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1 Introduction
A complex-valued function f is said to be harmonic in a domain D ⊂C if it has continuous
second-order partial derivatives in D that satisfy the Laplace equation

�f :=
∂2f
∂x2 +

∂2f
∂y2 = 0.

If D = U(r) := {z ∈ C :0 < |z| < r}, then we say that f is a meromorphic harmonic function
in U(r). We denote by M the class of all such function with the normalization f (0) = ∞

Let a function F be harmonic, orientation-preserving, and univalent in B := {z ∈ C :|z| >
1} with F(∞) = ∞. Then, there exists B ∈C and functions

ϕ(z) = αz +
∞∑

n=1

anz–n, ψ(z) = βz +
∞∑

n=1

bnz–n (
0 ≤ |α| < |β|, z ∈ B

)
,

such that

F(z) = ϕ(z) + ψ(z) + B log |z|, (z ∈ B)

where Fz/Fz is analytic and bounded by 1 in E (see, Hengartner and Schober [10]).
Let f ∈ M be functions that are univalent and sense-preserving in U := U(1). Since the

composition of an analytic and harmonic function is the harmonic function, the function
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F = f ◦ ( 1
z ) is orientation-preserving, harmonic, and univalent in E with F(∞) = ∞. Thus,

there exists B ∈C and the functions h(z) := ϕ( 1
z ), g(z) := ψ( 1

z ) such that

f (z) = h(z) + g(z) – B log |z| (z ∈U).

Let k ∈ N := N1, where Nm := {m, m + 1, . . .}. We denote by MH(k) the class of functions
f ∈M of the form

f = h + g, h(z) =
1
z

+
∞∑

n=k

anzn, g(z) =
∞∑

n=k

bnzn (z ∈U), (1)

which are sense-preserving and univalent in U, and let MH := MH(1).
Recently, classes of meromorphic harmonic functions were intensively studied (see for

example [1–11]).
A function f ∈MH(k) is called meromorphic harmonic starlike in U(r) if f maps ∂U(r)

onto a curve that is starlike with respect to the origin, i.e.,

∂

∂t
(
arg f

(
reit)) < 0 (0 ≤ t ≤ 2π ) (2)

or equivalently

Re
DHf (z)

f (z)
< 0

(|z| = r
)
,

where

DHf (z) := –zh′(z) + zg ′(z) (z ∈U).

Let ϕ and 	 be complex-valued functions in U. If ϕ(U) ⊂ 	(U), then we say that ϕ is
weakly subordinate to 	, and we write ϕ(z) � 	(z) (see Muir [16]).

For functions

fl(z) =
∞∑

n=–1

(
al,nzn + bl,nzn

)
(z ∈U, l = 1, 2, )

we define the convolution of functions f1 and f2 by

(f1 ∗ f2)(z) =
∞∑

n=–1

(
a1,na2,nzn + b1,nb2,nzn

)
(z ∈U).

In [17] Ruscheweyh introduced an operatorDλ defined on the class of analytic functions
by

Dλg(z) := g(z) ∗ z
(z – 1)λ

=
z(zλ–1g(z))(λ)

λ!
(λ ∈ N0, z ∈U).

Now, we define the Ruscheweyh derivative Dλ on the class of meromorphic harmonic
functions. Let Dλ

H : MH(k) → MH(k) denote the operator defined for a function f =
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h + g ∈MH(k) by

Dλ
Hf (z) :=

1
z

+ (–1)λDλ

(
h(z) –

1
z

)
+ Dλg(z)

=
1
z

+
(

f (z) –
1
z

)
∗

(
z

(z – 1)λ
+

z
(1 – z)λ

)

=
1
z

+ (–1)λ
∞∑

n=k

λnanzn +
∞∑

n=k

λnbnzn (z ∈ U),

where

λ1 = 1, λn :=
(λ + 1) · . . . · (λ + n – 1)

(n – 1)!
(n = 2, 3, . . .). (3)

It is clear that D0
Hf = f and D1

Hf = DHf .
Due to Janowski [13] (see also [9]) we define the class Mλ

H(k; M, N) of functions f ∈
MH(k) that satisfy the following condition

Dλ+1
H f (z)

Dλ
Hf (z)

� 1 + Mz
1 + Nz

, –N ≤ M < N ≤ 1. (4)

By Wλ
H(k; M, N) we denote the class of functions f ∈MH(k) such that

zDλ
Hf (z) � 1 + Mz

1 + Nz
, –N ≤ M < N ≤ 1.

