
Foralewski et al. Journal of Inequalities and Applications         (2024) 2024:86 
https://doi.org/10.1186/s13660-024-03162-w

R E S E A R C H Open Access

Quasinormed spaces generated by a
quasimodular
Paweł Foralewski1*, Henryk Hudzik2† and Paweł Kolwicz3

*Correspondence:
katon@amu.edu.pl
1Faculty of Mathematics and
Computer Science, Adam
Mickiewicz University, Poznań,
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Abstract
In this paper, we introduce the notion of a quasimodular and we prove that the
respective Minkowski functional of the unit quasimodular ball becomes a quasinorm.
In this way, we refer to and complete the well-known theory related to the notions of
a modular and a convex modular that lead to the F-norm and to the norm,
respectively. We use the obtained results to consider the basic properties of
quasinormed Calderón–Lozanovskĭı spaces Eϕ , where the lower Matuszewska–Orlicz
index αϕ plays the key role. Our studies are conducted in a full possible generality.
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1 Introduction
The subject of quasinormed or F-normed spaces (which are a natural generalization of
normed spaces) has been the object of research by many authors for a long time (see [1,
4, 10–16, 22, 25, 27]). Recall also that the so-called �-norm is a generalization of both a
quasinorm and an F-norm (see [12]). From a different point of view, the theory of modular
spaces has also been developed (see [21, 26]).

We will try to link these threads. Namely, we will introduce a new notion of the func-
tional ρ that we will call a quasimodular. This is an essential generalization of the concept
of a convex semimodular. Furthermore, this quasimodular ρ is defined in such a way that
the respective Minkowski functional of the unit quasimodular ball gives a quasinorm. We
also check if the basic properties from the classical theory of modular spaces are still true
for quasimodular spaces.

Then, we apply our general concept to a special class of quasimodular spaces, that is,
the quasinormed Calderón–Lozanovskĭı spaces Eϕ generated by a quasimodular ρE

ϕ . We
focus mainly on the basic relations between a positive lower Matuszewska–Orlicz index
αE

ϕ and the fact that ρE
ϕ (‖ · ‖ϕ) is a quasimodular (a quasinorm), respectively. We study

carefully these relations in both directions. We will finish the article by characterizing the
quasinormed Orlicz–Lorentz (Orlicz) spaces as spaces generated by a suitable quasimod-
ular. We admit nonconvex, nondecreasing, and degenerated Orlicz functions, which give
the full generality of studies. Some geometric properties of these spaces have been studied

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-024-03162-w
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-024-03162-w&domain=pdf
mailto:katon@amu.edu.pl
http://creativecommons.org/licenses/by/4.0/


Foralewski et al. Journal of Inequalities and Applications         (2024) 2024:86 Page 2 of 18

in [14] and, in the particular case for E = L1, in [16], but the authors consider them directly
with a quasinorm (not as spaces generated by a “modular”).

2 Preliminaries
Definition 2.1 Given a real vector space X the functional x �→ ‖x‖ is called a quasinorm
if the following three conditions are satisfied:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖ax‖ = |a|‖x‖ for any x ∈ X and a ∈R;

(iii) there exists C = CX ≥ 1 such that ‖x + y‖ ≤ C(‖x‖ + ‖y‖) for all x, y ∈ X .

For 0 < p ≤ 1, the functional x �→ ‖x‖1 is called a p-norm if it satisfies the first two con-
ditions of the quasinorm and the condition ‖x + y‖p

1 ≤ ‖x‖p
1 + ‖y‖p

1 for any x, y ∈ X. Clearly,
each p-norm is a quasinorm. By the Aoki–Rolewicz theorem (cf. [12, Theorem 1.3 on page
7], [25, page 86]), given a quasinorm ‖ · ‖, if 0 < p ≤ 1 is such that C = 21/p–1, then there
exists a p-norm ‖ · ‖1 which is equivalent to ‖ · ‖, that is

‖x‖1 ≤ ‖x‖ ≤ 2C‖x‖1 (2.1)

for all x ∈ X. The quasinorm ‖ · ‖ induces a metric topology on X: in fact a metric can
be defined by d(x, y) = ‖x – y‖p

1. We say that X = (X,‖ · ‖) is a quasi-Banach space if it is
complete for this metric. Let us note that a lot of important information and results on
quasi-Banach spaces can be found in [11], see also [12].

Recall that a quasi-Banach lattice E is called order continuous (E ∈ (OC)) if for each
sequence xn ↓ 0, that is xn ≥ xn+1 and infn xn = 0, we have ‖xn‖E → 0 (see [17, 23, 28]).

3 Quasimodular spaces
In this section, we introduce the notions of a quasimodular and a quasimodular space.

Definition 3.1 Let X be a real linear space. We say that a function ρ : X → [0,∞] is a
quasimodular whenever for all x, y ∈ X the following conditions are satisfied:

(i) ρ(0) = 0 and the condition ρ(λx) ≤ 1 for all λ > 0 implies that x = 0;
(ii) ρ(–x) = ρ(x);

(iii) ρ(λx) is a nondecreasing function of λ, where λ ≥ 0;
(iv) There is M ≥ 1 such that

ρ(αx + βy) ≤ M
[
ρ(x) + ρ(y)

]

provided α,β ≥ 0 and α + β = 1;
(v) There is a constant p > 0 such that for all ε > 0 and all A > 0 there exists

K = K(ε, A) ≥ 1 such that

ρ(ax) ≤ Kapρ(x) + ε

for any 0 < a ≤ 1 whenever ρ(x) ≤ A.

Remark 3.2 (i) The above definition, in particular the condition (v), has been introduced in
such a way as to cover the largest possible class of mappings ρ and to provide a quasinorm
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(see Theorem 3.4). As we will show in Theorem 4.10, condition (v) can be simplified in
some particular cases (more precisely, some particular modulars satisfy condition (v) in a
simpler or stronger form).

(ii) Obviously, a convex modular (more precisely a convex semimodular) defined in [26]
is in particular a quasimodular. As we will show in Example 4.15 (ii) and (iii), the concepts
of quasimodular and modular (more precisely a semimodular, which induces an F-norm)
defined in [26] are incomparable.

If ρ is a quasimodular on X, then

Xρ :=
{

x ∈ X : lim
λ→0

ρ(λx) = 0
}

is called a quasimodular space. It is easy to show that Xρ is a linear subspace of X. We also
obtain the following:

Lemma 3.3 For any quasimodular ρ , we have

Xρ =
{

x ∈ X : ρ(λx) < ∞ for some λ > 0
}

.

