+s
(el i) (23 )
+| . Jalz- -z .
i s+ 1+s s+ 1+s

Our motive to construct the Stancu type «-Bernstein—Kantorovich shifted knot oper-

ators gives a valuable research path to a researcher in the field of approximation theory.
The researcher can use the shifted knot operators with a shape parameter « € [0, 1] in var-
ious Bernstein type operators and can explore them to get a better observation and more
flexibility. For example, in our future work we commit to apply these operators to the
Bernstein operators by Bézier bases function. For more related results and applications of
Bernstein type and shifted knot type operators, we refer to [10, 11, 13, 29]. Moreover, the
Bernstein and Bernstein—Stancu polynomials are used in many branches of mathematics
and computer science (see [8, 18]).

The primary goal of this paper is to use the integral modulus of continuity and the mod-
ulus of continuity to study the approximation properties of operators (6). Ultimately, we
derive the convergence of operators (6) using Peetre’s K-functional and Lipschitz maximal
functions. Let us do some simple manipulation here, so we take

s i+81+1

_ 5-2 9] o+ 1l+s S‘H/%lms
]1_Z< i )(Z_%2+1+5> ( S+ 0 _Z) ey g(tde,

i=0 ) +1+s
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s i-1 s=i il
-2 & Lo+1+s /%1+1+5
= z—— — -z t)de.
% ;(i—Z)( %2+1+s> <%2+1+s %i;ﬁﬂ g)

If it corresponds to term i =s in J; and i = 0 in /5, then (522) =0and (5:22) =0. Thus

s—1 i s—i-1 i+81+1
— 2 ;'2 {2 + 1 + S / sy +1+s
= z- -z t)dt,
z ;( i )( %2+1+s> (%2+1+s i+l &)
=l 2 +1+s
s i-1 s-i il
— 2 §2 (2 + 1 +S /x1+l+s
= zZ-— —_——Z t)dt.
& ;(i—2)( %2+1+s> <%2+1+s i+l &)
= ) +1+s
Clearly, replace i by i + 1 in /5, then
s-1 i s—i-1 22
s—2 o) Lo+1l+s /’41“*5
= z— -z t)dt.
% ;(i—l)( %2+1+s> (%2+1+s i:fﬁls g()
Therefore, it follows that
s—1 i+ +1 i+24+81
S — 2 ] +1+s S — 2 2 +1+s
pone ST [ e (23) 5 o)
1= s +l+s ) +1+s

o i G+l+s s—i-1
x |z- -z ’
w+1+s w+1+s

where (*?) = (1- -£) (") and (3) = -5 (*;'). Hence we have

i I3 i i-1 i
s—-1 i s—i—1
s—1 ¢ Lo+1+s
- (T () (25 ) s %
P i sy +1+s sy +1+s
where
. i+¢1+1 . +2481
- 1 B 1 ) +1+s (t)dt N l ] +1+s (t)dt (8)
fi= s—1 as) § s—1 /a4 § '
s t+l+s s tl+s

In addition, we take any function g € L,[0,1], then for all z € Z, s > 2, s € N operators
(6) are also calculated as

1 s+1 s—1 s
Malgz)=bar1es (%1“) [“‘WZUMWZVEL&], 9)
i=0 i=0

where f; is defined by (8), « is any fixed real and

i+ +1
2 +1+s

&=, &0d (10)
1 +1+s

s—1 i +1+s s=i-
us*a: ( z— 4-2 ;-2 e )
’ i sy +1+s sy +1+s
s i +1+s s
Vi =1.)lz- 2 £2 —-z| .
’ i wy+1+s wy+1+s
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Lemma 1 Suppose that the test function xj(t) = t* for u =0,1,2, then for all z € I opera-
tors (6) have the following identities:

2
(1) M, (xo(t);2) = (%m) (1_a)+a<Ll+s);

+1 s+1

my+1+s 2 1
2) M, (x)2) = ( ) (1-a)

s+1 260 +1+s)
1 3
X |2s|z- 2 r TS +(1+2¢)
s +1+s s+1
my+1+s 1
+ o
s+1 2031+ 1 +5)
1 2
x |s|z- L2 roTs +(1+28)|;
sy +1+s s+1