Moreover, let us denote

M∗
H(k; M, N) := M0

H(k; M, N), Mc
H(k; M, N) := M1

H(k; M, N),

M∗
H(α) := M∗

H(1, 2α – 1, 1), Mc
H(α) := Mc

H(1, 2α – 1, 1).

The classes M∗
H := M∗

H(0) and Mc
H := Mc

H(0) were studied in [3] (see also [9]). We see
that the function f ∈M∗

H is starlike in U(r) for all r ∈ (0, 1〉.
In this paper, we obtain some necessary and sufficient conditions for the defined classes

of functions. In addition to finding certain analytic criteria, we obtain radii of starlikeness
and convexity, and some topological properties for the defined classes of functions. Some
applications of these results are also given.

2 Analytic criteria
To obtain the main results we need the following lemma.

Lemma 1 [8] A complex-valued function ϕ inU is weakly subordinate to a complex-valued
univalent function 	 in U if and only if there exists a complex-valued function ω that maps
U into oneself such that ϕ(z) = 	(ω(z)), z ∈U.

Theorem 1 Let f ∈M be of the form (1) and

cn = λn
{

n(1 + N) + (1 + M)
}

, dn = λn
{

n(1 + N) – (1 + M)
}

. (5)
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Then, f ∈Mλ
H(k; M, N) if the condition

∞∑

n=k

(
cn|an| + dn|bn|

) ≤ N – M (6)

holds true.

Proof It is easy to verify that

cn

N – M
≥ n,

dn

N – M
≥ n (n ∈Nk).

Thus, by (6) we have

∞∑

n=k

(
n|an| + n|bn|

) ≤ 1. (7)

It is well known that the Jacobian of f is given by

Jf (z) =
∣∣h′(z)

∣∣2 –
∣∣g ′(z)

∣∣2 (z ∈ U).

A function f is locally univalent and sense-preserving if the Jacobian of f is positive in U.
Lewy [15] proved that the converse is true for harmonic mappings. Since

∣∣z2Jf (z)
∣∣ =

∣∣z2h′(z)
∣∣ –

∣∣z2g ′(z)
∣∣

≥ 1 –
∞∑

n=k

n|an||z|n+2 –
∞∑

n=k

n|bn||z|n+2

≥ 1 – |z|
∞∑

n=k

(
n|an| + n|bn|

) ≥ 1 – |z| > 0 (z ∈U),

we have that f is locally univalent and sense-preserving in U. To obtain univalence we
assume that w1, w2 ∈U, w1 
= w2. Then,

∣∣∣∣
wn

1 – wn
2

w1 – w2

∣∣∣∣ =

∣∣∣∣∣

n∑

l=1

wl–1
1 wn–l

2

∣∣∣∣∣ ≤
n∑

l=1

|w1|l–1|w2|n–l ≤ n (n ∈N)

and by (7) we obtain

∣∣f (w1) – f (w2)
∣∣ ≥ ∣∣h(w1) – h(w2)

∣∣ –
∣∣g(w1) – g(w2)

∣∣

=

∣∣∣∣∣
1

w1
–

1
w2

–
∞∑

n=k

an
(
wn

1 – wn
2
)
∣∣∣∣∣ –

∣∣∣∣∣

∞∑

n=k

bn
(
wn

1 – wn
2
)
∣∣∣∣∣

≥ |w1 – w2|
|w1w2| –

∞∑

n=k

|an|
∣∣wn

1 – wn
2
∣∣ –

∞∑

n=k

|bn|
∣∣wn

1 – wn
2
∣∣

= |w1 – w2|
(

1
|w1w2| –

∞∑

n=k

|an|
∣∣∣∣
wn

1 – wn
2

w1 – w2

∣∣∣∣ –
∞∑

n=k

|bn|
∣∣∣∣
wn

1 – wn
2

w1 – w2

∣∣∣∣

)
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> |w1 – w2|
(

1 –
∞∑

n=k

n|an| –
∞∑

n=k

n|bn|
)

≥ 0.

