Khokhar et al. Journal of Inequalities and Applications (2024) 2024:79 ® Journal of Inequalities and Applications
https://doi.org/10.1186/513660-024-03158-6 a SpringerOpen Journal

RESEARCH Open Access

Optimum solution of (k, J)-Hilfer FDEs by
A-condensing operators and the
incorporated measure of noncompactness

Gurpreet Kaur Khokhar', Deepesh Kumar Patel’, Pradip Ramesh Patle? and Mohammad Esmael Samei®”

Check for
updates

“Correspondence:
mesamei@basu.ac.ir; Abstract

mesamei@gmail.com . . . .
*Department of Mathematics The notion of A-condensing operators via the measure of noncompactness is

Faculty of Science, Bu-Ali Sina proposed, which retains the existing classes of condensing operators. Results

University, Hamedan, Iran concerning the existence of the best proximity point (pair) of cyclic (noncyclic)

Full list of author information is . . Lo .

available at the end of the article A-condensing operators along with the coupled best proximity-point theorem for
cyclic A-condensing operators have been formulated. An application to a (k, J)-Hilfer

fractional differential equation of order 2 < p < 3, type g € [0, 1] satistfying some

boundary conditions is presented. The paper is the first to investigate the optimum

solution of such a generalized fractional differential equation. The hypothesis involved

in the investigation is independent of the incorporated measure of noncompactness,

thereby making our result better in application than that present in the literature.

Moreover, added numerical examples validate the theoretical conclusions.

Mathematics Subject Classification: 47H10; 34A08; 47H08

Keywords: Best proximity point (pair); Measure of noncompactness; Hilfer fractional
differential equation

1 Introduction

Over the years, the measure of noncompactness (MNC) together with condensing opera-
tors has created a remarkable place in the field of Fixed-Point Theory (FPT) [1-3]. Kura-
towski initiated the study of MNC, whereas the concept of condensing operators originated
in 1955 by Darbo, Schauder’s FPT being the main motivation behind this. In [4], Brouwer
proved the following FPT.

Theorem 1.1 Assume that ) # Q C R" is convex and compact. Then, the continuous op-

erator A : Q — Q has a fixed point.

Schauder then extended this result to infinite-dimensional Banach spaces (Bs) [5].
Meanwhile, Kuratowski [6, 7] stated the notion of MNC in order to solve certain prob-

lems related to general topology and defined it as a real-valued function K : By, — [0, 00)
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such that

K(V)=infie>0:V | JPu, Py C Y, diam(Py) <€ (1)

a=1

where By is the family of all nonvoid, bounded sets V' of the complete metric space ).
Darbo [8] lessened the Schauder’s FPT hypothesis by using this MNC K. The beauty of
Darbo’s theorem lies in the fact that it helped to weaken the compactness assumption, a
strong presupposition, by replacing it with an inequality comprising K. This theorem has
the following statement.

Theorem 1.2 ([8]) Let Q C Y be nonvoid, convex, closed, and bounded with ) as a Bs.
Then, the continuous map A : Q — Q has a fixed point if K(AC) < kK(C), for C C Q with
0<k<l.

Fractional calculus deals with the study of differentiation and integration of arbitrary
order and thus generalizes the classical structure. This generalization grabbed the focus
due to its efficiency in providing a more accurate description for real-world phenomena.
For a brief study, one can see [9, 10]. Motivated by the definition of Riemann—Liouville
(RL) and Caputo derivatives, the authors [11] proposed the Hilfer derivative and solved
an existence—uniqueness problem involving a Hilfer derivative of order between 0 to 1.
Later, in 2018, Sousa et al. initiated the discussion of the J-Hilfer derivative, involving a
continuously differentiable increasing function J [12]. In 2023, Haque et al. took the HBVP
HDP i + F «(v,m) = 0, with ng(a) =Mk(b) = 0, for v € (a,b), k € N, where 1 < p <2,0 <
q <1, Frv,n) =cx(v) + fi(v,M1,M2,M35 ... ) ¢k, fx for each k € N are real-valued continuous
functions on [a, b] [13]. Also, in [14], they considered the ¥ -HFDEs with control having
the form

HDET () = An() + F (v,m,) + Bu(v), v e (0,d], )
10-P0-D3¥1(y) = i(v) € By,

where 0.5 < p <1, 0 < g < 1, n(-) takes the values in Banach space Z with || - ||, the con-
trol function u(-) € L2((0,d], U), the Banach space of admissible control functions, with
U as a Banach space, B : L%((0,d],U) — L%((0,d], Z) is a bounded linear operator, and the
operator A : D(A) C Z — Z is the infinitesimal generator of analytic semigroup {7 (v)},>o
on Z. The DEs of the HFDE, ¥ -HFDE, and (k,J)-HFDE types, because they provide sig-
nificant generalizations, are very useful in solving different types of differential equations.
For more details of these types of generalizations and results of controllability involving
Y -HFDEs refer to [15-22] and references therein. The work referenced above inspired us
to propose a most generalized version of the Hilfer derivative, the so-called (k, J)-Hilfer
fractional derivative.

Recently, valuable applications of MNC emphasizing the existence of solutions for a sys-
tem of fractional differential and integral equations have been presented [23-29]. For ex-
ample, Patle et al. in [25], discussed the existence of optimal solutions of the following sys-
tem of right-sided 1 -Hilfer fractional differential equations (-HFDE) of arbitrary order
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with initial conditions

HDPERW) = F1(v,AW)),

53 - A
HDZERW) = F o, (), ©
-q)(1-p);I~ ~9)(1-p)l S
I¢(11+ 7)(1-p) (@) = ¢ IS q)(1-p) M(a) = &,

for v € (a,t], where HD‘Z’II;: is the left-sided y-HFD operator of order 0 < p < 1, type 0 <
q<1, ]I;lfq)(l_p 53 is the RL fractional integral of order (1 —g)(1 — p); the state n(-) takes the
values from X, and F1:[a,7] X By - X and F 3 : [a,t] X B, — X, are given mappings
satisfying some assumptions.

In this article, the work flow is as follows: We define classes of cyclic and noncyclic .A-
condensing operators and prove the existence of the best proximity point (bpp) and pair
for them, respectively, in the setting of Bgs. The consequences of the main results lead to
some of the important results in the existing literature, presented as corollaries. Also, we
discuss some coupled bpp results. In Sect. 5, the main result is applied to establish the
existence of optimum solutions for the class of fractional differential equations involving

(k, 3)-Hilfer derivatives ((k,J)-HFDE) of order 2 < p < 3, type 0 < g < 1 in the form

kADPaIY, (v) = F1(v,m (),
Mi(a) =nj(a) =0, (4)
o1 () + 02011 (b) = 031"y (¢,m1(2)),

kHDPadn, (v) = F 5 (v,m2(v)),
T]Z(“) = 0:11’2(61) =0, (5)
o1M2(b) + 0281m2(b) = 031"y (2,M2(2)),

for v e J = [a, b] satisfying the stated boundary conditions. The quantities o,, t = 1,2,3
are suitable real scalars, functions u;, f;, J are all continuous such that J'(v) > 0 for all
v e J with 67 = ﬁ%, a<(¢<band k3 is the (k,3)-RL integral of order v € (0, c0),
k € R. Finally, we introduce the strengths of the obtained results in future works in the

conclusion section, 7.

2 Preliminaries

The compactness of the set or of the operator was not a really big issue, thanks to the
Heine—Borel theorem, until the Bgs of infinite dimension came into the picture. Justify-
ing its name, MNC is a measure that estimates the degree of noncompactness of a set, a
real-valued function that depicts the level of closeness of a set from being compact. The
later axiomatic approach is a more convenient form when dealing with MNC and has the
following interpretation [1].

Definition 2.1 Let Y, By, and V be defined as above. A function n: By, — [0, 00) is said
to be an MNC provided

(n1) n(V) =0<«= V is precompact (regularity);

M2) (V) =n(V) (invariance under closure);

(m3) n(V1 U V) = max{n(V1),n(V2)} (semiadditivity).
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From the above three properties, the following conclusions are drawn immediately [1]:

(n4) Vi C V5 implies (V1) <n(V3) (monotonicity);

(m5) n(ViNVy) <min{n(V1),n(Va)}

(n6) For any finite set V, n(V) = 0 (nonsingularity);

(n7) If the sequence {V,};°; is decreasing in nature, where each V), € By is closed in X
and lim,,_, M(V,) =0 then V = ﬂzozl V. is nonvoid as well as compact (general-
ized Cantor’s intersection theorem).