Proof Note that in order to prove this lemma, it is enough to show that if ρ(λ0x) < ∞ for
some λ0 > 0, then limλ→0 ρ(λx) = 0. Let x ∈ X and ρ(λ0x) < ∞ for some λ0 > 0. We prove
that for any ε ∈ (0,ρ(λ0x)) there exists δ = δ(ε) > 0 such that ρ(λx) < ε, whenever λ < δ.
Let ε ∈ (0,ρ(λ0x)) be fixed and take K = K( ε

2 ,ρ(λ0x)) from condition (v) of Definition 3.1.
Then, for λ < δ, where δ = λ0( ε

2Kρ(λ0x) )1/p, we obtain

ρ(λx) = ρ

(
λ

λ0
λ0x

)
≤ K

(
λ

λ0

)p

ρ(λ0x) + ε/2 < ε. �

Theorem 3.4 Let ρ be a quasimodular on X. Then, the functional

‖x‖ρ = inf
{
λ > 0 : ρ(x/λ) ≤ 1

}

is a quasinorm on Xρ .

Proof The condition ‖0‖ρ = 0 is obvious. Suppose x 
= 0. Then, by condition (i), there exists
λ > 0 such that ρ(λx) > 1 and, by condition (iii), ‖x‖ρ ≥ 1/λ.

For any x ∈ Xρ and all α ∈R, exactly the same way as in [26], we obtain

‖αx‖ρ = inf

{
λ > 0 : ρ

(
αx
λ

)
≤ 1

}
= |α| inf

{
λ/|α| > 0 : ρ

(
x

λ/α

)
≤ 1

}
= |α|‖x‖ρ .

Finally, we prove the quasitriangle inequality. Let 0 < ε < 1
2M be fixed and take K = K(ε, 1)

(where constants M and K arise from conditions (iv) and (v) of Definition 3.1). Defining

C =
(

K
1

2M – ε

)1/p

,
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for all x, y ∈ Xρ and any δ > 0, we obtain

ρ

(
x + y

C(‖x‖ρ + ‖y‖ρ + δ)

)

= ρ

( ‖x‖ρ + δ/2
‖x‖ρ + ‖y‖ρ + δ

x
C(‖x‖ρ + δ/2)

+
‖y‖ρ + δ/2

‖x‖ρ + ‖y‖ρ + δ

y
C(‖y‖ρ + δ/2)

)

≤ M
[
ρ

(
x

C(‖x‖ρ + δ/2)

)
+ ρ

(
y

C(‖y‖ρ + δ/2)

)]

≤ M
[

K
Cp · ρ

(
x

(‖x‖ρ + δ/2)

)
+ ε +

K
Cp · ρ

(
y

(‖y‖ρ + δ/2)

)
+ ε

]

≤ 2M
(

K
Cp + ε

)
= 1,

whence

‖x + y‖ρ ≤ C
(‖x‖ρ + ‖y‖ρ + δ

)
.

By the arbitrariness of δ we have ‖x + y‖ρ ≤ C(‖x‖ρ + ‖y‖ρ). �

By the definition of quasinorm, we obtain immediately the following:

Lemma 3.5 Let ρ be a quasimodular on X. Then, for any x ∈ Xρ the following statements
hold:

(i) If ρ(x) ≤ 1, then ‖x‖ρ ≤ 1;
(ii) If ρ is left continuous (limλ→1– ρ(λx) = ρ(x) for all x ∈ Xρ), then ρ(x) ≤ 1 whenever

‖x‖ρ ≤ 1;
(iii) If ‖x‖ρ < 1, then ρ(x) ≤ 1;
(iv) If ρ is right continuous (limλ→1+ ρ(λx) = ρ(x) for all x ∈ Xρ), then ‖x‖ρ < 1 whenever

ρ(x) < 1.

Remark 3.6 As we will show in Example 4.15 (iv) the implication, if ‖x‖ρ < 1 then ρ(x) < 1,
is not always true. Recall that this implication is true for any modular as well as for any
convex modular (see [26]).

Lemma 3.7 For each sequence (xn) in Xρ we have limn→∞ ‖xn‖ρ = 0 if and only if
limn→∞ ρ(λxn) = 0 for all λ > 0.

Proof The implication, if limn→∞ ρ(λxn) = 0 for all λ > 0 then limn→∞ ‖xn‖ρ = 0 is obvious.
Let now ‖xn‖ρ → 0. Fix λ > 0 and ε ∈ (0, 1) and let K = K(ε/2, 1) be the constant from
condition (v) of Definition 3.1. Then, there exists nλ,ε such that ‖λxn‖ρ ≤ (ε/4K)1/p for all
n ≥ nλ,ε . Hence, for each a ∈ ((ε/4K)1/p, (ε/2K)1/p) we obtain

ρ(λxn) = ρ

(
a
λxn

a

)
≤ Kapρ

(
λxn

a

)
+

ε

2
≤ ε.

By the arbitrariness of ε, for any λ > 0 we obtain limn→∞ ρ(λxn) = 0. �
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4 Quasinormed Calderón–Lozanowskiı̆ spaces
A triple (T ,
,μ) stands for a positive, complete, and σ -finite measure space and L0 =
L0(T ,
,μ) denotes the space of all (equivalence classes of ) 
-measurable functions x :
T → R. For every x ∈ L0 we denote supp x = {t ∈ T : x(t) 
= 0}. Moreover, for any x, y ∈ L0,
we write x ≤ y, if x(t) ≤ y(t) almost everywhere with respect to the measure μ on the set
T .

A quasinormed lattice [quasi-Banach lattice] E = (E,≤,‖ · ‖E) is called a quasinormed
ideal space [quasi-Banach ideal space (or a quasi-Köthe space)] if it is a linear subspace of
L0 satisfying the following conditions:

(i) If x ∈ L0, y ∈ E and |x| ≤ |y| μ-a.e., then x ∈ E and ‖x‖E ≤ ‖y‖E ;
(ii) There exists x ∈ E that is strictly positive on the whole T .

By E+ we denote the positive cone of E, that is, E+ = {x ∈ E : x ≥ 0}. Let CE be the constant
from the quasitriangle inequality for E. In turn, by E(w) we denote the weighted quasi-
normed ideal space, that is,

E(w) =
{

x ∈ L0 : xw ∈ E
}

with the quasinorm ‖x‖E(w) = ‖xw‖E , where w : T → (0,∞) is a measurable weight func-
tion.

We say that a quasinormed ideal space E has the Fatou property, if for all x ∈ L0 and
any (xn)∞n=1 in E+ such that xn ↑ |x| μ-a.e and supn∈N ‖xn‖E < ∞, we obtain x ∈ E and
limn ‖xn‖E = ‖x‖E . It is well known that E has the Fatou property if and only if for each
x ∈ L0 and all (xn)∞n=1 in E such that xn → x μ-a.e and lim infn∈N ‖xn‖E < ∞, we have x ∈ E
and ‖x‖E ≤ lim infn ‖xn‖E (cf. [2, Lemma 1.5 on page 4]).

Lemma 4.1 Let E be a quasinormed ideal space.
(i) If limn→∞ ‖x – xn‖E = 0, where x ∈ E and (xn)∞n=1 is a sequence in E, then xn → x

locally in measure.
(ii) For any Cauchy sequence (xn)∞n=1 in E there exists x ∈ L0 such that xn → x locally in

measure.