Thus, f ∈ MH(k) and by Lemma 1 we obtain that f ∈ M∗
H(k; M, N) if and only if there

exists a complex-valued function χ bounded by 1 in U for which

Dλ+1
H f (z)

Dλ
Hf (z)

=
1 + Mχ (z)
1 + Nχ (z)

(z ∈U),

or equivalently

∣∣∣∣
Dλ+1

H f (z) – Dλ
Hf (z)

NDλ+1
H f (z) – MDλ

Hf (z)(z)

∣∣∣∣ < 1 (z ∈U). (8)

Therefore, we need to show that

∣∣Dλ+1
H f (z) – Dλ

Hf (z)
∣∣ –

∣∣NDλ+1
H f (z) – Dλ

Hf (z)
∣∣ < 0 (z ∈ U).

Putting |z| = r (0 < r < 1) we obtain

∣∣Dλ+1
H f (z) – Dλ

Hf (z)
∣∣ –

∣∣NDλ+1
H f (z) – Dλ

Hf (z)
∣∣

=

∣∣∣∣∣

∞∑

n=k

(–1)λλn(n + 1)anzn –
∞∑

n=k

λn(n – 1)bnzn

∣∣∣∣∣

–

∣∣∣∣∣(N – M)
1
z

–
∞∑

n=k

(–1)λλn(Nn + M)anzn +
∞∑

n=k

λn(Nn – M)bnzn

∣∣∣∣∣

≤
∞∑

n=k

λn(n + 1)|an|rn +
∞∑

n=k

λn(n – 1)|bn|rn – (N – M)
1
r

+
∞∑

n=k

λn(Nn + M)|an|rn +
∞∑

n=k

λn(Nn – M)|bn|rn

≤ 1
r

{ ∞∑

n=k

(
cn|an| + dn|bn|

)
rn+1 – (N – M)

}
< 0,

which implies f ∈Mλ
H(k; M, N). �

Let T λ
η (k) be the class of functions f = h + g ∈ M(k) with varying coefficients (e.g., see

[12]) so that

f (z) = h(z) + g(z) =
1
z

+ (–1)λ
∞∑

n=k

e–i(n+1)η|an|zn –
∞∑

n=k

ei(n–1)η|bn|zn (9)

and let

Mλ
η(k; M, N) := T λ

η (k) ∩Mλ
H(k; M, N), Wλ

η (k; M, N) := T λ
η (k) ∩Wλ

H(k; M, N),

M∗
η(k; M, N) := T 0

η (k) ∩M∗
H(k; M, N), Mc

η(k; M, N) := T 1
η (k) ∩Mc

H(k; M, N).
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The sufficient coefficient bound given in Theorem 1 is also necessary for functions to be
in the class Mλ

η(k; M, N), as stated in the following theorem.

Theorem 2 Let f ∈ T λ
η be a function of the form (1). Then, f ∈ Mλ

η(k; M, N) if and only if
the condition (6) holds true.

Proof By Theorem 1 we need to prove the “only if ” part. Let f ∈ M∗
η(k; M, N). Then, by

(8) we obtain

∣∣∣∣

∑∞
n=k λn{(–1)λ(n + 1)anzn+1 – (n – 1)bnzzn}

(N – M) –
∑∞

n=k λn{(–1)λ(Nn + M)anzn+1 – (Nn – M)bnzzn}
∣∣∣∣ < 1 (z ∈U).

Thus, by (9) for z = reiη (0 < r < 1), we have

∑∞
n=k λn{(n + 1)|an| + (n – 1)|bn|}rn+1

(N – M) –
∑∞

n=k λn{(Nn + M)|an| + (Nn – M)|bn|}rn+1 < 1. (10)

The denominator of the left-hand side cannot vanish for r ∈ (0, 1). Also, it is positive for
r = 0, and in consequence for r ∈ (0, 1). Thus, by (10) we have

∞∑

n=k

(
cn|an| + dn|bn|

)
rn+1 < N – M (0 < r < 1). (11)

The sequence of partial sums {Sn} related to the series
∑∞

n=k(αn|an| + βn|bn|) is a nonde-
creasing sequence. Moreover, by (11) it is bounded by N – M. Hence, the sequence {Sn} is
convergent and

∑∞
n=k(αn|an| + βn|bn|) = limn→∞ Sn ≤ N – M, which gives (6). �

Analogously as Theorem 2 we can prove the following theorem.