2
3) M ()2 = (”2””) L 1-w

s+1 305 + 1 +5)2

2 2
1
x |3s(s=2)|z— 2 r TS
w+1+s s+1

+ 3(1+2§1)(s_1)+3(2+§1)> <z— % )(%2+1+s)

s +1l+s s+1

+ (1430 +3§12)]
w+1l+s 1
+ o
s+1 305 +1+5)?
2 2
1
x |3s(s=1)|z— 2 r TS
wm+1l+s s+1

+3(1+2§1)s<z— &2 )<%2+1+S>+(1+3é’1+3§12)]'

s +1+s s+1

Proof If =0, xo(t) = 1, then we are able to see that from (9)

s+1
Mo (xo@)2) = Ga+1+9) (M)

s+1
s—1 i+0+1 i+2+81
" i 1 +1+s i ) +1+s
cla-aoSuwd (1-—=) [ 7 aes [ T ae
’ s—1 i+ s—1 ) i+g+l
i=0 321 +1+s 21 +1+s
s i+81+1
" ) +1+s
+a E Vi, | dt
4 i+
i=0 32 +1+s

2
sy +1+s mwy+1+s
=|—) Ql-a)+a| ——— .
s+1 s+1
For =1, x1(t) = ¢, we get

1
w+ 1 +s)s+

M (x1(t);2) = G + 1 +5) < 1
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i+ +1

s—1 .
1 2y +1+s
x|[(1-« U 1-— tdt
a-o X (- 5) [
i=0 e +1+s
s i+g1+1
) +1+s
+ o sz*ja / e tdt:|.
i=0 2 +1+s

From a simple calculation we see that

i+ +1

i ) +1+s L
1- — , tdt + —
s—1 i+
21 +14+s

i+¢1+1

] +1+s

, tdt = ————

i+ 2(sc1 + 1 +5)
) +1+s

Therefore, we get

M, Ga(t)z) = (G +1+5) (

(5—2
2s| .
i—1

—

[

L

Il
—_

s—1

i+2+81
sy +1+s

i+ +1
2z +14s

S (14281 +2i).

o +1+5\! 1
s+1

et (221
sy +1+s sy + 1

2(s1 + 1+ 5)2

2(sc1 + 1 +5)
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i+2+41

i 2 +1+s
+ — tdt
s—1 i+01+1

s +1+s

2si
(a2 25),

(1-a)

_1—i
+s s=
-z

+s

s-1 i -1~
s—1 1) Lo+1l+s
+§(1+2§1)( i >(Z_%2+1+s) (%2+1+S_Z> :|

sy +1+s
+
s+1

<[2a(;

s+1 1
2000 + 1+ s)za

)(z_ & )"(ml
sy +1+s s+ 1

+s s
-z
+s

> s ) Yo +1+s H'
+§(1+2§1)(i> (Z_%2+1+s> (%2+1+S_Z> :|’

sy +1+s

(1-a)

M, (x1(t);2) = (

s+1

s=2
S_
><|: 25( .
- 1

i=0

sy +1+s

s+1 1

2031 + 1 +5)
2 (2 i+1 §2+1+S s—2—i

z— -z

s+ 1+s sy +1+s
s-1 o +1+5\* 1

S — + o
sy+1+s s+1 200 +1+45)

1 CZ i+1 ;2 +1+s s—1-i
. z— -z
s+ 1+s s+ 1+s

M, (x1(t);2) = < 1

s+1 1
1
2051 + 1 +5)
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5 s+1 \*? (1+2¢) s+1 \**!
x | 2s +(1+ _
%2+1+s wy+1+s & my+1+s
s +1+5s\° 1
o
s+1 2(se1 + 1 +5)
s+1 \* (1+2¢) s+1 \°
X |s +(1+ _
“- %2+1+s s+ 1+s & w+1+s
1 1
»+1+s (1-a)
s+1 2(6c1 + 1 +5)
s +1+s 3
X | 2s +(1+2¢)
%2+1+s s+1
%2+1+s 1
o
2(sc1 + 1 +58)
1 2
X rors +(1+22)].
%2+1+s s+1