Proof This lemma can be proved analogously as Theorem 1 on page 96 in [17]. Indeed,
assuming in (2) on page 96 that ‖xn – x‖E < ε

2nCn
E

, we obtain ‖χBn‖E < 1
2nCn

E
(see (5) on page

96) and, in consequence:

‖χDn‖E ≤ ‖χCmsm ‖E ≤
∥∥
∥∥
∥

m+sm∑

k=m+1

χBk

∥∥
∥∥
∥

E

≤
m+sm∑

k=m+1

C(k–m)
E ‖χBk ‖E <

m+sm∑

k=m+1

C(k–m)
E

2kCk
E

<
1

2m ,

(see page 97, line 5). �

Lemma 4.2 [14, Lemma 2.1] A quasinormed ideal space E with the Fatou property is com-
plete.

Proof We recall a short proof of this lemma for the sake of completeness. By the Aoki–
Rolewicz theorem, it is enough to show that for any Cauchy sequence (xn)∞n=1 in E there
exists x ∈ E such that limn→∞ ‖x – xn‖E = 0. If (xn)∞n=1 is a Cauchy sequence in E, then
by Lemma 4.1(ii), xn → x locally in measure for some x ∈ L0. Without loss of generality
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(passing to subsequences and applying the double extract convergence theorem, if nec-
essary), we can assume xn → x μ-a.e. Hence, by the Fatou property, we obtain x ∈ E and
‖x – xn‖E ≤ lim infm→∞ ‖xm – xn‖E for each n ∈ N, which completes the proof. �

The following basic fact, very well known for Banach ideal spaces (see [17, Lemma 2, p.
97]), is also true for quasi-Banach ideal spaces.

Lemma 4.3 Let (E,‖ · ‖E) be a quasi-Banach ideal space. If ‖xn‖E → 0, then there exists
a subsequence (xnk )∞k=1, an element y ∈ E+ and a sequence εk ↓ 0 such that |xnk | ≤ εk · y for
each k.

Proof If ‖xn‖E → 0, then we can find a subsequence (xnk )∞k=1 such that ‖xnk ‖ < 1
Ck

E2k for any
k ∈N. Consequently,

∞∑

k=1

Ck
E‖k · xnk ‖ ≤

∞∑

k=1

Ck
E

k
Ck

E2k
=

∞∑

k=1

k
2k < ∞.

By Theorem 1.1 from [25], y :=
∑∞

k=1 |k · xnk | ∈ E+. Thus, |xnk | ≤ y
k for all k. Taking εk = 1/k

we complete the proof. �

From now on, we will assume that E is a quasi-Banach ideal space with the Fatou prop-
erty. During our studies we will consider three natural classes of E:

(1) neither L∞ ⊂ E nor E ⊂ L∞;
(2) L∞ ⊂ E;
(3) E ⊂ L∞.
Let T = [0,γ ), 0 < γ ≤ ∞, and μ be the Lebesgue measure. Also, the space E = Lp, 0 <

p < ∞, belongs to the class (1) if γ = ∞ and the class (2) otherwise. Moreover, the space
L1 ∩ L∞ belongs to the class (3) whenever γ = ∞. Let now T = N and μ = m be a counting
measure. Then, the space lp, p ∈ (0,∞), belongs to class (3), the weighted sequence space
l1(w), w = (w(n))∞n=1 and

∑∞
n=1 w(n) < ∞, belongs to class (2) and the Cesàro sequence space

cesp, 1 < p < ∞ (see [19] for the respective definition), belongs to class (1).

Remark 4.4 Let E ⊂ L∞. Then, by the closed-graph theorem that is still true for quasi-
Banach spaces (see [12, Theorem. 1.6]), the inclusion is continuous, whence there exists a
constant DE > 0 such that

‖x‖L∞ ≤ DE‖x‖E (4.1)

for each x ∈ E. Defining

aE = inf
{‖χA‖E : χA ∈ E,μ(A) > 0

}
, (4.2)

by (4.1), we have aE ≥ 1/DE > 0.

Definition 4.5 A function ϕ : [0,∞) → [0,∞] is called an Orlicz function if ϕ is nonde-
creasing, vanishing, and right continuous at 0, continuous on (0, bϕ), where

bϕ = sup
{

u ≥ 0 : ϕ(u) < ∞}
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and left continuous at bϕ . In the whole paper, excluding Remark 4.14 and Example 4.15
(iii), we will assume that limu→∞ ϕ(u) = ∞.

Let

aϕ = sup
{

u ≥ 0 : ϕ(u) = 0
}

.

By ϕ–1 we denote the generalized inverse of the function ϕ defined by

ϕ–1(v) = inf
{

u ≥ 0 : ϕ(u) > v
}

for v ∈ [0,∞) and ϕ–1(∞) = lim
v→∞ϕ–1(v)

(see [20]).
The following lemma is an easy exercise (see [20, Lemma 3.1], for a little different convex

case).

Lemma 4.6 For any Orlicz function ϕ we have:
(i) Let u ∈ [0, bϕ). Then, ϕ–1(ϕ(u)) > u if ϕ is constant on the interval [u, u + δ) for some

δ > 0 and ϕ–1(ϕ(u)) = u otherwise.
(ii) If bϕ < ∞, then ϕ–1(ϕ(bϕ)) = bϕ and ϕ–1(ϕ(u)) = bϕ < u for bϕ < u < ∞.

(iii) If either bϕ = ∞ or bϕ < ∞ with ϕ(bϕ) = ∞, then ϕ(ϕ–1(u)) = u for any u ∈ [0,∞).
(iv) If bϕ < ∞ and ϕ(bϕ) < ∞, then ϕ(ϕ–1(u)) = u for u ∈ [0,ϕ(bϕ)] and

ϕ(ϕ–1(u)) = ϕ(bϕ) < u for u > ϕ(bϕ).
From (i) and (ii), in particular, we obtain:

(v) ϕ–1(ϕ(u)) = u for aϕ ≤ u < bϕ if either bϕ = ∞ or bϕ < ∞ with ϕ(bϕ) = ∞ and ϕ is
strictly increasing on [aϕ , bϕ).

(vi) ϕ–1(ϕ(u)) = u for aϕ ≤ u ≤ bϕ if bϕ < ∞ and ϕ(bϕ) < ∞ and ϕ is strictly increasing
on [aϕ , bϕ].

Finally, note that from (iii) and (iv) and (i) and (ii) we obtain
(vii) ϕ(ϕ–1(u)) ≤ u for all u ∈ [0,∞) and u ≤ ϕ–1(ϕ(u)) if ϕ(u) < ∞.

Recall that for any Orlicz function ϕ the lower Matuszewska–Orlicz index αϕ for all
arguments is defined by the formula

αa
ϕ = sup

{
p ∈ R : there exists K ≥ 1 such that ϕ(au) ≤ Kapϕ(u)

for any u ≥ 0 and 0 < a ≤ 1
}

.