Theorem 3 Let f ∈ T λ
η (k) be a function of the form (1). Then, f ∈Wλ

η (k; M, N) if and only
if

∞∑

n=k

λn
(|an| + |bn|

) ≤ N – M
1 + N

. (12)

By Theorems 2 and 3 we have the following corollary.

Corollary 1 Let a = 1+M
1+N and

φ(z) =
1
z

+
∞∑

n=k

(
1

n + a
zn +

1
n – a

zn
)

(z ∈U),

ω(z) =
1
z

+
∞∑

n=k

(
(n + a)zn + (n – a)zn) (z ∈ U).

Then,

f ∈Wλ
η (k; M, N) ⇔ f ∗ φ ∈Mλ

η(k; M, N),
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f ∈Mλ
η(k; M, N) ⇔ f ∗ ω ∈Wλ

η (k; M, N).

In particular,

Wλ+1
η (–1, N) = Mλ

η(–1, N).

Remark 1 If we put n = 0 or n = 1 in Theorems 1 and 2, then we obtain similar results for
the classes M∗

η(k; M, N) and Mc
η(k; M, N).

3 Radii of convexity and starlikeness of order α

By using condition (2) we generalize the definition of starlikeness of meromorphic har-
monic functions. We say that a function f ∈ T λ

η (k) is starlike of order α in U(r) if

∂

∂t
(
arg f

(
ρeit)) < α, 0 < ρ < r < 1, 0 ≤ t ≤ 2π . (13)

Also, a function f ∈ T λ
η (k) is said to be convex of order α in U(r) if

∂

∂t

(
arg

∂

∂t
f
(
ρeit)

)
< α, 0 < ρ < r < 1, 0 ≤ t ≤ 2π .

It is easy to verify that for a function f ∈ T λ
η (k) the condition (13) is equivalent to the

following

Re
DHf (z)

f (z)
> α

(
z ∈U(r)

)

or equivalently

∣∣∣∣
DHf (z) – f (z)

DHf (z) – (2α – 1)f (z)

∣∣∣∣ < 1
(
z ∈ U(r)

)
. (14)

Let B be a subclass of the class T λ
η (k). We define the radius of starlikeness R∗

α(B) and the
radius of convexity Rc

α(B) for the class B by

R∗
α(B) := inf

f ∈B
(sup

{
r ∈ (

0, 1] : f is starlike of order α in U(r)
})

,

Rc
α(B) := inf

f ∈B
(sup

{
r ∈ (

0, 1] : f is convex of order α in U(r)
})

.

Theorem 4

R∗
α

(
Mλ

η(k; M, N)
)

= inf
n∈Nk

(
1 – α

N – M
min

{
cn

n + α
,

dn

n – α

}) 1
n+1

, (15)

where cn and dn are defined by (5).

Proof Let f ∈Mλ
η(M, N) be of the form (1). Then, putting |z| = r < 1 we have

∣∣∣∣
DHf (z) – f (z)

DHf (z) – (2α – 1)f (z)

∣∣∣∣ =
∣∣∣∣

∑∞
n=k(n + 1)anzn –

∑∞
n=k(n – 1)bnzn

2(1–α)
z –

∑∞
n=k(n + 2α – 1)anzn +

∑∞
n=k(n – 2α + 1)bnzn

∣∣∣∣
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≤
∑∞

n=k((n + 1)|an| + (n – 1)|bn|)rn+1

2(1 – α) –
∑∞

n=k((n + 2α – 1)|an| + (n – 2α + 1)|bn|)rn+1 .

Thus, the condition (14) is true if

∞∑

n=k

(
n + α

1 – α
|an| +

n – α

1 – α
|bn|

)
rn+1 ≤ 1. (16)

By Theorem 2, we have

∞∑

n=k

(
cn

N – M
|an| +

dn

N – M
|bn|

)
≤ 1, (17)

where cn and dn are defined by (5). Thus, the condition (16) is true if

n + α

1 – α
rn+1 ≤ cn

N – M
,

n – α

1 – α
rn+1 ≤ dn

N – M
(n ∈Nk),

that is, if

r ≤
(

1 – α

N – M
min

{
cn

n + α
,

dn

n – α

}) 1
n+1

(n ∈Nk).