For 1u = 2, x2(£) = 2, we obtain

i+01+1 i+2+¢]

j 2 +1+s [ 2y +1+s
(1 - : ) f J 1 tzdt " L / 1 tZdt
s—1 i+ s—1 Jirgn
sy +l+s ] +1+s
1 3s 3(1+2¢1)(s—=1)+3(2 +
_ 2, AA2E-D 30 E), o
3 +1+5)3 \(s—1) (s-1)
i+§11+1 1
%1+ +S 2 2 ) '2
trdt= ——— = (1+30+3¢; +(3+6 +3 .
ivgy 3G +1+9)° (1+3¢1 +3¢7 + (3+661)i +30%)
%1+ +s
Therefore,
o +1+5\! 1
M t);z) = +1+s 1-
05 = e+ 1) (ZEE) oL

w

[

L

I
(=]

s-3 f2 +1+s s
3s(s—2){ . zZ— 2 &2 -z
i sy +1+s sy +1+s
o

+ <3(1 +24)(s-1)+3(2+ C1))

L

2 4.2 i+1 ;2 +1+s s—2—i
X . zZ- -z
i iy +1+s i +1+s

o1 i s—1-i
s—1 & Lo+1+s
+ (1+3§1+3§12)( i >(z_%2+1+s) (%2+1+s_z> i|
i=0

o +1+5\! 1
o
3031 + 1 +5)3

5]

Il
(=]

»n
|

+(%1+1+S)(

s+1

5-2 i+2 s—i-2
s—2 19 S+ &
X[ng(s_l)( i )(z_%2+1+5> (%2+1+5_Z>
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s < ¢ Y+ 1+s s
+ . (1+3{1+3§12)(l.> (z—%2+21+5> (%22+1+5_Z>

i=0

s—1 i+1 s—i—1
-1 1
+ 3(1+2§1) s . z- 2 fa+ +S—z
i w+1+s w+1+s

i=

%2+1+s 1
( ) 3(%1+1+s)2(1_a)
2 s-3
><|:3s(s—2)(z— 2 >( s+l >
my+1+s my+1+s
< ) & s+1 =2
+ {31 +28)(s=1)+3(2+ &1) (z— )( )
y+1+s ny+1+s

s—1
+ (1438 +3¢7) <i) }

w+1+s

s +1+5s\° 1
+ o
s+1 3(s1 +1 +5)2

& 2 s+1 \*?2
X [3s(s=1)|z-
s+ 1+s s+ 1+s

+ (1438 +3¢7) (i)

w+1+s

& s+1 !
+3(1+28)s|z- ;
s+ 1+s w+1+s

« s +1+s 2 1
Ms,a(Xz(f);Z):( 1 ) (1-a)

3(se +14+5)?

& 2 s+ 1+s 2
x [3s(s=2)|z-
my+1+s s+1

+ 3(1+2C1)(S—1)+3(2+§1))(z— 2 )(%2””)

s+ 1+s s+1

+(1+3§1+3§1):|
s+ 1+s 1
+ o
s+1 3(s + 1 +5)2
2 2
1
X [3s(s=1)|z- 2 r TS
wy+1+s s+1

+3(1+2{1)s<z— 2 >(%2+1+S)+(1+3§1+3§12)1|~

s +1+s s+1

This completes the proof of Lemma 1. d

Lemma 2 Operators M (.; .) have the central moments as follows:

1) M0 -22) = M, (x1(t);2) — zM, (x0(2); 2)

—O( >(z+1)
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2) M (0a(0) -2)%2) = ME (x2();2) — 22 M2, (x1(£); 2) + 22 M (x0(8);2)
=0 (é) (z+1)%
where M (x;(t);2) for all j = 0,1,2 are defined by Lemma 1.
Theorem 1 Let z € T, then for the continuous function g on [0, 1], it follows that
lim MG, (g52) - g@ ez, = 0.
Proof Taking into account the equality in Lemma 1, it is easy to write

lim max M}, (x.(t);z) -2 =0, ©=0,1,2. (11)

§—>00 zeTs

We are denoting

M 5 if Is;
R:,(gia) - | 0@ 12 (12)
g(2) ifze[0,1]\ Z,.