Analogously, the lower Matuszewska–Orlicz indices for large and for small arguments are
defined as

α∞
ϕ = sup

{
p ∈ R : there exist K ≥ 1 and u0 > 0 such that ϕ(u0) < ∞ and

ϕ(au) ≤ Kapϕ(u) for any u ≥ u0 and 0 < a ≤ 1
}

and

α0
ϕ = sup

{
p ∈ R : there exist K ≥ 1 and u0 > 0 such that ϕ(au) ≤ Kapϕ(u)



Foralewski et al. Journal of Inequalities and Applications         (2024) 2024:86 Page 8 of 18

for any 0 ≤ u ≤ u0 and 0 < a ≤ 1
}

,

respectively.

Remark 4.7 (i) If 0 < aϕ < bϕ , then α0
ϕ = ∞ and we may extend the key inequality in the

definition of α0
ϕ to any u0 > aϕ such that ϕ(u0) < ∞. Indeed, let p > 0. For every 0 ≤ u ≤ aϕ

we have ϕ(au) = 0 = Kapϕ(u) for each K > 0 and 0 < a ≤ 1. Take any u0 > aϕ such that
ϕ(u0) < ∞. If aϕ < u ≤ u0 and 0 < a < aϕ

u0
, then we have

ϕ(au) ≤ ϕ(au0) ≤ ϕ(aϕ) = 0 ≤ Kapϕ(u)

for every K > 0. Moreover,

sup
aϕ<u≤u0

sup
aϕ
u0

≤a≤1

ϕ(au)
apϕ(u)

≤ sup
aϕ
u0

≤a≤1

1
ap =

(
u0

aϕ

)p

.

Thus, for K = ( u0
aϕ

)p we have

ϕ(au) ≤ Kapϕ(u)

for all 0 < a ≤ 1 and 0 ≤ u ≤ u0.
(ii) If aϕ = 0 and α0

ϕ > 0 then we may extend the key inequality in the definition of α0
ϕ to

any u1 such that ϕ(u1) < ∞. Indeed, suppose there is p > 0, u0 > 0 and K > 0 such that

ϕ(au) ≤ Kapϕ(u) (4.3)

for all 0 < a ≤ 1 and 0 ≤ u ≤ u0. Take u1 > u0 satisfying ϕ(u1) < ∞. Then,

sup
u0<u≤u1

sup
u0
u1

≤a≤1

ϕ(au)
apϕ(u)

≤ sup
u0
u1

≤a≤1

1
ap =

(
u1

u0

)p

.

Set K1 = ( u1
u0

)p. Now, we claim that

K2 := sup
u0<u≤u1

sup
0<a< u0

u1

ϕ(au)
apϕ(u)

< ∞.

Otherwise, for each n ∈N we can find u0 < un ≤ u1 and 0 < an < u0
u1

such that

ϕ(anun) > nap
nϕ(un).

Denote bn := anun
u0

. Then, bn < 1 and

ϕ(bnu0) = ϕ(anun) > nap
nϕ(un) = nbp

n

(
u0

un

)p

ϕ(un) ≥ nbp
n

(
u0

u1

)p

ϕ(u0).

On the other hand, by inequality (4.3),

ϕ(bnu0) ≤ Kbp
nϕ(u0),
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which gives a contradiction and proves the claim. Finally, setting K3 = max{K , K1, K2} we
conclude that

ϕ(au) ≤ K3apϕ(u)

for all 0 < a ≤ 1 and 0 ≤ u ≤ u1.
(iii) If α∞

ϕ > 0 then we may extend the key inequality in the definition of α∞
ϕ to any

u1 > aϕ . Indeed, suppose there is p > 0, u0 > 0, and K > 0 such that ϕ(u0) < ∞ and

ϕ(au) ≤ Kapϕ(u)

for all 0 < a ≤ 1 and u ≥ u0. Take u1 < u0 satisfying ϕ(u1) > 0. Then,

sup
u1≤u<u0

sup
0<a≤1

ϕ(au)
apϕ(u)

≤ sup
0<a≤1

ϕ(au0)
apϕ(u1)

≤ sup
0<a≤1

Kapϕ(u0)
apϕ(u1)

=
Kϕ(u0)
ϕ(u1)

.

Taking K1 = max{K , Kϕ(u0)
ϕ(u1) } = Kϕ(u0)

ϕ(u1) we obtain that

ϕ(au) ≤ K1apϕ(u)

for all 0 < a ≤ 1 and u ≥ u1.
(iv) From the above consideration, we conclude immediately that if α∞

ϕ > 0 and α0
ϕ > 0

then αa
ϕ > 0.

Example 4.8 Taking ϕ1(u) = ln(1 + u), for u ≥ 0, we easily obtain

lim
u→∞

ϕ1(au)
ϕ1(u)

= 1

for any a ∈ (0, 1), whence α∞
ϕ1 = 0. Analogously, defining ϕ2(0) = 0 and

ϕ2(u) =
1

ln(1 + 1
u )

for u > 0,

we obtain

lim
u→0+

ϕ2(au)
ϕ2(u)

= 1

for any a ∈ (0, 1) and, in consequence, α0
ϕ2 = 0.

For any pair E and ϕ we define the lower Matuszewska–Orlicz index αE
ϕ , by the formula

αE
ϕ :=

⎧
⎪⎪⎨

⎪⎪⎩

αa
ϕ , when neither L∞ ⊂ E nor E ⊂ L∞,

α∞
ϕ , when L∞ ⊂ E,

α0
ϕ , when E ⊂ L∞.
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Given a quasi-Banach ideal space E and an Orlicz function ϕ, we define on L0 a func-
tional ρE

ϕ , by

ρE
ϕ (x) :=

⎧
⎨

⎩

‖ϕ(|x|)‖E if ϕ(|x|) ∈ E,

∞ otherwise.

It is well known that if ϕ is a convex Orlicz function and E is a Banach ideal space then
ρE

ϕ is a convex modular. The result below concerns the more general case (the index αE
ϕ

plays a role of substitution of convexity of ϕ).

Theorem 4.9 Let E be a quasi-Banach ideal space and ϕ be an Orlicz function. If αE
ϕ > 0,

then ρE
ϕ is quasimodular (see Definition 3.1).

Proof Obviously, ρE
ϕ (0) = 0 and ρE

ϕ (–x) = ρE
ϕ (x) for any x ∈ L0. Let x 
= 0. Then, there exist

A ∈ 
 with μ(A) > 0 and n ∈ N such that 1
nχA ≤ |x|. If ϕ(|x|) /∈ E, then ρE

ϕ (x) = ∞ > 1,
while, if ϕ(|x|) ∈ E, by ϕ( 1

n )χA ≤ ϕ(|x|), we obtain χA ∈ E. Since limu→∞ ϕ(u) = ∞, we can
find λA > 0 such that ϕ(λA/n) > 1/‖χA‖E and, in consequence, ρE

ϕ (λAx) = ‖ϕ(λA|x|)‖E ≥
‖ϕ(λA/n)χA‖E > 1.

For every x ∈ L0 and all 0 ≤ λ1 ≤ λ2 we have ϕ(λ1|x(t)|) ≤ ϕ(λ2|x(t)|) for μ-a.e. t ∈ T ,
whence ρE

ϕ (λ1x) ≤ ρE
ϕ (λ2x).