It follows that the function f is starlike of order α in the disk U(r∗), where

r∗ : = inf
n∈Nk

(
1 – α

N – M
min

{
cn

n + α
,

dn

n – α

}) 1
n+1

. (18)

The radii of starlikeness r∗(hn), r∗(gn) of functions hn, gn (n ∈N) of the form

hn(z) =
1
z

+
(–1)λ(N – M)

cnei(n+1)η zn, gn(z) =
1
z

–
N – M

dnei(1–n)η zn (n ∈Nk , z ∈U)

are given by

r∗(hn) =
(

1 – α

n + α

cn

N – M

) 1
n+1

, r∗(gn) =
(

1 – α

n – α

dn

N – M

) 1
n+1

.

Therefore, the radius r∗ given by (18) cannot be larger. Thus, we have (15). �

The following result may be proved in much the same way as Theorem 4.

Theorem 5 Let cn and dn be defined by (5). Then,

Rc
α

(
Mλ

η(k; M, N)
)

= inf
n∈Nk

(
1 – α

n(N – M)
min

{
cn

n + α
,

dn

n – α

}) 1
n+1

.

If we put n = 0 or n = 1 in Theorems 4 and 5 we obtain the following results.
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Corollary 2

R∗
α

(
M∗

η(k; M, N)
)

= Rc
α

(
Mc

η(k; M, N)
)

= inf
n∈Nk

(
1 – α

N – M
min

{
n(1 + N) + (1 + M)

n + α
,

n(1 + N) – (1 + M)
n – α

}) 1
n+1

,

Rc
α

(
M∗

η(k; M, N)
)

= inf
n∈Nk

(
1 – α

n(N – M)
min

{
n(1 + N) + (1 + M)

n + α
,

n(1 + N) – (1 + M)
n – α

}) 1
n+1

,

R∗
α

(
Mc

η(k; M, N)
)

= inf
n∈Nk

(
n(1 – α)
N – M

min

{
n(1 + N) + (1 + M)

n + α
,

n(1 + N) – (1 + M)
n – α

}) 1
n+1

.

4 Topological properties
Let us consider the usual topology on MH(k) defined by a metric in which a sequence {fn}
in MH(k) converges to f if and only if it converges to f uniformly on each compact subset
of U. It follows from the theorems of Weierstrass and Montel that this topological space
is complete.

Let B be a subclass of the class MH(k). We say that a function f ∈ B is an extreme point
of B if it cannot be represented as a nondegenerate, convex, and linear combination of
two function from B. We denote by EB the set of all extreme points of B. We have that
EB ⊂ B.

A class B is called convex if any convex linear combination of two functions from B
belongs to B. We denote by coB the closed convex hull of B, i.e., the intersection of all
closed, convex subsets of M that contain B..

A real-valued functional D : MH(k) →R is called convex on a convex class B ⊂MH(k)
if for f , g ∈ B and 0 ≤ λ ≤ 1 we have

D
(
γ f + (1 – γ )g

) ≤ γD(f ) + (1 – γ )D(g).

From the Krein–Milman theorem (see [14]) we have the following lemma.

Lemma 2 Let B be a nonempty, compact, and convex subclass of the class MH(k) and
D : MH(k) →R be a real-valued, continuous, and convex functional on B. Then,

B = coEB

and

max
{
D(f ) : f ∈ B

}
= max

{
D(f ) : f ∈ EB

}
.

Moreover, from Montel’s theorem we obtain the following lemma.

Lemma 3 A class B ⊂ MH(k) is compact if and only if B is closed and locally uniformly
bounded.
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Theorem 6 The class Mλ
η(k; M, N) is a compact and convex subclass of MH(k).

Proof Let 0 ≤ λ ≤ 1 and f1, f2 ∈Mλ
η(k; M, N) be functions of the form

fl(z) =
1
z

+
∞∑

n=k

(
al,nzn + bl,nzn) (z ∈U, l ∈N). (19)

Then, we have

λf1(z) + (1 – λ)f2(z)

=
1
z

+
∞∑

n=k

{(
λa1,n + (1 – λ)a2,n

)
zn +

(
λb1,n + (1 – λ)b2,n

)
zn

}
.