Moreover, if ) is also a Bg then MNC 1 can satisfy the following properties:
(n8) n(wV) = |[wn(V) for any number w (semihomogeneity);
M9) n(V1 + V2) <n(V1) +n(V3) (algebraic semiadditivity);

(n10) n(wo + V) =m(V) for any wy € Y (invariance under translations);

(n11) n(conv(V)) =n(V) (invariance under passage to the convex hull).

Another interesting generalization of the Schauder FPT involving cyclic (noncyclic), rel-
atively nonexpansive maps together with a compact (Theorem 2.2) or condensing (The-
orem 2.5) operator appeared in [29]. To state this, we need to recall some definitions.

For any two nonempty subsets C and D of ), if A(C) and A(D) are both compact then
A:CUD — CUD is called a compact operator. The map A is said to be cyclic if
A(C) € D as well as A(D) € C and noncyclic if A(C) € C along with A(D) € D. If
d(Av, Aw) < d(v,w), for each v € C, w € D, then A is known as relatively nonexpansive.
A point vy, € CUD is abpp of a cyclic map A provided

|03 — Avf|| = dist(C,D) :=inf{||lc - d| :¢ € C,d € D}, (6)
whereas (v}, 105 ,) € C x D is a best proximity pair for a noncyclic map A if

”Ultpp ~ oo | = dist(C, D), Vhpp = AVppp Wipp = At0p,. )
The proximal pair (Cp, Dg) < (C, D) is given as

Co={ceClady € D: ||lc - do|| = dist(C,D)},
_ , ®)
Do = {d € D|3cy € C: |lco - d|| = dist(C, D) }.

The pair (C, D) is called proximinal whenever C = Cy and D = Dy. We denote by M (C, D)
the collection of all pairs of subsets (E, E) inside (C, D) that are nonempty, convex, closed,
bounded, proximinal, and A-invariant in nature such that dist(E, E) = dist(C, D). In gen-
eral, M, (C, D) may be empty, however, if A is cyclic (noncyclic), relatively nonexpansive
with (C, D) as that nonvoid convex pair that agrees to be weakly compact also inside a Bg
Y, then (Cy, Dg) € M4 (C,D).

We signify some conditions for A : CUD — C U D by the following notations:

(S1) The pair of subsets (C, D) is nonvoid, convex, closed, and bounded in a Bs ).

(S2) A is relatively nonexpansive.

(S3) A iscyclic.

(S4) A is noncyclic and Y is strictly convex.

Theorem 2.2 ([29]) If Cy # 9 and A is compact, then A possesses a bpp and a best prox-
imity pair whenever (S1), (S2), (S3) and (S1), (S2), (S4) hold, respectively.
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Definition 2.3 ([30]) Letm bean arbitrary MNC and the condition (S1) holds. The operator
A :CUD— CUD is called a cyclic (noncyclic), Meir—Keeler condensing (MKC) operator
if Ve >038 > 0: V(E,E) € M4 (C, D),

e<n(EUE)<e+s = n(A(E)UA(E))<e. 9)

Definition 2.4 ([31]) A map L : [0,00) — [0, o0) is known to be an L-function whenever
L(0) = 0 with L£(v) > 0 for v € (0,00) and for any v > 0 there exists § > 0 such that L(u) <v
provided u € [v,v + §].

Remark 2.1 The mappings L-function characterized (MK) contractions and was further
proved to be true for (MKC) operators [31]. A map A is a cyclic (noncyclic) L-condensing
operator if for an L-function £, we have n(AEU AE) < LM(EU E)), for (E,E) € M4 (C,D),
whenever n(E U E) > 0.

Theorem 2.5 ([30]) Suppose thatn is an arbitrary MNC and A is an MKC operator such
that Cy # (). Then, A has a bpp and a best proximity pair whenever (S1), (S2), (S3) and
(S1), (S2), (S4) hold, respectively.

These were not merely generalizations, rather, they have the potency to show the exis-
tence of a bpp (pair). In recent years, very nice works have been done on the existence
as well as applications of bpps and pairs. The interested readers are advised to read the
articles [23, 26, 28] and references therein. Moving towards the main motivation of this
article, Shahzad et al. defined a A-contraction [32] using the concept of a A-sequence that
submerges the class of all R-contractions, Meir—Keeler contractions, Z-contractions, and
more. Keeping this in view, we define .A-condensing operators in terms of MNC 1 using
the concept of A, -sequence.

3 Best proximity point (pair) results

We now present our notions, namely, the A,,-sequence and .A-condensing operators. We
say that {x,} := {(as, Bu)} is a Ay-sequence if there exists a sequence of pairs {(En, E,)} in
M (C, D) such that

a, =M(AE,UAE,)>0,  B,=n(E,UE,)>0, (10)
for each n € N, where {«,}, {8,} are two real sequences.

Definition 3.1 Letn beanarbitrary MNC. An operator A : CUD — CUDis A-condensing
ifone can find a function p : A x A — R satisfying the subsequent conditions together with
A as: (i) rang(n) € A C R; (ii) if {x,} € A% is a A,-sequence such that both «,, B, — €
with £ > 0 and verifying ¢ < «, along with p(a,, B,) > 0 for every n € N then ¢ = 0; (iii)
p(M(AEU AE),n(EUE)) >0, provided n(E UE)>0and n(AEU AE) > 0 for every (E,E) e
Ma(C,D).

It is proved in [32] that not every .A-contraction is a Meir—Keeler contraction but the
converse is always true. Along the same lines, we note that not every .A-condensing oper-
ator is MKC but the converse is always true.
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Example 3.1 Let ) = [; be a nonreflexive Bs with norm | - ||; and {ex} be its standard
basis. Define two sets C and D inside ) as C = conv({ex_1 : k € N}) and D = conv({ex : k €
N}). We choose MNC n operating on any nonempty, bounded subset V C )Y asn(V) =0
whenever V is precompact and (V) = 1 elsewhere. Define A : CU D — C U D such that

A(hezk1 + (1= Meam-1) = et A ey + (1= Neam) = exc1, (11)

where X € [0,1] and k, m € Nwith k < m. Note that A is cyclicon CUD. Moreover, (C,D) €
M (C, D) since (C,D) is proximinal. As, 1(AC U AD) = n(C U D) > 0, this means that
N(ACUAD) £n(CUD), and hence, A cannot be MKC. On the other hand, for any nonzero,
positive, and constant function p, the condition (A3) is fulfilled. For (A2), let {x,} be a
Ay -sequence with ay,, 8, = ¢, 0 < £ < a, and p(a,, B,) > 0 for all n € N. Assume on the
contrary that £ > 0. Now, from the definition of a A,,-sequence, we have a sequence of
pairs {(E,,,fi,,)} in M (C, D) such that o, =M (AE, U AE,,) >0and B, =n(E, UE,,) > 0. This
means that {«,} is a constant sequence converging to 1 such that «,, = £ for infinitely many
n, a contradiction. Hence, A is A-condensing.

We proceed towards stating our theorems.

Theorem 3.2 Suppose that (S1), (S2), and (S3) hold. If A is a cyclic A-condensing operator
such that p(v,w) <w—v forallv,w € AN (0,00), then A has a bpp provided Cy # .