Let now x, y ∈ L0 and α,β ≥ 0, α + β = 1. Then,

ϕ
(∣∣αx(t) + βy(t)

∣∣) ≤ ϕ
(
max

(∣∣x(t)
∣∣,

∣∣y(t)
∣∣)) ≤ ϕ

(∣∣x(t)
∣∣) + ϕ

(∣∣y(t)
∣∣)

for μ-a.e. t ∈ T . Hence, if ϕ(|x|) ∈ E and ϕ(|y|) ∈ E, we obtain

ρE
ϕ (αx + βy) =

∥∥ϕ
(|αx + βy|)∥∥E ≤ ∥∥ϕ

(|x|) + ϕ
(|y|)∥∥E

≤ CE
(∥∥ϕ

(|x|)∥∥E +
∥∥ϕ

(|y|)∥∥E

)
= CE

(
ρE

ϕ (x) + ρE
ϕ (y)

)
.

Obviously, the inequality ρE
ϕ (αx + βy) ≤ CE(ρE

ϕ (x) + ρE
ϕ (y)) holds true, when ϕ(|x|) /∈ E or

ϕ(|y|) /∈ E.
Finally, we will prove that ρE

ϕ satisfies condition (v). Without loss of generality, we can
suppose that 0 < ρE

ϕ (x) < ∞ (then, in particular, we have aϕ < bϕ). We will consider three
cases.

If L∞ ⊂ E, then for any ε > 0 there exists u1 ∈ (aϕ , bϕ) such that CE ·ϕ(u1)‖χT‖E < ε. Since
αE

ϕ = α∞
ϕ > 0, by Remark 4.7, we obtain that there exist numbers p > 0 and K = K(ε) ≥ 1

such that ϕ(au) ≤ Kapϕ(u) for all u ≥ u1 and 0 < a ≤ 1. Defining B = {t ∈ T : |x(t)| ≥ u1},
for any a ∈ (0, 1] we obtain

ρE
ϕ (ax) =

∥
∥ϕ

(
a|x|)∥∥E ≤ CE

(∥∥ϕ
(
a|x|)χB

∥
∥

E +
∥
∥ϕ

(
a|x|)χT\B

∥
∥

E

)
(4.4)

≤ CEKap∥∥ϕ
(|x|)∥∥E + CEϕ(u1)‖χT‖E ≤ CEKapρE

ϕ (x) + ε.

In the case when neither L∞ ⊂ E nor E ⊂ L∞, analogously as above, we obtain

ρE
ϕ (ax) =

∥∥ϕ
(
a|x|)∥∥E ≤ Kap∥∥ϕ

(|x|)∥∥E = KapρE
ϕ (x). (4.5)
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Let now E ⊂ L∞, take A > 0 and assume that ρE
ϕ (x) = ‖ϕ(|x|)‖E ≤ A. By the closed-graph

theorem, there exists a constant DE > 0 such that ‖ϕ(|x|)‖L∞ ≤ DE‖ϕ(|x|)‖E ≤ ADE . Thus,
ϕ(|x(t)|) ≤ min(ADE ,ϕ(bϕ)) for μ-a.e. t ∈ T , whence, by Lemma 4.6, |x(t)| ≤ u2 for the
same t, where u2 = ϕ–1(min(ADE ,ϕ(bϕ))). Simultaneously, by αE

ϕ = α0
ϕ > 0 and Remark 4.7,

we obtain that there exist p > 0 and K = K(A) ≥ 1 such that ϕ(au) ≤ Kapϕ(u) for any u ≤ u2

and 0 < a ≤ 1. Therefore, ρE
ϕ (ax) ≤ KapρE

ϕ (x). �

Now, we will show that, depending on the embeddings between E and L∞, the condi-
tion αE

ϕ > 0 is even equivalent to a certain condition that is close to the point (v) of Defini-
tion 3.1.

Theorem 4.10 (i) Assume that neither L∞ ⊂ E nor E ⊂ L∞. Then, αa
ϕ > 0 if and only if

there exist constants p > 0 and K ≥ 1 such that for all x ∈ L0 and 0 < a ≤ 1 we have ρE
ϕ (ax) ≤

KapρE
ϕ (x).

(ii) Let L∞ ⊂ E. Then, α∞
ϕ > 0 if and only if there is a constant p > 0 such that for all v0 > 0

there exists K = K(v0) ≥ 1 such that for each x ∈ L0 satisfying |x(t)| ≥ v0 for μ-a.e. t ∈ T
and any 0 < a ≤ 1 we have ρE

ϕ (ax) ≤ KapρE
ϕ (x).

(iii) Let E ⊂ L∞. Then, α0
ϕ > 0 if and only if there is a constant p > 0 such that for every

A > 0 there exists K = K(A) ≥ 1 such that for any x ∈ L0 satisfying ρE
ϕ (x) ≤ A and every

0 < a ≤ 1 we have ρE
ϕ (ax) ≤ KapρE

ϕ (x).

Proof The necessity of statements (i) and (iii) follows from the proof of Theorem 4.9.
Now, we will show the sufficiency of (iii). Let D ∈ 
 be such that μ(D) > 0 and χD ∈ E.
Take u0 > 0 satisfying 0 < ϕ(u0) < ∞ and define A := ϕ(u0)‖χD‖E . Then, for any u ≤ u0 and
any a ∈ (0, 1] we obtain

ϕ(au)‖χD‖E =
∥∥ϕ(au)χD

∥∥
E = ρE

ϕ (auχD)

≤ K(A)apρE
ϕ (uχD) = K(A)ap∥∥ϕ(u)χD

∥
∥

E = K(A)apϕ(u)‖χD‖E .

Hence, by the arbitrariness of u and a, we obtain α0
ϕ > 0. Analogously, we can prove the

sufficiency of the condition αa
ϕ > 0 in (i).

Now, we will prove statement (ii), that is, let L∞ ⊂ E. First, let us note that, by the proof
of Theorem 4.9, we obtain the implication: if α∞

ϕ > 0, then there is a constant p > 0 such
that for each ε > 0 there exists K = K(ε) ≥ 1 such that ρE

ϕ (ax) ≤ KapρE
ϕ (x) + ε for any x ∈ L0

and 0 < a ≤ 1.
Let α∞

ϕ > 0 and take p ∈ (0,α∞
ϕ ), v0 > 0 and x ∈ L0 such that ρE

ϕ (x) < ∞ and |x(t)| ≥ v0 for
μ-a.e. t ∈ T . By Remark 4.7 (especially (iii) and (iv)), there exists K = K(v0) such that

ϕ
(
a
∣
∣x(t)

∣
∣) ≤ Kapϕ

(∣∣x(t)
∣
∣)

for all a ∈ (0, 1] and μ-a.e. t ∈ T , whence ρE
ϕ (ax) ≤ KapρE

ϕ (x).
Finally, we will prove the opposite implication. Take u0 > 0 satisfying 0 < ϕ(u0) < ∞ and

define v0 = u0. Then, for any u ≥ u0 and any a ∈ (0, 1] we have

ϕ(au)‖χT‖E = ρE
ϕ (auχT ) ≤ K(v0)apρE

ϕ (uχT ) = K(v0)apϕ(u)‖χT‖E

and, in consequence, α∞
ϕ > 0. �
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Definition 4.11 Let a quasi-Banach ideal space E and an Orlicz function ϕ be such that
αE

ϕ > 0. Then, the Calderón–Lozanovskĭı space Eϕ is defined by

Eϕ =
{

x ∈ L0 : lim
λ→0

ρE
ϕ (λx) = 0

}
.

