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Abstract
The notion ofA-condensing operators via the measure of noncompactness is
proposed, which retains the existing classes of condensing operators. Results
concerning the existence of the best proximity point (pair) of cyclic (noncyclic)
A-condensing operators along with the coupled best proximity-point theorem for
cyclicA-condensing operators have been formulated. An application to a (k, Hilfer-(ג
fractional differential equation of order 2 < p < 3, type q ∈ [0, 1] satistfying some
boundary conditions is presented. The paper is the first to investigate the optimum
solution of such a generalized fractional differential equation. The hypothesis involved
in the investigation is independent of the incorporated measure of noncompactness,
thereby making our result better in application than that present in the literature.
Moreover, added numerical examples validate the theoretical conclusions.
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1 Introduction
Over the years, the measure of noncompactness (MNC) together with condensing opera-
tors has created a remarkable place in the field of Fixed-Point Theory (FPT) [1–3]. Kura-
towski initiated the study of MNC, whereas the concept of condensing operators originated
in 1955 by Darbo, Schauder’s FPT being the main motivation behind this. In [4], Brouwer
proved the following FPT.

Theorem 1.1 Assume that ∅ �= � ⊂ Rn is convex and compact. Then, the continuous op-
erator � : � → � has a fixed point.

Schauder then extended this result to infinite-dimensional Banach spaces (BS) [5].
Meanwhile, Kuratowski [6, 7] stated the notion of MNC in order to solve certain prob-
lems related to general topology and defined it as a real-valued function K : BY → [0,∞)
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such that

K(V ) = inf

{
ε > 0 : V ⊆

n⋃
α=1

Pα , Pα ⊂ Y , diam(Pα) < ε

}
, (1)

where BY is the family of all nonvoid, bounded sets V of the complete metric space Y .
Darbo [8] lessened the Schauder’s FPT hypothesis by using this MNC K. The beauty of
Darbo’s theorem lies in the fact that it helped to weaken the compactness assumption, a
strong presupposition, by replacing it with an inequality comprising K. This theorem has
the following statement.

Theorem 1.2 ([8]) Let � ⊂ Y be nonvoid, convex, closed, and bounded with Y as a BS.
Then, the continuous map � : � → � has a fixed point if K(�C) ≤ kK(C), for C ⊂ � with
0 ≤ k < 1.

Fractional calculus deals with the study of differentiation and integration of arbitrary
order and thus generalizes the classical structure. This generalization grabbed the focus
due to its efficiency in providing a more accurate description for real-world phenomena.
For a brief study, one can see [9, 10]. Motivated by the definition of Riemann–Liouville
(RL) and Caputo derivatives, the authors [11] proposed the Hilfer derivative and solved
an existence–uniqueness problem involving a Hilfer derivative of order between 0 to 1.
Later, in 2018, Sousa et al. initiated the discussion of the Hilfer-ג derivative, involving a
continuously differentiable increasing function ג [12]. In 2023, Haque et al. took the HBVP

HD
p;q
a+ ηk + �k(v,η) = 0, with ηk(a) = ηk(b) = 0, for v ∈ (a, b), k ∈ N, where 1 < p ≤ 2, 0 ≤

q ≤ 1, �k(v,η) = ck(v) + fk(v,η1,η2,η3, . . . ), ck , fk for each k ∈N are real-valued continuous
functions on [a, b] [13]. Also, in [14], they considered the ψ-HFDEs with control having
the form

⎧⎨
⎩

HD
p,q;ψ
0+ η(v) = Aη(v) + �(v,ηv) + Bu(v), v ∈ (0, d],

I(1–p)(1–q);ψη(v) = �(v) ∈ Bh,
(2)

where 0.5 < p < 1, 0 ≤ q ≤ 1, η(·) takes the values in Banach space Z with ‖ · ‖, the con-
trol function u(·) ∈ L2((0, d], U), the Banach space of admissible control functions, with
U as a Banach space, B : L2((0, d], U) → L2((0, d], Z) is a bounded linear operator, and the
operator A : D(A) ⊂ Z → Z is the infinitesimal generator of analytic semigroup {T(v)}v≥0

on Z. The DEs of the HFDE, ψ-HFDE, and (k, HFDE-(ג types, because they provide sig-
nificant generalizations, are very useful in solving different types of differential equations.
For more details of these types of generalizations and results of controllability involving
ψ-HFDEs refer to [15–22] and references therein. The work referenced above inspired us
to propose a most generalized version of the Hilfer derivative, the so-called (k, Hilfer-(ג
fractional derivative.

Recently, valuable applications of MNC emphasizing the existence of solutions for a sys-
tem of fractional differential and integral equations have been presented [23–29]. For ex-
ample, Patle et al. in [25], discussed the existence of optimal solutions of the following sys-
tem of right-sided ψ-Hilfer fractional differential equations (ψ-HFDE) of arbitrary order
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with initial conditions

⎧⎪⎪⎨
⎪⎪⎩

HD
p,q;ג
a+ η̂(v) = �1(v, η̂(v)),

HD
p,q;ג
a+ ή(v) = �2(v, ή(v)),

I (1–q)(1–p);ג
a+ η̂(a) = ςa, I (1–q)(1–p);ג

a+ ή(a) = ς́a,

(3)

for v ∈ (a, τ ], where HD
p,q;ג
a+ is the left-sided ψ-HFD operator of order 0 < p < 1, type 0 <

q ≤ 1, I(1–q)(1–p);ג
a+ is the RL fractional integral of order (1 – q)(1 – p); the state η(·) takes the

values from X , and �1 : [a, τ ] × B1 → X and �2 : [a, τ ] × B2 → X , are given mappings
satisfying some assumptions.