Proof Set Iy = Cy with Jy = Dy and define
Z, = conv(A(Z,-1)), Tn=conv(A(Ty-1)), VmeN. (12)
Hence, for

n=1, I =omv(A(L)) = onv(A(Co)) € Do = Jo,

n=2, I=cov(A(T))) Cconv(A(To)) = T,

(13)
In+1 g jnr Vn e N ) {0}
Analogously, one can derive 7,1 € Z,, for n € NU {0}. Hence, in general, we write
In+2 g jn+1 g In g jn—l; Vne N. (14')

Hence, the sequence {(Z,,, Jom)} of nonempty, convex, and closed pairs in (Cy, Do) is de-

creasing in nature. Moreover,

ALym) S MTam1) S €OnV(A(Tom-1)) = Tams

A(s72m) c A(IZm—l) - W(A(IZWI—l)) = IZm’

(15)

imply that the pair (Z,,, Jom) is A-invariant. Also, for («, 8) € Cy x Dy and for all m, we
have

dist(Zom, Jom) < | A*"a = A*"B|| < |l - BI| = dist(C, D). (16)
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Now, by induction we prove that the pairs (Z,,,, J,,) are proximinal as well. The claim triv-

ially holds for m = 0 and so let the pair (Z,,,-1, J,—1) be proximinal. For ¢t = 1,2,..., ,

J JeN
v=) MAW)E€T, veL,uhel01])Y 2 =1, (17)
=1 =1

there exists w, € J,,_1 such that w = {:1 MA(W,) € T, because of the proximality of the
set Z,,_1, so that

J
llv—wll = <> Mllvi—wi = dist(C, D), (18)

=1

J J
Z)\LA(VL) - Z)"LA(WL)
=1

=1

and vice versa. This implies that the pair (Z,,, J,,) is proximinal and hence (Z,,,, o) €
M (C, D). Let us now consider the following two cases:
Case (i) Suppose there exists m1y € N with max{n(Zy,,,), N1(J2m,)} = 0, then

A :I2m0 ) \727}’10 - IZWIO U \72m0’ (19)

is a cyclic, relatively nonexpansive map on the compact set Z,,, U Jo, and hence by
Theorem 2.2, A will have a bpp.
Case (i) For every m € N, let max{n(Zy,),N(J2)} > 0 and consider

a1 U Fams1) = max{n(Zoms1)sn(Fomsn)}
max{n(conv ATy,)),m (COMV(A Fo)) }
max {n(Zem),N(Tom) } =1 (Tam U Tom)
max{n(conV(AIZm 1), (COMV(A Tom1)) }
{(N(AZz 1), (A Tom1) }
max {n(AZyy-2), (A Jam-2)}

<N@Zam-2 U Jom-2). (20)

max

Hence, (N(Za, U Jam)}or.o is a decreasing sequence converging to its infimum, say £. Set
U =MN(ALy U Adoy) > 0 and By, = (Lo U Jom) > 0, then {x,} is a Ay-sequence such
that o, — ¢ and B, — £ with ¢ < «,,,. Moreover, p(a,,, B,,,) > 0 for all m. Let us suppose
for some m that ¢ £ «,, then € = o for all kK > m. This means that the sequences {«,,}
and {B,,} are eventually constant sequences so that p(«,, i) < 0 for infinitely many m, a

contradiction and therefore by (A2) we obtain £ = 0. Hence,
1im 1(Toy) = lim 1(Tan) =0. 1)
Define Z, = N1y, and Jo = NJoy- Then, the pair (Zo,, J») is nonvoid, convex, and com-

pact as well as A-invariant for which dist(Z,, J) = dist(C, D). Thus, the application of
Theorem 2.2 guarantees that A has a bpp. O
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Theorem 3.3 Suppose that (S1), (S2), and (S4) hold. Then, A has a best proximity pair
provided Cy # 0 and A is a noncyclic A-condensing operator with p(v,w) <w—v forv,w €
AN(0,00).

Proof Set I, = Cy with Jp = Dy and define for all n € N, Z,, = conv(A(Z,-1)) and J, =
conv(A(J,-1)). Thus, for

n=1, Iy =conv(A(Zy)) =conv(A(Cy)) C Co =Ty,

n=2, Ip=conv(A(Zy)) Cconv(A(Zy)) =1,
(22)

7,1 C L, VneNU{0).

Analogously, one can derive J,,1 C J, for each n € NU{0}, so that the sequence {(Z,,, )}
of nonempty, convex, and closed pairs in (Cy, Do) is decreasing in nature. Moreover,

A(Im) g A(Im—l) g W(A(Im_l)) = Im:
A(jm) - A(jm—l) gm(A(jm_l)) = jmr

(23)

imply that the pair (Z,,, J,,) is A-invariant. Also, for («, 8) € Cy x Dy and for each m, we
obtain

dist(Z, T) < | A" = A" B < |l - Bl = dist(C, D). (24)

By induction, one can prove that the pair (Z,,, J,,) is proximinal, as before, and hence
(Zin» T) in M (C, D). Let us now consider the following two cases:

Case (i) Suppose there exists m, € N such that max{n(Z,,),N(Jm,)} = 0, then A : Z,,; U
T = Ly Y T, is a noncyclic, relatively nonexpansive map on the compact set Z,,,, U
Jme and so A will have a best proximity pair.

Case (i) For every m € N, let max{n(Z,,),n(J»)} > 0 and consider

NZne1 Y Tne1) = maX{Tl(Imn)»ﬂ(Jmu)}
= max{n(conv(AZ,,)),n(conv(AT)) }

Hence, {(N(Z,, U Jm)}on. is a decreasing sequence converging to its infimum, say £. Set «,,, =
N(AL,UATy) >0and B, =m(Z,, U Jpn) > 0, then { x,,,} isa Ay -sequence such that o, — €
and B,, — ¢ with £ < «,,. Moreover, p(a,;, B,,) > 0 for all m. Let us suppose for some m
that £ £ «,, then £ = o for all kK > m. This means that the sequences {«,,} and {8,,} are
eventually constant sequences so that p(&;,, B) < 0 for infinitely many m, a contradiction
and therefore by (A2) we obtain £ = 0. Hence,

lim n(Z,) = lim n(Jx)=0. (26)
m— 00 m—> 00
Define Zy, = (\Zn and Joo = (| T then the pair (Zoo, Jo) is nonvoid, convex, and com-

pact as well as A-invariant for which dist(Z,, J) = dist(C, D). Thus, the application of
Theorem 2.2 guarantees that A has a best proximity pair. O
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We have the following corollaries as a consequence of our main results: Theorems 3.2
and 3.3.

Corollary 3.1 ([24]) Suppose the conditions (S1), (S2), and (S3) hold with as an arbitrary
MNC. If Cy # ¥ and for every (V1, V) € MA(C, D) we have

NAVIUAV,) =¥ (n(V1U Vy)) -n(Vi U V), (27)

where ¥ : [0,00) — [0, 1) is a map satisfying, V(v,) > 1 = v, — O, then A admits a
bpp.

Proof Set U(y) = %(1 + W(v)), for v € [0,00). Then, ¥(v,) — 1 implies v,, — 0. Moreover,
W(v) < U(v) < 1 for v € [0,00), so that

NAVIUAV,) < W (n(V1U V) -n(Vi U Vo) < U (n(Vi U VL)) -n(Vi U V). (28)
The definition

p(M(AVIUAV2),m(V1 U VL))

= UMV U V) (ViU Vo) =n(AV, UAV,) >0, (29)

implies that (A3) is satisfied. For (A2), let {x,} be a A,-sequence satisfying o, — £ with
0<{t<ay By— ¢ andfor n e N, p(ay, B,) > 0. Hence,

ap=M(AE,UAE,) < ¥((E, UE,)) -n(E, UE,)

<M(E,UE,) := B,. (30)

Applying n — oo, we obtain U (M(E, UE,)) — 1 and therefore, n(E, U E)—0 gives £ = 0.
Thus, A is A-condensing and so Theorem 3.2 concludes the rest. O

The proof of the remaining corollaries can be similarly obtained. However, for more
details, one can see [32, 33].

Corollary 3.2 ([24]) Suppose the conditions (S1), (S2), and (S4) hold withn as an arbitrary
MNC. If Cy # ¥ and for every (V1, V,) € MA(C,D), we have

NAVIUAV) =W (n(Vi U Vy)) (ViU Va), (31)
where WV is as in Corollary 3.1, then A adwmits a best proximity pair.

Corollary 3.3 Suppose the conditions (S1), (S2), and (S3) hold withn as an arbitrary MNC.
If Co # W and for each (V1,V,) € Mx(C,D) we have n(AVy U AV,) < wn(Vy U Vy) where
v € (0,1), then A admits a bpp.

Corollary 3.4 Suppose the conditions (S1), (S2), and (S4) hold withn as an arbitrary MNC.
If Coy # 0 and for every (V1,V3) € MA(C,D) we have n(AV1 U AV,) <vn(Vy U Vy), where
0<v<1,then A admits a best proximity pair.
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Corollary 3.5 Suppose the conditions (S1), (52), and (S3) hold with ) as an arbitrary MNC.
If Cy # ¥ and for every (V1, V,) € M (C, D) we have

NAVIUAVL) =n(V1U Vo) =W (n(V1 U Va)), (32)

where W : [0, 00) — [0,00) is lower semicontinuous with W;'({0}) = {0}, then A admits a
bpp.