By Theorem 4.9 and Lemma 3.3, Eϕ is a quasimodular space and

Eϕ =
{

x ∈ L0 : ρE
ϕ (λx) < ∞ for some λ > 0

}
.

Moreover, by Theorem 3.4, the functional

‖x‖ϕ = inf
{
λ > 0 : ρE

ϕ (x/λ) ≤ 1
}

,

is a quasinorm, called a Luxemburg–Nakano quasinorm. It is easy to show that Eϕ = (Eϕ ,≤
,‖ · ‖ϕ) is a quasinormed ideal space.

Remark 4.12 It is known that there is a connection between the Banach ideal space Eϕ

(where ϕ is a convex Orlicz function and E is a Banach ideal space) and the normed
Calderón–Lozanovskii interpolation construction ψ(E, L∞) (where ψ is a homogeneous,
concave function on R

2
+) – see [24, Example 2, p. 178]. However, there is a similar relation

if ϕ is a nonconvex Orlicz function, E is a quasi-Banach ideal space, and ψ is positively
homogeneous, nondecreasing with respect to each variable. On the other hand, such an
approach leads to quasi-Banach lattices ψ(E0, E1) that have application in interpolation
theory (see [27]).

We also obtain the following:

Lemma 4.13 For any quasi-Banach ideal space E and any Orlicz function ϕ the following
assertions hold:

(i) For each x ∈ Eϕ the function fx(α) := ρE
ϕ (αx), for α > 0, is nondecreasing and left

continuous.
(ii) For any x ∈ Eϕ we have ‖x‖ϕ ≤ 1 if and only if ρE

ϕ (x) ≤ 1.
(iii) The quasinormed ideal space Eϕ has the Fatou property and, in consequence, Eϕ is

complete.

Proof The assertion (i) follows immediately from the properties of ϕ and E (recall that
E has the Fatou property). Next, by (i) and Lemma 3.5, we obtain (ii). Proceeding analo-
gously as in [6, Theorem 12] (see also [14, Lemma 2.2(ii)]), we obtain that Eϕ has the Fatou
property. Hence, by Lemma 4.2, Eϕ is complete. �

Remark 4.14 Now, we will show the naturalness of the assumption limu→∞ ϕ(u) = ∞
in the definition of Orlicz function (see Definition 4.5). Obviously, if αa

ϕ > 0 or α∞
ϕ >

0, then limu→∞ ϕ(u) = ∞. Simultaneously, for ϕ(u) = min(u2, 1), we have α0
ϕ > 0 and

limu→∞ ϕ(u) = 1. Let E ⊂ L∞, limu→∞ ϕ(u) < ∞ and αE
ϕ = α0

ϕ > 0. Then, condition (i) of
Definition 3.1 holds whenever limu→∞ ϕ(u) > 1/aE , where aE is defined by formula (4.2),
and, in consequence, ρE

ϕ is quasimodular. Moreover, defining the new Orlicz function ψ ,
by ψ(u) = ϕ(u) for u ∈ [0,ϕ–1(1/aE)] and ψ(u) = u – (ϕ–1(1/aE) – 1/aE) for u > ϕ–1(1/aE),
we obtain limu→∞ ψ(u) = ∞ and (Eϕ ,‖ · ‖ϕ) ≡ (Eψ ,‖ · ‖ψ ).
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Now, we will show (among others) that the notion of modular and quasimodular are
incomparable.

Example 4.15 Assume T = [0,∞) and μ is the Lebesgue measure.
(i) If E = L1 and ϕ(u) = up for u ≥ 0, p > 0, then ρE

ϕ is a quasimodular (a convex modular
for p > 1) as well as a modular (see [26]). We have

‖x‖ϕ = ‖x‖p =
(∫ ∞

0

∣
∣x(t)

∣
∣p dt

) 1
p

.

Simultaneously, the F-norm is given by

∣
∣‖x‖∣∣

ϕ
:= inf

{
λ > 0: ρE

ϕ (x/λ) ≤ λ
}

=
(∫ ∞

0

∣
∣x(t)

∣
∣p dt

) 1
1+p

(see [26]). Note also that |‖xn‖|ϕ → 0 if and only if ‖x‖ϕ → 0, but there do not exist con-
stants A, B > 0 such that A‖x‖ϕ ≤ |‖x‖|ϕ ≤ B‖x‖ϕ for all x ∈ Lϕ .

(ii) Let E = L(1/4) and ϕ(u) = u2 for u ≥ 0. Obviously, ρE
ϕ is a quasimodular. Simultane-

ously, for x = χ[0,1) and y = χ[1,2) we obtain

ρE
ϕ

(
1
2

x +
1
2

y
)

= 4 > 2 = ρE
ϕ (x) + ρE

ϕ (y).

Thus, ρE
ϕ is not a modular.

(iii) If E = L1 and ϕ(u) = arctan(u) for u ≥ 0 (see Definition 4.5), then ρE
ϕ is a modular

(see [26]). Now, we will show that ρE
ϕ is not a quasimodular, more precisely, ρE

ϕ does not
satisfy condition (v) of Definition 3.1. Let p > 0 and take A = π/2 and ε = π/8. Then, for
xn = nχ[0,1) and an = 1/n, we obtain ρE

ϕ (xn) ≤ π/2, ρE
ϕ (anxn) = π/4, and limn→∞(an)p = 0. In

consequence, for any K ≥ 1 there exists n ∈ N such that ρE
ϕ (anxn) > Kap

nρ
E
ϕ (xn) + π/8.

(iv) Let E = L1, ϕ(u) = u for u ∈ [0, 1] and ϕ(u) = max(1, u – 1) for u > 1. For x = χ[0,1)

we have ρE
ϕ (x) = ρE

ϕ (2x) = 1. Simultaneously, ρE
ϕ (x/λ) > 1 for λ < 1/2, so ‖x‖ϕ = 1

2 (see Re-
mark 3.6).

Recall the notion of uniform monotonicity (see, for example, [3, 9, 22]) that plays an
important role in the theory of Banach lattices. A quasi-Banach lattice (E,‖ · ‖E) is said to
be uniformly monotone provided for each ε > 0 there exists δ = δ(ε) > 0 such that for all
x, y ∈ E+ with ‖x‖E = 1 we have ‖x + y‖E ≥ 1 + δ whenever ‖y‖E ≥ ε.