It is easy to get
IR5a(g2) - g@)llcon = max| M, (g2) - g(2)l- (13)
On the other hand, from (11) and (13) we obviously get
Jlim IRsa(Xu(®);2) —2"llclon =0, ©=0,1,2.

Applying the well-known Korovkin’s theorem [17] to the sequence of operators R ,, from

s,
this fact it is easy to see for all g € C[0,1] on [0,1]

lim IR, (g2) - g@lcion =O.
Thus, (13) gives us

lim max M, (g;2) - g(2)| = 0,

§—>00 zeZs
where C[0, 1] is the set of all continuous function g on [0, 1]. This completes the proof. [

Theorem 2 Let g € L,[0,1], p € [1,00), then operators (6) satisfy
Slirgo M, (g2) — g@)lpzy) = 0.

Proof Theorem 1 is taken into consideration for the proof along with the operators R},
by (12). According to the Luzin theorem, there is a continuous function ¢ on [0, 1] such
that [|g — @llz,[0,1) < € for given € > 0. Let L, [0,1] — L,[0, 1] be the operator with (12) and
IR;, |l be the operator norm. Then, for any s € N, it is sufficient to demonstrate that there
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exists a positive number M such that |R},|| < M to support the conclusions made by
Theorem 2. We employ Theorem 1 for this purpose, which states that for any € > 0, there
exists a number sy € N, s > 59 such that | R}, (¢;2) — #(2)lco1) <e.

From these facts, we immediately consider

R:a(82) —g@)lz, 011 < IR, ($:2) — p(@)lIcron) + lg = @z, 10,1)
+ [R5, (€52) = R0 (032) Iz, 01 (14)

To get positive S, we apply Jensen’s inequality to operators (6)

i+81+1
s+ 1+ E w1 +19s ’
* . p e -7 *
M (g2l < {(%1+1+s)< 7 ) > Q) I GLY
i=0 31 +1+s
i+81+1
< %2+1+s Q* ) 1+5) w+1+s /‘xfiml (L‘)|dtp
m+1l+s)| —
- S s+l sl ! s+1 ;fffhs g
i+ +1
- m+1+s)’ o () 1+9) s+ 1+s p/%| OPde
@G +1+s)| ————
s s+l e ! s+1 als! £
= 2] +1l+s

s-1 i s—1—i
-1 +1+
prS i s+ 1+s sy +1+s
s i s—i
Z s +1+s
= \i s +1+s s +1+s
i+01+1

o +1+5\° sy +1+s p/‘xﬁlﬂ
x | ——— +1l+s)| —-— t)Pde.
< s+1 ) Ca )< s+1 ) i+ l5(0)

) +1+s

Therefore,

i+¢p+1

s—1 s+1
#1+les my+1l+s s+1 1
/.1 IM;“a(g;z)l”dZS[ ( 2 ) ( ) (1-a)
i+gy ! = w+1l+s s+1

) +1+s i

S <%2+1+s>s( s+1 >”1 1 ]
+ o
= s+1 s+ 1+s (s+1)

i+ +1
sy + 1+s\P [T
X (a+l+4s)| — 0)Pde
(4 )( — )/{ (0
1 +1+s

t+(1+1

5(m+1+s> <%zs++11+s> Z/ T QOPde

s+1 =0 ¥ 3¢ +1+s

sy +1+s
=< (T) ||g(t)||L [0,1]°

In the next, from operators (12), we have the inequality f[o N lg(z)|Pdz < ||g||L (0.1]°
Thus we find that

1 s +1+5\
/0 IR:y(g:2)Pdz < [1 + (ZST) }”g”w " (15)
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Therefore we can write expression (15)

RS0 (@ DL, 100 < 2+ s2)lgllL,100 < Mlgllz,01-

From the above fact it follows that, for all s € N, there exists a positive M such that || R}, || <
M. Therefore, from (14) we deduce that

[R50 (€52) = 8@ L, 10,11 < RS, (#52) = d(2)lz,10.1]
+ R, g = Dl 00 + 1€ = @l 00
< 2e€+€M.