Corollary 3.6 Suppose the conditions (S1), (S2), and (S4) hold with as an arbitrary MNC.
If Cy # 0 and for every (V1,V,) € Mx(C, D), we obtain

NAVIUAV,) =n(V1U Vo) =¥ (n(V1 U Va)), (33)
where \V is as in Corollary 3.5, then A admits a best proximity pair.

4 Coupled best proximity point result
In this section, the coupled bpp theorem has been developed. For this, we first give the
following preliminary concepts.

Suppose (C, D) is a nonvoid pair of subsets inside the metric space (),d) and A : (C x
C)U (D x D) — CUD. The map A is called cyclic if A(C x C) €D and A(D x D) C C.
The point (v}, b5 ,,) € (C x C) U (D x D) is a coupled bpp of A whenever

Ad(05 0 A5 o0 055)) = d(0} 0, A}, 05 ) = dist(C, D). (34)

Lemma 4.1 ([34]) Ifn, is an MNC on the metric spaces Y,, t = 1,2,...,m, respectively,
then N(H) = (M1 (H1),M2(H>), ..., Nm(Hw)), is also an MNC on Yy X Yo X -+ X V,u, where
H, stands for the natural projection of H into ), respectively, for . = 1,2,...,m, pro-
vided @ : [0,00)" — [0,00) is a convex function and ®(ay,ay,...,a,) =0 iff a, = 0 for all
t=1,2,...,m.

Lemma 4.2 ([27]) Let (C, D) be a nonvoid pair inside a metric space (Y, d) and the product
Y x Y be a metric space together with the metric d, as

doo ((Vly V2)¢ (WI) W2)) = max{d(vl, Wl))d(VZr WZ)}x (35)

for each (vi,v2), (w1, wa) € V2. Then, (C, D) is proximinal in Y iff (C x C,D x D) is prox-
iminal in V2.

Before giving the statement for the coupled bpp via .A-condensing operators, we define

a Ay -sequence. For two real sequences {«,}, {8,}, we say that {x,} = {(s, B,)} is @ Ay-

sequence if there exists a sequence of nonempty, convex, bounded, closed, and proximinal
A-invariants pairs {(EH,E,,)}, {(E,, E,)} in (C, D) with

dist(E,, E,) = dist(F,,, F,,) = dist(C, D), (36)

such that for each n € N,

a, = max{n(A(E, x F,) U A(E, x ﬁ,,)),n(A(Fn x E,) UA(E, x 1:",,))} >0 (37)
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and B, = max{n(E, U F,),n(E, UE,)} > 0.

Theorem 4.3 Suppose (C,D) is a nonempty, convex, bounded, and closed pair in a Bs )
with Cy # ¥ and n is an MNC on Y. Let A be a cyclic map satisfying (A2) along with the
following conditions:
(i) Let (E,E),(F,F) C (C,D) be nonempty, convex, bounded, closed, and proximinal and
A-invariants pairs with dist(E, E) = dist(F, F) = dist(C, D) such that
p(max{n(A(E x F)U A(E x F)),n(A(F x E)U A(F x ﬁ))},

max{n(EUF),n(EUI:")}) >0. (38)
(ii) For all pairs (v1,v3) € C x C and (wy,wo) € D X D, assume that
d(A(VI» v2), A(wy, Wz)) <dx ((Vl, V), (w1, W2))~ (39)

(iii) p(v,w) <w—v foreveryv,we AN(0,00).
Then, A affirms to have a coupled bpp.

Proof If H, stands for the natural projection of H into ), for ¢ = 1,2, we set f(H) :=
max{n(H,),n(H,)} then 7 becomes an MNC for J2. Let us define / by

F:(CxC)U(DxD)— (CxC)U(D x D),
F (v, w) = (A(v,w), A(w,v)),

(40)

then F is cyclic on (C x C) U (D x D). This is because, for any (v,w) in C x C and to-
gether with the cyclic nature of A we have (A(v,w), A(w,v)) € D x D, whence F (C x C) C
D x D. Similarly, one has F (D x D) € C x C. To show F is relatively nonexpansive, let
((v1,v2), (w1, wn)) € (C x C) x (D x D), then

oo (F (v, v2), F (w1, w2))
= doo (A1, v2), Ava, v1)), (A(wy, wa), A(wa, 1))
= max{d(A(v1,v2), A(wy, w2)), d(A(va, v1), A(wa, w1)) }
< max{dos ((v1,v2), (W1, W2)), doo (W2, w1), (v2, 1)) }

- doo ((Vl, VZ)’ (Wl, W2))> (41)
is the desired condition. Note that

A(F (Ex F)UF (E x E))

= max{fi(F (E x F)),ﬁ(F(E X F))}
max{fi(A(E x F) x A(F x E)),A(A(E x F) x A(F x E))}
{ma

max{n(A EXF)) (A(FXE))}}

= max{max{n(A(E x F)),n(A(F x E))},
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= max{max{n (A(E x F)),n(A(E X 1:"))},
max {n(A(F x E)),n(A(ﬁ X E))}}
= max{n(A(E x F)U A(E x I:")),r](A(F x E)U A(F x E))} (42)
and f((E x F) U (E x F)) =n((EU F) U (E U F)), so that we obtain
p(A(F (Ex F)UF (E x E)),A((E x F)U (£ x F)))
= p(max{n(A(E x F)U A(E x I:")),n(A(F x E) U A(F x E))},
max{n(EUF),n(EUI:")})

> 0. (43)

This shows that f satisfies (A3). Hence, F will be A-condensing if /- satisfies (A2) too. Let
us assume that {,} is an F  sequence with o, — ¢, B, = £, 0 <{ <, and p(a,, B,) >0
for each n € N, then there exists a sequence {(E, X F,,E, x }’“,,)}2‘:’1 such that

an =T(F(En x F) U F (E, x Ey)) >0,

. (44)
Bn :ﬁ((En X Fy) U (E, x Fn)) >0,
so that
ay = max{n(A(E, x F,) U A(E, x E,)),n(A(F, x E,)UA(E, x E,))} (45)

and B, = max{n(E, UFn),n(En UFE,)}, willbea Ay, -sequence converging to £ = 0. This con-
cludes that f is .A-condensing and hence, from Theorem 3.2, F has a bpp (n;;pp, m;;pp) I=
(C x C)U (D x D) such that

dist(C, D) = doo (0550 0500 )s F (05500 105,0))
= dw(("fapp» m;pp)’ (F(n;pp’ t’O}ipp)’ F(mpr’ t)Epp)))

= max{d(0] 0 F (0500 105pp))s A(Whgp F (1050 0500)) - (46)
Therefore, (v}, v5,,,) becomes a coupled bpp for A. O

5 Applications

Various authors using renowned FPTs have shown the existence of solutions to more and
more generalized forms of such fractional-order DEs. In recent times, Kucche et al. in
their paper [35] stated the most general form and the defined (k, J)-HFD operator of order
p € (0,00), type 0 < g < 1 acting on a function 1] € C"[a, b] with n = {%1 € Nas

Kk d

kHmMw.q:3 4 _ kyg(nk=p);3
L  kyatnk—p
) (J’(v) dv

n
) PR ), (47)

where k € (0,00), ] € C"[a, b] is an increasing function with J'(v) # 0 for v € [a, b] and ¥177
is the (k,J)-RL integral of order p € (0, 00) as

i - [ TLW™ k?(f;;) do, (48)
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where jg(v) =J(v) — (o) and T(p) = fooo Q"‘le'gk”‘ do [36]. Here, we consider a pair of
(k,3)-HFDE (4) and (5) of order 2 < p < 3, type 0 < g < 1. The following lemma gives an
equivalence between the FDE (4) with the integral equation (49).

Lemma 5.1 Let2<p<3,q€[0,1] and O = p + q(3k — p), then the equivalent integral to
the above-mentioned DE is

(3, ()]
A3, (b)) w1
—ol* P 1 (b, (B)) - o2 PR (b1 (B)) ], (49)

M) =T (vm) + 051 "y 1(2,m©))

where A = o1 + az(ﬂk k) #0.