Lemma 4.16 If E is uniformly monotone, then for each ε1 > 0 and A > 0 there exists
δ1 = δ1(ε1, A) = δ( ε1

A ) > 0 (here the function δ(·) comes from the definition of the uniform
monotonicity) such that for all x, y ∈ E+ we have ‖x + y‖E ≥ ‖x‖E(1 +δ1) whenever ‖y‖E ≥ ε1

and ‖x‖E ≤ A.

Proof The proof can be found in [9] (the same for the quasinorm). However, we will need
the precise form of the function δ1(ε1, A), so we present the proof for the reader’s conve-
nience.

Let ε1 > 0 and A > 0. Take x, y ∈ E+ such that ‖y‖E ≥ ε1 and ‖x‖E ≤ A. Denote

x̃ =
x

‖x‖E
and ỹ =

y
‖x‖E

.



Foralewski et al. Journal of Inequalities and Applications         (2024) 2024:86 Page 14 of 18

Then, ‖̃x‖E = 1 and ‖̃y‖E ≥ ε1
A . By the uniform monotonicity of E, there exists δ1 =

δ1(ε1, A) = δ( ε1
A ) > 0 such that ‖̃x + ỹ‖E ≥ 1 + δ1, whence

‖x + y‖E ≥ ‖x‖E(1 + δ1). �

Recall that the assumption αE
ϕ > 0 is important to show that ρE

ϕ is a quasimodular (see
Theorem 4.9 and also Theorem 4.10) and, consequently, that ‖ · ‖ϕ is a quasinorm. How-
ever, if we know nothing about the index αE

ϕ then we may still define a functional

ρE
ϕ (x) :=

⎧
⎨

⎩
‖ϕ(|x|)‖E if ϕ(|x|) ∈ E,

∞ otherwise

and the set

Eϕ =
{

x ∈ L0 : lim
λ→0

ρE
ϕ (λx) = 0

}
.

Then, it is easy to see that Eϕ is a linear space and we may consider the functional

‖x‖ϕ = inf
{
λ > 0 : ρE

ϕ (x/λ) ≤ 1
}

, for x ∈ Eϕ ,

which satisfies the conditions (i) and (ii) of the quasinorm definition. We are going to show
that, under some natural assumptions, the condition αE

ϕ > 0 can be even necessary, that is
to say, if the functional ‖ · ‖ϕ is a quasinorm, then αE

ϕ > 0. Since the result below is only
some illustration of how natural is the assumption that αE

ϕ > 0, we will limit ourselves only
to one case of the ideal space E.

Theorem 4.17 Suppose ϕ is a finitely valued, strictly increasing Orlicz function. Let
(E,‖ · ‖E) be a uniformly monotone, p-normed ideal space over nonatomic measure space
(T ,
,μ) for some 0 < p ≤ 1. Assume that neither L∞ ⊂ E nor E ⊂ L∞. If (Eϕ ,‖ · ‖ϕ) is a
quasinormed space, then αa

ϕ > 0.

Proof Denote by C ≥ 1 the constant from the quasitriangle inequality for (Eϕ ,‖ · ‖ϕ). Let
δ0 = δ(1/2) be the constant from the definition of the uniform monotonicity of E. Fix
s > 0. Recall also that if E is uniformly monotone, then E is order continuous (see [22,
Proposition 2.4]). Thus, by the proof of Theorem 2.4 in [14], the function ν , defined by
ν(A) = ‖χA‖E for all A ∈ 
, χA ∈ E, is the submeasure in the sense of [5, Definition 1],
whence by [5, Theorem 10], ν has the Darboux property. In consequence, we can find a
set A ∈ 
, χA ∈ E satisfying

ϕ(s) =
1

‖χA‖E(1 + δ0)
.

Take a set B ∈ 
 of positive measure such that χB ∈ E, A ∩ B = ∅ and ‖χB‖E = 1
2‖χA‖E .

Applying Lemma 4.16 we conclude that

‖χA∪B‖E ≥ ‖χA‖E(1 + δ0). (4.6)
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It is well known that

‖χA‖ϕ =
1

ϕ–1( 1
‖χA‖E

)
,

where ϕ–1 is the general right-inverse to ϕ. Indeed, ‖ϕ( χA
λ

)‖E ≤ 1 if and only if 1
λ

≤
ϕ–1( 1

‖χA‖E
). In consequence,

C ≥ ‖χA + χB‖ϕ

‖χA‖ϕ + ‖χB‖ϕ

≥ ‖χA + χB‖ϕ

2‖χA‖ϕ

=
‖χA∪B‖ϕ

2‖χA‖ϕ

=
ϕ–1( 1

‖χA‖E
)

2ϕ–1( 1
‖χA∪B‖E

)
.

Moreover, also applying (4.6), we obtain

2Cϕ–1
(

1
‖χA‖E(1 + δ0)

)
≥ 2Cϕ–1

(
1

‖χA∪B‖E

)
≥ ϕ–1

(
1

‖χA‖E

)

and consequently we obtain

ϕ

[
2Cϕ–1

(
1

‖χA‖E(1 + δ0)

)]
≥ ϕ

[
ϕ–1

(
1

‖χA‖E

)]
=

1
‖χA‖E

.

Taking C1 = 2C, we have

(1 + δ0)ϕ(s) ≤ ϕ
[
2Cϕ–1(ϕ(s)

)]
= ϕ[2Cs] = ϕ[C1s]

for each s > 0. For every a ≥ 1 there is m ∈ N such that Cm–1
1 ≤ a < Cm

1 . Fix p > 0 satisfying
p = ln(1+δ0)

ln C1
. Then, (1 + δ0)m–1 = (Cm–1

1 )p and

ϕ(as) ≥ ϕ
(
Cm–1

1 s
) ≥ (1 + δ0)m–1ϕ(s) =

(
Cm–1

1
)p

ϕ(s) ≥
(

a
C1

)p

ϕ(s) = apC–p
1 ϕ(s)

for each s > 0. Setting u := as and b := 1/a we conclude that

ϕ(bu) ≤ bpCp
1ϕ(u)

for any u > 0 and each b ∈ (0, 1]. This means that αa
ϕ > 0. �

5 The quasinormed Orlicz–Lorentz spaces and Orlicz spaces
Take I = [0, 1] or I = [0,∞) with the Lebesgue measure μ. Let ω : I →R+ be a measurable
function with

∫ t
0 ω(s) ds < ∞ for each t ∈ I . We assume that there is a constant C > 0 such

that
∫ 2t

0 ω(s) ds ≤ C
∫ t

0 ω(s) ds for each t ∈ 1
2 I , which implies that the space

�1,ω =
{

f ∈ L0 : ‖f ‖ω =
∫

I
f ∗(s)ω(s) ds < ∞

}
,

where f ∗ is the nonincreasing rearrangement of f – see [2, 23], is the quasinormed ideal
space with the Fatou property (see [13]) and it is called the Lorentz funtion space �1,ω .
The Lorentz sequence space λ1,ω over the counting measure space (N, 2N, m) we define
analogously (see [15]).
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Note that,
(1) neither L∞ ⊂ �1,ω nor �1,ω ⊂ L∞, whenever I = [0,∞) and

∫ ∞
0 ω(s) ds = ∞;

(2) L∞ ⊂ �1,ω ,whenever I = [0, 1] or (I = [0,∞) and
∫ ∞

0 ω(s) ds < ∞);
(3) λ1,ω ⊂ l∞ (furthermore, λ1,ω = l∞ provided

∑∞
i=1 ω(i) < ∞).