Moreover, by Theorem 2 we obtain

∞∑

n=k

{
cn

∣∣γ a1,n + (1 – γ )a2,n
∣∣ + dn

∣∣γ b1,n + (1 – γ )b2,n
∣∣}

≤ γ

∞∑

n=k

{
cn|a1,n| + dn|b1,n|

}
+ (1 – γ )

∞∑

n=k

{
cn|a2,n| + dn|b2,n|

}

≤ γ (N – M) + (1 – γ )(N – M) = N – M.

Thus, the function ϕ = λf1 +(1–λ)f2 belongs to the classMλ
η(k; M, N) and, in consequence,

the class is convex.
The class is locally uniformly bounded if for each r, R, 0 < r < R < 1, there is a real con-

stant L = L(r, R) so that

∣∣f (z)
∣∣ ≤ L

(
f ∈F , r ≤ |z| ≤ R

)
.

Let f ∈Mλ
η(k; M, N), 0 < r ≤ |z| ≤ R < 1. Then, by Theorem 2, we have

∣∣f (z)
∣∣ ≤ 1

r
+

∞∑

n=k

(|an| + |bn|
)
Rn ≤ 1

r
+

∞∑

n=k

(
cn|an| + dn|bn|

) ≤ 1
r

+ (N – M) =: L.

This implies that the class Mλ
η(k; M, N) is locally uniformly bounded. Next, we show that

it is closed. Let fl and f be given by (19) and (1), respectively. By Theorem 2 we obtain

∞∑

n=k

(
cn|al,n| + dn|bl,n|

) ≤ N – M (l ∈N). (20)

If fl → f , then we obtain that al,n → an and bl,n → bn as l → ∞ (n ∈ Nk). The sequence
of partial sums {Sn} associated with the series

∑∞
n=k(cn|an| + dn|bn|) is a nondecreasing

sequence. Moreover, by (20) it is bounded by N – M. Therefore, the sequence {Sn} is con-
vergent and

∑∞
n=k(cn|an| + dn|bn|) = limn→∞ Sn ≤ N – M. This gives the condition (6), and,

in consequence, f ∈Mλ
η(k; M, N), which completes the proof. �
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Theorem 7

EMλ
η(k; M, N) = {hn : n ∈Nk–1} ∪ {gn : n ∈Nk},

where hk–1(z) = 1
z and

hn(z) =
1
z

+
(–1)λ(N – M)

cnei(n+1)η zn, gn(z) =
1
z

–
N – M

dnei(1–n)η zn (n ∈Nk , z ∈U). (21)

Proof Let f1, f2 ∈Mλ
η(k; M, N) be functions of the form (6), gn = λf1 +(1–λ)f2 with 0 < λ < 1.

Then, by (6) we obtain |b1,n| = |b2,n| = N–M
βn

. Thus, a1,l = a2,l = 0 for l ∈ Nk and b1,l = b2,l = 0
for l ∈ Nk�{n}. This means that gn = f1 = f2, and, in consequence, gn ∈ EMλ

η(k; M, N). In
the same way, we show that the functions hn of the form (21) are the extreme points of the
class Mλ

η(k; M, N). Now, let f ∈ EMλ
η(k; M, N) be not of the form (21). Then, there exists

r ∈Nk such that

0 < |ar| <
N – M

αr
or 0 < |br| <

N – M
βr

.

If 0 < |ar| < N–M
αr

, then for

λ =
αr|ar|
N – M

, ϕ =
1

1 – λ
(f – λhr),

we have that 0 < λ < 1, hr 
= ϕ and f = λhr + (1 –λ)ϕ. Thus, f /∈ EMλ
η(k; M, N). Analogously,

if 0 < |br| < N–M
βn

, then for

λ =
βr|br|
N – M

, φ =
1

1 – λ
(f – λgr),

we have that 0 < λ < 1, gr 
= φ and f = λgr + (1 –λ)φ. Thus, f /∈ EMλ
η(k; M, N), and the proof

is completed. �

5 Applications of extreme points
If the class B = {fn ∈MH(k) : n ∈N} is locally uniformly bounded, then

coB =

{ ∞∑

n=1

λnfn :
∞∑

n=1

λn = 1,λn ≥ 0(n ∈N)

}
.