Ja(

We are now about to show the existence of the optimum solution of the system (4) and
(5) for a more general setting. Consider S = C(7,)) (here ) is Bs) with the supremum
norm and choose two subsets S; and S, of S as

Sl = {ﬁ € S n € C(j,Bl),ﬁ(ﬂ) = 0})
SZ = {ﬁ € S 'n € C(jrBZ)’ﬁ(a) = 0})

(50)

where B; = By, [po] and B, = By, [qo] represents two closed balls centered at py and g with
radius y,, ¢ = 1,2, respectively, in ). The functions

Fouw:J xB— ), Fouy:J xBy— ),

are all continuous. Clearly, S, # ¥, ¢ = 1,2 are both bounded, closed, and convex sets in S.
Define A on S; US; as

]l7k/l< 1

A5 A(0) + R 03 (6, 7(0)

- "5 (b,A(B) - 0" PR 5 (b,AB))],  fieSy,

AR0) = k-1 . (51)
k]IPJF1(V,T](V)) + %[ngﬂvﬂul(;,n(g))
= "I (b,AB) - 0 PRI L (BAGN], A €Sy
Lemma 5.2 The operator A, (51) is cyclic on S; U Sy whenever
[ |02 los| . .
1+ —+ ——— |[F*Y(p, k) + — k <,
[ Tl +|A1r(k,k)|}'f1 . k) + |A|u1 T, k) +llpoll <1 -
ol lonl o3|, o
1+ —+—— |F:Y(p, k) + — k <5,
[ "l +|AT(/<,/<)JF2 (b K)+ Y (0,0) + ol < 72

where Y (1, k) = Hk 3.1 and

F1=sup{|Fi1(»AW)||:A €S}
veJ

i = sup{ A0+ <52

Page 13 of 31
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F3=sup{ | F2(vAm) | i eSi},
veJ

uy = sup{|u2 (v, AW) | : A € Si )
veJ

Proof Suppose n € S; and consider

(3, ()]
A1)

+ o TR (BAB)] + oo T2 (b)) ]

[A O] = [TF2Fo(nA0) | + [[lo5" 1% (6,710)) |

* v o P_ * ¢ o v_
L I3 / 1[0 do 1["’3'“2 T[] d

“Telp) Tl kT J,
P o0 o
D /ﬂbj“w[je(w]‘”‘““ do]
- % e e
- O] s o)™

_ P33 1 [|og|uz[ia(b)1”/k
T o) AL T)

o1l F3(e (B IGzIFg[ja(b)]P"‘/k]
pLr(p) (p-kT(p—k)

=72~ llqoll,

(53)

so that ||[Afj — go|| < 7 and therefore, we obtain Afj € S,. Similarly, we can show that

€S, = Af € S;1. Hence, A is cyclic.

O

We now prove the mean-value theorem of integral calculus for a (k,J)-RL integral. The

proof follows a similar technique to that shown in [37].

Lemma 5.3 If p,k > 0 and n is any continuous function then we can find z € (a, b) such

that

. " T(0) s, kel (3.0
kp’:l = =
P - [ L 0] ) do = S (o

Proof Observe that the function

N () NP
30) - Wip)[l@(”] o

(54)

(55)

Page 14 of 31
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is continuous and does not change its sign for the given range. By applying the generalized
mean-value theorem of integral calculus, we write

T (Q) plk—1 [ja(V)]p/k
kyp:a do = .
Pn(v) = n(Z)f ) W] 1Y PTe) n(2) (56)

Theorem 5.4 Along with the assumptions of Lemma 5.2, suppose that there exists positive
real scalars A, t = 1,2 such that for all v e J and (n1,M2) € S1 X Sy, we have

(H1)
max{|[F2(vm®) = F1(v20) [, Juz () - (vn20) [ }
<J|m® -naW)|, (57)
where M E < 1 with
E - ﬁ[(w tloul + T';Z'/())T(p,k) + |03|T(v,k)]; (58)
(H2)
max{ [[uz (v,11 (1)) - w2 (v, Fa(vm®) - F2,0)||} <24 9)

Fi(vm®) - 0,0} < )»2|

max{ |[u; (v,n2(v)) = wi (v,

where Ay = max{il,ig} € (0,1] satisfying Ay B < 1. Then, the system (4) and (5) of
(k,3)-HFDE has an optimal solution.

Proof Clearly, A is cyclic, by its definition. Also, the range of A is uniformly bounded,
since, forn € Sy,

AT )] = [ AN (V) = g0 + qo]| < 72 + llgoll. (60)

Similar conclusions can be drawn when 1, € S;. We now show that A(S;) is an equicon-
tinuous set in S. For that, let v < v and n; € S; then

AN (P) — Am(v)||

= [P F 2 (5, () = F2 (v )]

P A A C0)
Ald,(B))7w1

[03 T ua (£, m1(2))

— 0" (b (b)) —ozkﬂpk;‘Fz(b,mw))]H

kTk(p)

)
kT (p)

[F0]" " Fa(em@) do H
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) e A
Al 3a(0))

— 0" 5 (b, (b)) - 0 PR (b))

B A () e
<15 [ gl - o] o

A (TP

FZ/V kI’k(p)[jQ(V)] do

L G - )
A (b))

— oK 5 (b, (B)) - 02 PR 5 (b, (D)) |

FE s - p/k_ g . p/k_ o Pk N
Sprk(P) [[Ja V)] [jv(V)] [Ja(V)] +[JV(V)] ]

. [T = [T, ()] 7wk
|A|[3,(b)] 71

— o\ TP 5 (b,n1(B)) - 0 TP F 5 (b1 (D)) |-

o3 Tz (£, m(2))

||03k11v;]u2 (£,m(2))

||03k11v;]u2 (£,m(2))

Indeed, as v — v, we obtain An;(v) — An;(¥). Hence, A(S;) is an equicontinuous subset
of S. With similar arguments, one can show A(S;) to be equicontinuous too. Hence, by
the generalized Arzeld—Ascoli theorem, (S7,S;) is relatively compact. In order to show A

is relatively nonexpansive, let (11,13) € S; X Sy, then for any v € 7, we write

()]
A[3, (b))

x [o3 1" us (¢, M) - U1k]1p;JF2(b,ﬂ1(b))
— 0 PRI (b, ()] =P 1 (v,2(v))

A
A[3, (b))

| Am ) = Ana )| = | TP F 2 (vm(v)) +

[GskHU;Jul (£,m2(0))

o 4 (b1a5) - o2 ()]
<Py (v (v) - F1 (M) ||
+ ﬁ { o3| FT¥ Juz(2,m1(2)) = w1 (£,m2(0)) |

+ o1 FPA| F o (5,1 () = F 1 (bma(D)) |
+ oo K| o (b1 (B)) - F1(Bn2(B)) |}

1 Y , 5 plk—1
SMHm-mH{ka(p)/a T[] de
+i[ 3l [ o E ] deo
JA|L&T(v) J, ¢

loil [P, s kel
"o / T[] do

Page 16 of 31
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*kn@—m
(v

<XMlm —112||{
Plk

o1 (3 (b))
+

(2024) 2024:79

b)pk/“ “

|0 [3a (b))

]
SM||T11—T12||{ .
pli(p)

|01 | [3a (b))%
+

T - -k

|0 |[3a (b))

+ 01| Y (p, k) + |02|T(P—k;k)]}

<llo1 -

This implies that A is relatively nonexpansive. Also, A is .A-condensing, because, for

(E,E) € M, (S1,S,) we have

N(AEU AE) = max{n(AE),n(AE)}

= max{sup{n({Am(): m € E})} sup{n({Am() s € £})}]
veJ

veJ

= max{sup{n ({kHP‘JFz(V: m)) +

veJ

X [O'gka’?:);JLQ

veJ

T - -k

1
=A1lm1 =2l {T(P,k) + W[|03|T(V,k)

A[3 (b))
(&, m(©)) = oXPAF 5 (b, m (D))

—@W“MFAhmwm:meED}

sup {ﬂ ({k]]p;JF1 (v, m2(v)) + Ai[ja(b)]l’k/k—l

X [Usk]lvﬂul (¢,m(2)) - o'y (b, n2(b))
o PR (b, 02()) ] 2 eE})”

:nmx{mm{n<{
veJ

[,
+

3. o(z,m1(2))

AlTa(b))i
_ oaldu(B)
pri(p)
B0 F (2, 12(2))