Similarly, taking into account the above inequality, we also see

||R:a(g;z)—g(z)|up[o,u=( fo RE (@i2) - g Ipdz)p

= (/I IMf,a(g;Z)—g(Z)I”dZ)p

= M}, (g2) - 8@,

< 2¢€ +eM.

These explanations give us lim_, | M, (g;2) — g(2)l|z,(z,) = O, this completes the proof
of Theorem 2. O

3 Rate of convergence of M7,

Finding the degree of approximation for a series of operators M, is our goal in this sec-
tion. Recalling the modulus of continuity of function g (see [3]), we employ g € CI0, 1], the
set of all continuous functions on [0, 1], and a positive value §*, thus

w*(g;8") = sup{lg(z1) — g(z2)| : 21,22 € [0,1], |21 — 22| < 8"}, (16)

As a result, we express the general estimate theorem developed by Shisha and Mond (see
[27]) in terms of the modulus of continuity as follows to ascertain the order of convergence.

Theorem 3 [27] Let [¢,d] C [a,b] and {Ls}s>1 be the sequence of positive linear operators
from Cla, b] to Clc,d].
) Ifg € Cla,b) and z € [c,d], then we have
|Ls(g52) — g(2)| < 1g(2)[|Ls(x0(2);2) —

+ {Ls(x0(t);2) + Sl*\/Ls((t - 252V Ly(x0(£);2) J* (g 8%).

(2) Ifg’ € Cla,b] and z € [c,d], then we have

ILs(g:2) — g(2)| < 1g(2)||Ls(x0(t);2) — 1| + Ig'(Z)IIL (t-2z2)|

+ L((t =252 { VL@ 2) + 5V L((E - 2%2) " (€567).
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Theorem 4 Let the function g be continuous on [0,1], then for each z € I; operators (6)
satisfy the inequality

Miulern) gl < (225 ) (Z2) - ot

s+1 +1
o +1+s\° m+1l+s i [on
A e (22 o),
where 8}, (2) = 1 M (O (@) - 2)%2).

(Z232) -apa(2212)
Proof If we utilize Lemma 2 and take into account (1) of Theorem 3, we can write
|IM;,(g:2) - g(2)]
< lg@NIM;, (xo(8);2) - 1]

ML G10(652) + 52 MEL (G0~ 252, M, G039 @558

-(2) () - o)

s+1 s+1
s +1+s 2 mw+1+s
ro'lg ){< s+1 ) ( a)+a< s+1 )
N 1\//\4)k (a0 —2%2) sy +1+s 2(1 " w+1+s
— -2)% _ —a)+oa | ———— ).
§* se (X1 s+1 s+1
If we choose 6* = /67, (2) = — 1 — \/M;ﬁa((xl(t)—z)z;z),thenwegetthe
J(EE a2
desired result. O

Theorem 5 Let z € I, then for every g € C[0, 1], it follows that

s+1 s+1 2€T;
+1+s\2 +1+ =
2 (Z2200) gy re (22210 w*(;ﬁ),
s+1 s+1

where § = max,cz, 8;,(2).

M, (g:2) —g(2)] < (Lm) (£> (1 - a)max |g(2)]

Proof We easily obtain the desired result due to the monotonicity of the modulus of con-

tinuity. N

Remark 1 The order of the local approximation is estimated by Theorem 4, and the global
order is estimated by Theorem 5 when we examine the approximation for each point z €
Zs.

Theorem 6 Let g’ € C[0,1], then for each z € Z; we have

lg'(2)]

M, (62 -g@)] = (L“S) (%) a-wlg@) +

s+1 +1

O<l> 1+2)
s
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+20 G) {Mf,a()(o(t);z)}%(z +1o* (g%@) ’

where M, (xo(t);2) = (L“s) l-a)+a (”2+1+5) and 57 ,(z) is defined in Theorem 4.

s+1

Proof We consider (2) of Theorem 3 and Lemma 1; as a result, we can write quickly

M) -a1 = (2) (72) 0 -wne@i+ o 0ol
+\/M;1 Ca® -2%z \/Mw Xo(2);2)
{1+ 1 MO0 -2 z)} @)
& Mz, (xo(0)2)
< <%11”) (si—zl) 1-a)lgz)] + O(%) (1+2)|Ig'(2)]

+ 0 G) {M;ﬁa(xo(t);Z)} %(z +1)20" (g/;\/ 5§fa(z)> ’

which completes the proof asserted by Theorem 6.