If E is a Lorentz function (sequence) space �1,w (λ1,w), then Calderón–Lozanovskĭı space
Eϕ is the corresponding Orlicz–Lorentz function (sequence) space �ϕ,w (λϕ,w). If E = L1

(E = l1), then the space Eϕ becomes the Orlicz function (sequence) space Lϕ (lϕ) (cf. [16]).
On the other hand, if ϕ(u) = up, 1 ≤ p < ∞ [0 < p < 1] then Eϕ is the p-convexification
[concavification] E(p) of E with the quasinorm ‖x‖E(p) = ‖|x|p‖1/p

E . If ϕ(u) = 0 for 0 ≤ u ≤ 1
and ϕ(u) = ∞ for u > 1, then Eϕ = L∞ (Eϕ = l∞) with equality of the norms.

It is well known that Orlicz–Lorentz spaces �ϕ,ω (in particular, the Lorentz spaces �p,ω

or the Orlicz spaces Lϕ) have been studied directly by many authors (see, for example,
[13–16] and the references therein).

Applying Theorems 3.4 and 4.9 with E = �1,w or E = λ1,w we conclude immediately:

Corollary 5.1 (i) Let E = �1,w(I,
,μ) be such that μ(I) < ∞ or (μ(I) = ∞ and
∫ ∞

0 ω(s) ds <
∞). If α∞

ϕ > 0, then the functional ρ
�1,w
ϕ (·) is a quasimodular and the functional ‖ · ‖ϕ,w is

a quasinorm (called a Luxemburg–Nakano quasinorm) in �ϕ,w.
(ii) Let E = �1,w(I,
,μ) be such that μ(I) = ∞ and

∫ ∞
0 ω(s) ds = ∞. If αa

ϕ > 0, then the
functional ρ

�1,w
ϕ (·) is a quasimodular and the functional ‖ · ‖ϕ,w is a quasinorm in �ϕ,w.

(iii) Let E = λ1,w and
∑∞

i=1 ω(i) = ∞. If α0
ϕ > 0, then the functional ρ

λ1,w
ϕ (·) is a quasimod-

ular and the functional ‖ · ‖ϕ,w is a quasinorm in λϕ,w.

Remark 5.2 The second conclusion in statement (iii) has been proved directly in [15,
Proposition 1.3], but the authors did not consider the quasimodular, only the quasinorm.

Applying the above corollary with ω ≡ 1 and Theorem 4.17 with E = L1 we obtain:

Corollary 5.3 (i) Let E = L1(I,
,μ) with a finite measure μ. If α∞
ϕ > 0, then the functional

ρL1
ϕ (·) is a quasimodular and the functional ‖ · ‖ϕ is a quasinorm (called a Luxemburg–

Nakano quasinorm) in Lϕ .
(ii) Let E = L1(I,
,μ) with an infinite measure μ. If αa

ϕ > 0, then the functional ρL1
ϕ (·) is

a quasimodular and the functional ‖ · ‖ϕ is a quasinorm in Lϕ .
(iii) Let E = L1(I,
,μ) with an infinite measure μ. Assume that the function ϕ is finitely

valued and strictly increasing. Then, the functional ‖ · ‖ϕ is a quasinorm in Lϕ if and only
if αa

ϕ > 0.
(iv) If E = l1 and α0

ϕ > 0, then the functional ρ l1
ϕ (·) is a quasimodular and the functional

‖ · ‖ϕ is a quasinorm in lϕ .

Remark 5.4 The statement (iii) has been proved directly in [16, Theorem 1.8].

6 Further research and open ends
6.1 Further research
It is well known that the relations between the modular and the norm play a crucial role
in the metric geometry of normed Orlicz spaces (normed Calderón–Lozanovskĭı spaces).
The following basic results have many applications:
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Lemma 6.1 Let E be a Banach ideal space and ϕ be a convex Orlicz function. Then,
(i) if ρE

ϕ (xn) → 1, then ‖xn‖ϕ → 1 for all sequences (xn) in Eϕ . In particular,
(ii) if ρE

ϕ (x) = 1, then ‖x‖ϕ = 1 for every x ∈ Eϕ .
(iii) if ‖xn‖ϕ → 0, then ρE

ϕ (xn) → 0 for all sequences (xn) in Eϕ .
Suppose additionally that ϕ ∈ �E

2 . Then,
(iv) if ‖xn‖ϕ → 1, then ρE

ϕ (xn) → 1 for all sequences (xn) in Eϕ . In particular,
(v) if ‖x‖ϕ = 1, then ρE

ϕ (x) = 1 for each x ∈ Eϕ .
Assume additionally that ϕ ∈ �E

2 and aϕ = 0. Then,
(vi) if ρE

ϕ (xn) → 0, then ‖xn‖ϕ → 0 for all sequences (xn) in Eϕ .

The known proofs of properties (i)–(vi) cannot be applied for the nonconvex Orlicz
function ϕ. In [7] and [8] we presented new proofs of the above lemma for the quasimodu-
lar and the quasinorm. We have shown that for properties (i) and (ii) we need additionally
the condition �E

ε , which is a substitute for convexity. Moreover, to show the properties
(iv) and (v) the so-called condition �E

2–str is required (the condition �E
2–str is essentially

stronger than �E
2 , in general). Finally, the condition (iii) comes from Lemma 3.7 and the

condition (vi) is true in the same form as above (see [8]). Next, applying also some new
techniques, we described order isomorphic and order linearly isometric copies of l∞ in
the quasinormed Calderón–Lozanovskĭı spaces Eϕ (a number of theorems describe these
copies in the natural language of suitable properties of the quasinormed ideal space E and
the nondecreasing Orlicz function ϕ – see [7]). In [8] we characterized the monotonic-
ity properties of quasinormed Calderón–Lozanovskĭı spaces Eϕ , that is, we described the
strict monotonicity, the uniform monotonicity, and the respective orthogonal counter-
parts of the quasinormed Calderón–Lozanovskĭı spaces Eϕ .

6.2 Open ends
The theory of modular spaces has been widely investigated in [26], see also [24]. Next, the
modular spaces equipped with the additional measure structure (called modular function
spaces) has been studied in [21]. Furthermore, the authors of [18] considered the modular
function spaces from the geometry and the fixed-point theory point of view. All the mono-
graphs deal with the modulars (convex modulars) that lead to the F-normed (normed)
spaces, respectively. It seems natural to study some aspects of the theory developed in the
monographs [18] and [21] in the context of quasimodulars.
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