Fg(z,m(z))] :for some z € J}) },

s

Page 17 of 31



Khokhar et al. Journal of Inequalities and Applications

(2024) 2024:79

3] T o3[3a(0)]" o1[3.(b)1*
I [ o) ™ (zm2(2)) - e - 1(z m(2)
5 p—klk
_ %f 1(z, nz(z))] - for some z € j}) } }
Vﬂ bWk
aX{ [ilfk();) N({F2(z,m @) + F2(2,0) - F2(z,0)})

+1[
Al

|01 | [3a (b))
ple(p)

o]

-y —h)

[3.(b)17*
pL(p)

il
A
Al

“a INEL
%n({uz(z, Mm(2)) +2(2,0) — us(z,0)})
nN({F2(zm @) + F2(z,0) - F2(z,0)})

5 p—klk
(D) nQ5@m@»+&@m—Fﬂﬂm}

n({F1(zn2) + F 1(z,0) - F 1(z,0)})

|o3] [ (0)]

vIk(v) Tl({ul (Z, 772(2)) +u(2,0) — u1(z,0)})

| LP/k

+ (|Ul +
pTi(p)

|@ﬂvam)
(p—KTi(p - k)

xn({F1(zm@) + F1(z,0) - Fl(z,O)})“

< max{A2En(E), 22 En(E)} = 1 En(E U E).

By choosing p(v,w) = L,wE — v, the operator A becomes .4-condensing. Hence, the hy-

pothesis of Theorem 3.2 is fulfilled and hence, the bpp of A is the optimum solution of

the system (4) and (5).

6 lllustrative examples

0

The following examples reveal the hidden realities in the application of the results of this

article. In the first example, we examine our results as an application to find a mild solution
of the system (4) and (5) for different states of J.

Example 6.1 According to the system (4) and (5), we consider the system (2.1,]J)-HFDE

under conditions forve J =

[0,1] in the form

2.1,H1)9/4,3/5;3 V2 exp(v/8) sin(m (v)
D M) = ¥65(05+12)
M1(0) =n}(0) =
1+ %g 1 322 112173 (2+|v)) tan(n; (v)) ,
By (1) + 3 - (elpnin )
2.1,H1m\9/4,3/5;] _ v2(1+]v]) sin(ma (v ))
D HZ(V) T 6+0032 (v/10+sin2 (Mo (v)))’
M2(0) =m5(0) = 0,
23 45 _ 3221712171 10vtan(n(v))
15112(1) t % 63112(1) 65 1 [ ¥/30(5+tan(wv/4)) exp(|v]) [v/7+(tan~1 (1))2 ]]

(61)

(62)
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with four cases of J as

L) =15, L=v, J»)=In 2;(;01, 1) =, 63)

which are in C(j) and J/(v) > 0 on J, where 53 = j, Clearly, = % €(2,3),q= % €
[0,1],and v = > 0. Then, 91 =p +q(6.3-p) = 117 Also, by using the data, we obtain

12.0878, 1(v)=1.5",

B 1 23 $(5-3) ] 68106, L(=v
Azorrg RN 507 63369, L) -In 2 (70
6.8106,  14(v) = /v,
We define
_ V2exp(2)sin(ni () @+ ) tan(ni ()
FI(V’H(V)) = «3/@(0.5 ) ’ ul(v,m(V)) = W;
2 (r, 1) = 3v*(1 + |v]) sin(ny(v))
2T V27(6 + cos? v)(v/10 + sin®(y(v)))”
~ 10vtan(n,(v))
M) = e s () exp(V) 7 + a0 o0
‘We observe that,
|F2(V,T]1(V)) - FI(V,TlZ(V))|
3v2(1 + [v) sin(m(v)) _ V2exp(¥s) sin(n(v))
v)(v/10 + sin*(n1(v))) V65(0.5 +12)
_[snn0)  VRsinmo)|  VE
“|Vi0va7 T 1s¥es | T 15935 T
|u2 (V,le(V)) - (V:m(V))|
_ 10vtan(nz(v)) 2+ |v]) tan(n, (v))
V/30(5 + tan(7v/a)) exp(|v])(v/7 + (tan‘l(V))z) V315
2tan(z(v))  2tan(ni(v))
< U% R < \/—\/— 1) —ma2(v)|. (65)
Hence, to confirm assumption (H1), from Eq. (57), we have
max{| /2 (v.m®) - F1(v,n2M) |, |2 (v (¥) —w (v,m2) ||}
<maf 2 -
<m|m@) -n2()|, (66)

where A = Now, thanks to Eq. (58), we obtain

NGt

E:|A|[<| |+ o] + '(k'k)>r<pk)+|agmu k)l
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32 1
+ =

65
0.4107,
0.8750,
0.9695,
0.8750,

Furthermore,

0.1169,
0.2491,
0.2760,
0.2491,

|1,|[(' T
| |[<'A'+

lications (2024) 2024:79

23 |45/22|
157G, 3)> ( ) ‘

23 ‘ |45/22|
+

r(6)

417
) [3:(1) - 3:(0)] }

Jl(v) = 1.5v,
) =v,
33(‘/) = 23]/(;-011

Ja(v) = «/‘—/

Jiv) =
JZ(V) =,
B(v) = 2;601,

La(v) = V.

g (1) - 3(0)])1"(21)[3(1) 3ol

(67)

(68)

Hence, assumption (H1) holds. In Figs. 1 and 2a, 2b, we have plotted the results of E and
A8, A E for the system (61) and (62). Also, these results are shown in Tables 1 and 2. To

check the next assumption (H2), we take help from relations (59). Hence,

[uz (V1)) = u2(v, 0)|

10vtan(n;(v))

B J30(5 + tan(7v/a)) exp(|v|) (v/7 + (tan—1(v))2

(69)

U]

1 T T T T T T T

+ 15\1
\
In (2v+1)/300
—— 08

091

081

071

06

051

04r

03

021

011

0 il 1 1 1 1 1 1
0 01 02 03 04 05 06 07
vel0,1]

Figure 1 Representation of & in assumption (H1) for four cases of Jin the system (61) and (62) in Example 6.1
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0.25

[
< 015
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T T T T T T T

—E—15
v
In (2v+1)/300
—— 09

T T T T T T T
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Figure 2 2D plot of 11 E and A, & in assumption (H2) for four cases of Jin the system (61) and (62) in
Example 6.1

Table 1 Numerical values of E,and A1 &

in Example 6.1 when J(v) = 1.5",v

v Ji(v) =15 v =v

o) A]E<‘| )\QE<1 v A]E<1 )LQE<1
0.08 0.0224 0.0064 0.0219 0.0584 0.0166 0.0572
0.17 0.0483 0.0137 0.0473 0.1240 0.0353 0.1215
0.25 0.0763 0.0217 0.0748 0.1928 0.0549 0.1889
0.33 0.1063 0.0303 0.1042 0.2639 0.0751 0.2585
042 0.1382 0.0393 0.1354 0.3366 0.0958 0.3298
0.50 01717 0.0489 0.1683 04107 0.1169 04024
0.58 0.2070 0.0589 0.2029 0.4859 0.1384 04761
0.67 0.2441 0.0695 0.2392 0.5622 0.1601 0.5508
0.75 0.2830 0.0806 02773 0.6393 0.1820 0.6264
0.83 0.3237 0.0922 03171 0.7172 0.2042 0.7027
0.92 0.3662 0.1043 0.3588 0.7958 0.2266 0.7797
1.00 04107 0.1169 04024 0.8750 0.2491 0.8573
Table 2 Numerical values of E,and A1 E Aq E in Example 6.1 when J(v) = %, v
v jg(V):m% Jav) =V

o) )L]E<‘| )\QE<‘| v )L]E<‘| )\QE<‘|
0.08 0.1139 0.0324 01116 0.2256 0.0642 0.2210
0.17 0.2247 0.0640 0.2202 0.3292 0.0937 0.3225
0.25 0.3267 0.0930 0.3201 04107 0.1169 0.4024
0.33 04204 0.1197 04119 0.4805 0.1368 04708
042 0.5067 0.1443 0.4965 0.5427 0.1545 05318
0.50 0.5866 0.1670 0.5747 0.5995 0.1707 0.5874
0.58 0.6609 0.1882 0.6475 0.6521 0.1857 0.6389
0.67 0.7303 0.2079 0.7156 0.7014 0.1997 0.6872
0.75 0.7954 0.2265 0.7793 0.7479 0.2130 0.7328
0.83 0.8567 0.2439 0.8394 0.7922 0.2255 0.7762
092 09146 0.2604 0.8961 0.8344 0.2376 0.8176
1.00 0.9695 0.2760 0.9499 0.8750 0.2491 0.8573