4 Some direct approximation theorem to M7,

Here, too, we examine the approximation in L, spaces thanks to some preliminary data.
The L, spaces on Z; are taken for this purpose for every p € [1,00) as L,(Z). Lastly, we

derive the corresponding estimate in the L,(Z) spaces. In fact, the integral modification

in terms of modulus of continuity for every g € L,(®,,) is provided by

1p(g,t) = sup sup llg(z + ) - g(2)l,0,) (1=<p<o0), (17)

z€[0,1] O<se<t

where ||.[|,(e,,) denotes the L, norm over ®,, = [0,1 - 5]. To measure the smoothness,
we use Peetre’s K-functional, and for this purpose we take Z,,(0,,) = {g,g’ € L,(®.,) :

g is absolutely continuous}. Let 1 < p < 0o, then for any g € L,(0,,) Peetre’s K-functional

is defined as follows:

Kpgt)= _inf (IIg—fIIL,,(@%)+t|lf'||Lp(<—),()>- (18)

fezl,p((“)%)

Moreover, for the positive constants ¢; and c;, the equivalence of relations between inte-

gral modulus of continuity and Peetre’s K-functional is given by the inequality (see [14])

C1o1p(g,t) <Kp(g 1) < cadorp(g, t). (19)

i+ i+¢1+1 ]

Taking into account operators (6) and Lemma 1, let us denote M; = [%1 1T sl

1

Tou(52) = M, (52) (20)

(Z2)’ (1) + o (2522

Page 13 0f 18
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and

S
(1 +1+53) (—"ZS:}”)

(%2+1+s) (1 (X)

s+1

Pgi(2) = Q;ﬁa(Z) (21)

Theorem 7 Let g € Z,,[0,1], p > 1, then operators T, by (20) satisfy the inequality
1
. L(.p Ny
| Tne2) @] 7y <27 (p 1) max (7:a (xa(8); z)) g1, 0.

where T, (x2(t); 2) is defined by (20).

Proof For any fixed z € Z;, we easily get that

5i(2) / -g(2))d
< ZP;,.(z) fM,» / t /()] drde

< Dy(2) ZP*(Z/ |t — z| dt,

where ®,(z) = sup,c(o 1 f | g (A)| dx for ¢ # z is the Hardy—Littlewood majorant of g'.
Applying the well- l(nown Cauchy—-Schwarz inequality, we get

|T5(g:2) - g(2)| < Bg(2) (Z P;fi(z)) <Z7>;;(z) / (t- z)2dt> i
i=0 i=0 M;

< y(2) max (7:; ((Xz(t);Z)) ,

where from the Hardy-Littlewood theorem [30] we get

1
/ (z)dz<2< >/|g )W dz (1<p<oo).
0

Thus, for any 1 < p < oo, we get that

£ 1 p * % /
1T oy =2 (2 Jmax (T (0= %59) ) el O

Theorem 8 For any g € L,[0,1] with the number 1 < p < 0o, operators (20) verify the in-
equality

1702 - 8@l 7, = Cony (8 65a2)

1

1 2
where C = 2¢y + 27 (ﬁ) is a positive constant and (s, (z) = MaX,e7, (7;"; (m(t);z)) .