Thus, by Lemma 2 and Theorem 7 we obtain

Corollary 3

Mλ
η(k; M, N) =

{ ∞∑

n=k–1

(γnhn + δngn) :
∞∑

n=k–1

(γn + δn) = 1(δk–1 = 0,γn, δn ≥ 0)

}
,

where hn, gn are defined by (21).
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It is easy to show that the following real-valued functionals are convex and continuous
on MH(k):

D(f ) = an, D(f ) = bn, D(f ) =
∣∣f (z)

∣∣, D(f ) =
∣∣Dλ

Hf (z)
∣∣,

D(f ) =
(

1
2π

∫ 2π

0

∣∣f
(
reiθ )∣∣γ dθ

)1/γ (
f ∈MH(k)

)
.

for each fixed value of n ∈ Nk , z ∈ U, γ ≥ 1, 0 < r < 1. Thus, by Lemma 2 and Theorem 7
we have the following results.

Corollary 4 Let f ∈Mλ
η(k; M, N) be a function of the form (1), 0 < r < 1, γ ≥ 1. Then,

|an| ≤ N – M
cn

, |bn| ≤ N – M
dn

(n ∈Nk),

1
r

–
N – M

dk
rk ≤ ∣∣f (z)

∣∣ ≤ 1
r

+
N – M

dk
rk (|z| = r

)
,

1
2π

∫ 2π

0

∣∣f
(
reiθ )∣∣γ dθ ≤ 1

2π

∫ 2π

0

∣∣h1
(
reiθ )∣∣γ dθ ,

1
2π

∫ 2π

0

∣∣Dλ
Hf

(
reiθ )∣∣γ dθ ≤ 1

2π

∫ 2π

0

∣∣Dλ
Hh1

(
reiθ )∣∣γ dθ ,

where cn, dn are defined by (5). The results are sharp with extremal functions hn, gn of the
form (21).

Corollary 5 If f ∈Mλ
η(k; M, N), then

U(r) ⊂ f (U),

where

r = 1 –
N – M

kλ+1(1 + N) – kλ(1 + M)
.

Remark 2 If we put n = 0 or n = 1 in Corrolaries 3 and 4 we obtain similar results for the
classes M∗

η(k; M, N) and Mc
η(k; M, N).

By using Corollary 1 and the results above we obtain the corollaries listed below.

Corollary 6 The class Wη(k; M, N) is a convex and compact subset of MH(k). Moreover,

EWη(k; M, N) = {hn : n ∈Nk–1} ∪ {gn : n ∈Nk}

and

Wη(k; M, N) =

{ ∞∑

n=1

(γnhn + δngn) :
∞∑

n=1

(γn + δn) = 1, δ1 = 0,γn, δn ≥ 0(n ∈N)

}
,



Dziok Journal of Inequalities and Applications        (2024) 2024:132 Page 13 of 14

where hk–1(z) = z and

hn(z) = z +
N – M

(1 + N)n
zn, gn(z) = z –

N – M
(1 + N)n

zn (z ∈U). (22)

Corollary 7 If f ∈Wη(k; M, N) is of the form (1), then

|an| ≤ N – M
(1 + N)n

, |bn| ≤ N – M
(1 + N)n

(n ∈ N),

1
r

–
N – M

(1 + N)k
rk ≤ ∣∣f (z)

∣∣ ≤ 1
r

+
N – M

(1 + N)k
rk (|z| = r < 1

)
,

1
2π

∫ 2π

0

∣∣f
(
reiθ )∣∣γ dθ ≤ 1

2π

∫ 2π

0

∣∣h2
(
reiθ )∣∣λ dθ ,

1
2π

∫ 2π

0

∣∣Dλ
Hf

(
reiθ )∣∣γ dθ ≤ 1

2π

∫ 2π

0

∣∣Dλ
Hh2

(
reiθ )∣∣γ dθ .

The results are sharp with extremal functions hn, gn of the form (22).

Corollary 8 If f ∈Wη(k; M, N), then

U

(
1 –

N – M
(1 + N)k

)
⊂ f (U).
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