3v2(1 + |v|) sin(ny (v
1 a(rm ) = £ 2(,0)| = (1 + [v])sin(m( 3)
¥)(+v/10 + sin(1( V)))
sin 1%
‘ ) [ )] (70)
«/— V10 +sin’*(m; (v)) | x/— V27
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and

max{ ||u2 (V;ﬂl(V)) - UZ(V, 0) ) (V,ﬂl(V)) - FZ(V! 0) || }

o 2l == o]} <1 )
V3047 V1027 =

where Xl = In addition,

2
J30v7°

Im@mmw—m@ﬁnzgjﬂm@@g@’

V3145
‘tan(ng(v))’ <

3 3
< —ﬁyﬁ \/573@ ’le(V) )
‘\/—exp("/s sin(m,(v))
J65(0.5 + 12)
< V2 )| < 22
0.5v/65 V65

|F1(V:112(V)) - FI(V’O)|

)| (72)

and

(V,ﬂ2(V)) -F1(v0)|}

2l ]} <

max{ || u; (v, n2(v)) —u1(»,0)|,

(73)

} “‘a"{ N

where )\.2

Ao = max{ii, ko) = { €(0,1] (74)

2 2e‘“&/§} 2"V2
Y3047 /35 /35

and

04024, 1;(v) =

_ 0.8573, 1(v)=v,
ME <L (75)
0.9499, Ij(v) =24,

0.8573, I4(v) = /.

Then, all the conditions of Theorem 5.4 are satisfied. Hence, the system (61) and (62) of
(2.1,7)-HFDE has an optimal solution.

In the next example, we can see the correctness of the results for the existence of an
optimal solution of the system (4) and (5) for different fractional derivatives of order p.

Example 6.2 We consider the system of (2.1,])-HFDE (61) and (62) in Example 6.1 for
ve J =10,1] in the form

2.LHTWp, 352 _ ~/2e"85in(m1 (v)
D» T]l(V) = 5/675(0,5“/2) ) (76)
2LHDPI5Y, () = 3v2(1+]v)) sin(na(v))
2 ¥27(6+c0s2 v)(v/10+sin2(n2(v)))
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23

for the following three cases of p: p = {%, g, % ), under the same conditions

M1(0) =m}(0) =0, M2(0) =M5(0) = 0,
23 45 _ 3221712172 ¢ (2+]v]) tan(n; (v)
2N (D) + 5350ymi(1) = 241 (W), (77)
_ 22.1H12/17;v/2( 10vtan(nz(v)) )
65 /30(5+tan(rv/4)) exp(|v]) (v/7+ (tan=1 (1))2) "’

B, (1) + 28uma(1)

forve J and J(v) = %v € C(J). Clearly, g = % €[0,1]and v = % > 0. Then,

4.68, p=3,
P21=pi+q63-p) =478, p=3, (78)
23
493, p=2
and
12.0878, p=2,
03031~ k) P=3
A=op+ 202~ 1124969, p=3, 1 #0 (79)
(1) - 30) 2
131106, p=2,

By choosing the same defined functions f1(v,n(¥)), w1 (v, (), F2(v,n2(v)), and
uy(v,M2(v)), again, assumptions (H1) and (H2) are valid with

’

||F2(V,ﬂ1(V)) - F1(vm() || < % ||ﬂ1(V) -M2(v)

2
Juz2 (v,2(v) = (v, () || < NG () =) (80)
and A; = ﬁ+¢ﬁ €(0,1), Ay = %eus € (0,1]. In addition, Eq. (58) implies that
04106, p=2,
1 o
&= [<|Ai| + o] + T'(k2|k))T(pi,k) + |03|T(v,k)i| ~ 103263, p=3,
l ’ 02300, p=2.

In Fig. 3, we have plotted the results of E for the system (76) and (77). Also, these results
are shown in Table 3. Furthermore,

01169, p=3, 04024, p=2,
ME~{00929, p=3, <1,  1E~{03198, p=3, t<1 (81)
0.0655, p=2, 02254, p=2%,

In Figs. 4a and 4b, we have plotted the results of 11 E and A, E for the system (76) and
(77). Also, these results are shown in Table 3. Then, all the conditions of Theorem 5.4 are
satisfied. Hence, the system (76) and (77) of (2.1,J)-HFDE has an optimal solution.

The next example examines the results for different values of type g.
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Figure 3 Representation of & in assumption (H1) for three cases of order p in the system (76) and (77) in
Example 6.2
Table 3 Numerical values of &,and A1 E A, & in Example 62 whenp = 2,3, 2
v p=3 p=3 p=%
o) )\13<1 )\,25<] o A}E<] AZE<1 g )\,1E<1 )\.28<1
0.08 0.0275 0.0078 0.0270 0.0164 0.0047 0.0161 0.0077 0.0022 0.0076

0.17 00584 00166 0.0572 00378  0.0108 0.0370 0.0199  0.0057 0.0195
025 00907  0.0258 0.0889 0.0615 0.0175 0.0603 0.0347  0.0099 0.0340
033 01240 00353 0.1215 00870  0.0248 0.0852 0.0513 0.0146 0.0503
042 0.1581 0.0450 0.1549 0.1138  0.0324 0.1115 0.0696  0.0198 0.0682
050 01928  0.0549 0.1889 0.1417  0.0403 0.1388 0.0893 0.0254 0.0875
0.58  0.2281 0.0650 0.2235 0.1706  0.0486 0.1671 0.1102 00314 0.1080
067 02639 00751 0.2585 0.2003 0.0570 0.1963 0.1322 00377 0.1296
0.75 03000  0.0854 0.2940 0.2308  0.0657 0.2262 0.1553 0.0442 0.1522
083 03366 00958 0.3298 0.2621 0.0746 0.2568 0.1793 0.0511 0.1757
092 03735 0.1063 0.3659 0.2939  0.0837 0.2880 0.2043 0.0582 0.2001
1.00 04107  0.1169 04024 03264  0.0929 0.3198 0.2300  0.0655 0.2254
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Figure 4 2D plot of A1 E and A, E in assumption (H2) for three cases of p in the system (76) and (77) in
Example 6.2
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Example 6.3 Consider the system (61) and (62) in Example 6.1 for v € J = [0,1] in the
form

21LH])11/ag; J— () = V2e sin(n; (v))

(0. 5+v2)«/@ ’ (82)
2.1,HD11/4,q;\/27n2 W) = 3v2(1+|v]) sin(2 () )

i*/f(6+cos2 v)(v/10+sin? M2(v))

8 9
for the following four cases of g: g = {17, 17 1 91}, with conditions

11(0) =n3(0) = 0, M2(0) =m5(0) = 0,

2 n(n; (v))
Em) + 58 zm(1) = T (Ehiine), )
15“2( ) 226\/71’]2(1)
3

_22 11217; f[ 10vtan(no(v) ]
/30(5-+tan(v/4)) exp(Iv]) (v/7+(tan=1 (1))

for ve J and J(v) = v/2v € C(J). Clearly, p = 14—1 €(2,3)and v = % > 0. Then,

5.3318, ¢g-= 18;1,
56545, q=-2,
Pr1=p+qi(6.3-p)= 1 (84)
59772, q=12,
63000, =1
and
6.2076, q=-%,
02 (P2.1; — k) 6.6744, q= =,
A=0p + ——L "~ 11 0. g5
I - 300 71412, q=1, 7 (85)
7.6080, q=1,

We checked the correctness of assumptions (H1) and (H2) in Example 6.1, only here we

present new numerical results for different values of g. We saw that 1; = € (0,1]

N

and A, Zefl/_ € (0,1]. Now, by employing Eq. (58), we obtain

8
09594, g=2,
loa| 09278, gq=3,

&= |Ai| + o1 + Y (pi, k) + 03| Y (v, k) | ~
IA;'|[< l Y (k, k) v 0.9004, ¢=19,
0.8763, q=1.