Page 14 of 18
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Proof Let us denote

. 2loll,0, ifp € L,[0,1],
||7;,a(§0;z) - (p(z)| |L 01 = 1,1 pp[o X . ; (22)
O 20 (25) G el 0 e € Z1,001],
where ;4 (2) = max,ez, <7§,’; (Xz(t);Z)> .
For an arbitrary function g € Z;,(0, 1], the positive linear operators imply that
|| 7o (@:2) —g(2)] |LP(IS) <||Tle-d:2) - (g-9)2) |Lp(13)
+|[T(¢32) _¢(Z)HL1,(IS)
Lz ( p
<2(llgll 00427 (525) 2wt )
e p
<2K,(g2 — ) s
oo (2) )
. [ p
=< 2c2a)1,P <g’2 4 (ﬁ) é—s,a(z))
Lp N
< 2C2<1+2 4 <Ll) W1,p (g»é‘s,a(z)))~ O
p —
Theorem 9 For an arbitrary function g € C*[0, 1], let the auxiliary operators R, be such
that
R (@)= T(e59) + @) -¢ (T (032)). 23)

Then, for every ¢ € C[0,1], it follows that

2
|R:(952) - d(2)| < [7},’; (a0 -2%2) + <§;fa(2) - Z) } "I,

where ¢, (2) = (%MH)Z( 1) (%st) To (X1(2);2) and T, (x1(t); 2) is defined by (20). In
s+1 1-a)+a s+1
addition, C?(0,1] is defined by

C?[0,1] = {¢ : ¢ € C[0,1] such that ¢',¢" € C[0,1]}.
Proof For any ¢ € C2[0, 1], we easily get R, (x0(t);z) =1 and
Rio(x1(8)2) = To,, (x1(2);2) + 2 = T, (xa(8); 2) = 2.

From the Taylor series, we see

x1(2)
d(1(2) = ¢(2) + (1 (t) - 2)9'(2) + / On(t) - £)¢"(£)dé.
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By use of the linearity of R ,, we get

x1(2)
R;.(9:2) — 9(2) = ¢' (DR}, (1) —z2) + R}, (/ (xa(8) - S)I/I//(é)dé;Z)

xa(t
:R;fa( / (a(®) - )Y (€)de; z)

x1(t)
= 7?2(/ (Xl(t)—é)lﬂ”(%)d%‘;Z)

Lo (2)
_ / (g;;(z) —s)qs”(s)ds,

where ¢, (2) = 1 Toi (x1(8);2). Thus

2
g +1+s 2y +l+s
(T) U“’”*“(T

x1(t)
Tse </ () - 5)¢”(%)d§;z)

¢ (2)
/ (c;;, @) - s>¢”(s>ds ‘

IRso(@52) - 9(2)| <

+

Since we know

x1(t)
7:;,([ (0 (6) - £)¢"(2)dE; z)

( Xl(t £)p" (0)d§; Z)

/

o (001 (6) = 2)%52) 16"

£)p" (s)dé; Z>

and
(@) 2
[ (s-e)oere] < (c-2) 107,
we get
2
Ri052) 000 = | T2 (Gt -252) + (2,0 -2) 10"
This gives the complete proof of Theorem 9. O

5 Graphical analysis
In this section, we give a numerical example with illustrative graphics with the help of
MATLAB.

Example 1 Let g(y) = (y — %)(y 3) E1=4,& =3, x1 =15, xo =4, and s € {20,30,110}.
The convergence of the operator towards the function g(y) is shown in Fig. 1.

From this example, we observe that approximation of function by the operators becomes
better when we take larger values of s.

Page 16 of 18
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Numerical Example
T T

35 T Y
e FOr 5=20
For s=30
30 For s=110
====uues function

-5 ! ! ! !

0 1 2 3 4 5
y(for&=4,6=3,xa=15x2=4)

Figure 1 Convergence of the operator towards the function g(y)

6 Conclusions

It is very clear that for the choices of ¢, = s, = 0, our new constructed operators re-
duced to o-Bernstein—Stancu variant of Kantorovich polynomial given by [20]. For the
choices of ¢; = ¢ = 51 = 56 = 0, our new constructed operators reduced to the classical
a-Bernstein—Kantorovich polynomial obtained in [19]. Therefore, based on our research,
we can conclude that the shifted knot operators defined by equality (6), which we have
named our new Bernstein—Kantorovich variation, are an improved version of the previ-
ous operators defined by [19, 20]. This article’s major goal is to examine how operators that

shifted knots of «-Bernstein—Kantorovich operators (6) in L, spaces converge on [0, 1].
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