In Fig. 5, we have plotted the results of E for the system (82) and (83). Also, these results
are shown in Table 4. Furthermore,

02732, q=1, 09401, q=3,
9 9
E~ | 02642 a= o e 0.9092, ¢= e O (86)
0.2564, q=13, 0.8823, g=19,
02495, g=1, 0.8586, ¢q=1,
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Figure 5 Representation of Z in assumption (H1) for four cases of type g in the system (82) and (83) in
Example 6.3

Table 4 Numerical values of E,and A1 E A, E in Example 6.3 when g = %, %, P, 1
% o) AME< AE< o AME< AME<]
9= 9=1
0.08 0.1856 0.0528 0.1819 0.1784 0.0508 0.1748
0.17 0.2932 0.0835 0.2873 0.2822 0.0803 0.2765
0.25 03833 0.1091 0.3755 0.3692 0.1051 03617
0.33 04635 0.1320 04542 0.4468 0.1272 04378
042 05373 0.1530 0.5264 05182 0.1475 0.5077
0.50 0.6062 0.1726 0.5939 0.5849 0.1665 0.5731
0.58 06713 0.1911 0.6578 0.6480 0.1845 0.6350
0.67 0.7334 0.2088 0.7186 0.7083 0.2017 0.6940
0.75 0.7929 0.2258 0.7769 0.7660 0.2181 0.7506
0.83 0.8502 0.2421 0.8331 0.8217 0.2340 0.8051
0.92 0.9057 0.2579 0.8874 0.8756 0.2493 0.8579
1.00 0.9595 0.2732 0.9401 0.9279 0.2642 0.9092
g=1 g=1

0.08 0.1724 0.0491 0.1689 0.1672 0.0476 0.1638
017 0.2728 0.0777 0.2673 0.2648 0.0754 0.2594
0.25 0.3571 0.1017 0.3499 0.3467 0.0987 0.3397
033 04325 0.1231 04237 0.4200 0.1196 04116
042 0.5018 0.1429 04916 04875 0.1388 04777
0.50 0.5666 0.1613 0.5552 0.5507 0.1568 0.5396
0.58 0.6280 0.1788 06153 0.6105 0.1738 0.5982
0.67 0.6866 0.1955 0.6727 0.6676 0.1901 0.6542
0.75 0.7428 0.2115 0.7278 0.7225 0.2057 0.7079
0.83 0.7970 0.2269 0.7809 0.7754 0.2208 0.7597
0.92 0.8495 0.2419 0.8323 0.8266 0.2354 0.8099
1.00 0.9004 0.2564 0.8823 0.8763 0.2495 0.8586

In Figs. 6a and 6b, we have plotted the results of 11 E and A, E for the system (82) and

(83). Also, these results are shown in Table 4. Then, all the conditions of Theorem 5.4 are

satisfied. Hence, the system (82) and (83) of (2.1,J)-HFDE has an optimal solution.
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Figure 6 2D plot of A1 E and A, E in assumption (H2) for four cases of type g in the system (82) and (83) in

Example 6.3

We have discussed the results of the article by changing the order of the fractional inte-

gral v in the next example.
Example 6.4 We consider the same system in Example 6.1 for v € J = [0, 1] in the form

"8 sin(n (v))
m) = 05+V2)\@ ) @7
() = (1+\V\)Sm(nz(V))
6+cos2 )(v/10+sin? (115(v) )

2.1,]—[D8/3,7/12;1 5Y

2.1LH)83,7/121. 5Y

12 24 35 47

for the following four cases of v € (0,00): v = {3, 5, 75, 15

}, under the same conditions

Mm(0)=n7(0)=0,  M2(0) =n5(0) =0,

e
Bni(1) + 2815m1(1) = 2215 (%W), (88)
— 3221 v;1.5Y 10vtan(n2(v))
T]z(l) + 2251 svM2(1) = g («3/%(5+tan(nv/4))exp(\v\)(ﬁ+(tan—1(v))2))’

forve J with IJ(v) = 1.5V € C(J). Clearly, p = % €(2,3)and p = 17—2 € [0,1]. Then,

Y1 =p+q(6.3-p)=4.7861, A=o01+ M ~12.5219 #0.
' (1) - 3(0)
We checked the correctness of assumptions (H1) and (H2) in Example 6.1, only here we
present new numerical results for different values of fractional integral order v. As in the

previous examples, Eq. (58) implies

12

02822, v=1,

1 |0 | 0.2716, v =2,
E=—|(IAl+ o1l + )T(p,k)+|aslT(v»,k)]2

Al [( Y (k, k) ’ 0.2647, v=32,

47

02601, v=1%.

In Fig. 7, we have plotted the results of E for the system (87) and (88). Also, these results
are shown in Table 5. Furthermore,
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Figure 7 Representation of & in assumption (H1) for four cases of fractional integral order v in the system
(87) and (88) in Example 6.4
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Figure 8 2D plot of A1 E and A, E in assumption (H2) for four cases of fractional integral order v in the
system (87) and (88) in Example 6.4

0.0804, v =12, 0.2766, v =1,
00773, v=1%, 02662, v=1,
ME=N e s (<L RME=y s <L (89)
. i - 17) M ) - 171
0.0741, v=1, 0.2549, v=1,

In Figs. 8a and 8b, we have plotted the results of 11 E and A, E for the system (87) and
(88). Also, these results are shown in Table 5. Then, all the conditions of Theorem 5.4 are
satisfied. Hence, the system (87) and (88) of (2.1,J)-HFDE has an optimal solution.

7 Conclusion

In this work, we define a class of cyclic and noncyclic .A-condensing operators and prove
the existence of a bpp and pair for them in the setting of Bss. Also, our main results lead
to some of the important results in the existing literature, presented as corollaries. In ad-
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Table 5 Numerical values of E,and A1 & A, E in Example 6.4 when v = % %, %, %
1% o) )\1E<1 )\.28<] o) )\1E<] )\.25<1
v=13 v="4
0.08 0.0093 0.0026 0.0091 0.0086 0.0025 0.0084
0.17 0.0229 0.0065 0.0224 0.0214 0.0061 0.0210
0.25 0.0393 0.0112 0.0385 0.0369 0.0105 0.0361
0.33 0.0580 0.0165 0.0568 0.0546 0.0155 0.0535
042 0.0788 0.0224 0.0772 0.0744 0.0212 0.0729
0.50 0.1017 0.0290 0.0997 0.0964 0.0274 0.0944
0.58 0.1266 0.0361 0.1241 0.1203 0.0343 0.1179
0.67 0.1536 0.0437 0.1505 0.1463 0.0417 0.1434
0.75 0.1826 0.0520 0.1789 0.1744 0.0497 0.1709
0.83 0.2137 0.0608 0.2093 0.2046 0.0583 0.2005
092 0.2469 0.0703 0.2419 0.2370 0.0675 02322
1.00 0.2823 0.0804 0.2766 0.2717 0.0773 0.2662
v==2 v=1

0.08 0.0085 0.0024 0.0083 0.0084 0.0024 0.0082
0.17 0.0209 0.0060 0.0205 0.0208 0.0059 0.0204
0.25 0.0360 0.0102 0.0352 0.0356 0.0101 0.0349
033 0.0532 0.0152 0.0521 0.0526 0.0150 0.0516
042 0.0725 0.0206 0.0711 0.0716 0.0204 0.0702
0.50 0.0938 0.0267 0.0919 0.0925 0.0264 0.0907
0.58 0.1171 0.0334 0.1148 0.1154 0.0329 0.1131
0.67 0.1425 0.0406 0.1396 0.1403 0.0399 0.1374
0.75 0.1698 0.0484 0.1664 0.1671 0.0476 0.1637
0.83 0.1993 0.0567 0.1953 0.1960 0.0558 0.1920
0.92 0.2309 0.0658 0.2263 0.2270 0.0646 0.2224
1.00 0.2648 0.0754 0.2594 0.2601 0.0741 0.2549

dition, we discuss some coupled bpp results. The main result is applied to establish the
existence of optimum solutions for the class of a system of (k, J)-HFDE of order 2 < p < 3,
type 0 < g <1 under integral and initial conditions. In the final step, we designed exam-
ples, and obtained numerical results of the system that well confirm the assumptions used.
The technique used in this article can be used as a generalization in the area of solutions
of nonlinear fractional and g-fractional differential equations via the bpp theory. The re-
sults of this research can establish more capabilities in the articles, such as [18, 38—43],
that are presented about the existence and uniqueness of fractional differential equations

and inclusions.
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