In this article, the work flow is as follows: We define classes of cyclic and noncyclic A-
condensing operators and prove the existence of the best proximity point (bpp) and pair
for them, respectively, in the setting of BSs. The consequences of the main results lead to
some of the important results in the existing literature, presented as corollaries. Also, we
discuss some coupled bpp results. In Sect. 5, the main result is applied to establish the
existence of optimum solutions for the class of fractional differential equations involving
(k, Hilfer-(ג derivatives ((k, (HFDE-(ג of order 2 < p < 3, type 0 ≤ q ≤ 1 in the form

⎧⎪⎪⎨
⎪⎪⎩

k,HDp,q;גη1(v) = �1(v,η1(v)),

η1(a) = η′
1(a) = 0,

σ1η1(b) + σ2δגη1(b) = σ3
kIν;גu1(ζ ,η1(ζ )),

(4)

⎧⎪⎪⎨
⎪⎪⎩

k,HDp,q;גη2(v) = �2(v,η2(v)),

η2(a) = 0,η′
2(a) = 0,

σ1η2(b) + σ2δגη2(b) = σ3
kIν;גu2(ζ ,η2(ζ )),

(5)

for v ∈ J = [a, b] satisfying the stated boundary conditions. The quantities σι, ι = 1, 2, 3
are suitable real scalars, functions ui, �i, ג are all continuous such that (v)′ג > 0 for all
v ∈ J with δג ≡ k

(v)′ג
d
dv , a < ζ < b and kIν;ג is the (k, RL-(ג integral of order ν ∈ (0,∞),

k ∈ R. Finally, we introduce the strengths of the obtained results in future works in the
conclusion section, 7.

2 Preliminaries
The compactness of the set or of the operator was not a really big issue, thanks to the
Heine–Borel theorem, until the BSs of infinite dimension came into the picture. Justify-
ing its name, MNC is a measure that estimates the degree of noncompactness of a set, a
real-valued function that depicts the level of closeness of a set from being compact. The
later axiomatic approach is a more convenient form when dealing with MNC and has the
following interpretation [1].

Definition 2.1 Let Y , BY , and V be defined as above. A function η : BY → [0,∞) is said
to be an MNC provided

(η1) η(V ) = 0 ⇐⇒ V is precompact (regularity);
(η2) η(V ) = η(V ) (invariance under closure);
(η3) η(V1 ∪ V2) = max{η(V1),η(V2)} (semiadditivity).
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From the above three properties, the following conclusions are drawn immediately [1]:
(η4) V1 ⊂ V2 implies η(V1) ≤ η(V2) (monotonicity);
(η5) η(V1 ∩ V2) ≤ min{η(V1),η(V2)};
(η6) For any finite set V , η(V ) = 0 (nonsingularity);
(η7) If the sequence {Vn}∞n=1 is decreasing in nature, where each Vn ∈ BY is closed in X

and limn→∞ η(Vn) = 0 then V∞ =
⋂∞

n=1 Vn is nonvoid as well as compact (general-
ized Cantor’s intersection theorem).

Moreover, if Y is also a BS then MNC η can satisfy the following properties:
(η8) η(wV ) = |w|η(V ) for any number w (semihomogeneity);
(η9) η(V1 + V2) ≤ η(V1) + η(V2) (algebraic semiadditivity);

(η10) η(w0 + V ) = η(V ) for any w0 ∈ Y (invariance under translations);
(η11) η(conv(V )) = η(V ) (invariance under passage to the convex hull).

Another interesting generalization of the Schauder FPT involving cyclic (noncyclic), rel-
atively nonexpansive maps together with a compact (Theorem 2.2) or condensing (The-
orem 2.5) operator appeared in [29]. To state this, we need to recall some definitions.
For any two nonempty subsets C and D of Y , if �(C) and �(D) are both compact then
� : C ∪ D → C ∪ D is called a compact operator. The map � is said to be cyclic if
�(C) ⊆ D as well as �(D) ⊆ C and noncyclic if �(C) ⊆ C along with �(D) ⊆ D. If
d(�v,�w) ≤ d(v, w), for each v ∈ C, w ∈ D, then � is known as relatively nonexpansive.
A point v∗

bpp ∈ C ∪ D is a bpp of a cyclic map � provided

∥∥v∗
bpp – �v

∗
bpp

∥∥ = dist(C, D) := inf
{‖c̄ – d̄‖ : c̄ ∈ C, d̄ ∈ D

}
, (6)

whereas (v∗
bpp,w∗

bpp) ∈ C × D is a best proximity pair for a noncyclic map � if

∥∥v∗
bpp – w

∗
bpp

∥∥ = dist(C, D), v
∗
bpp = �v

∗
bpp,w∗

bpp = �w
∗
bpp. (7)

The proximal pair (C0, D0) ⊆ (C, D) is given as

C0 =
{

c̄ ∈ C|∃d0 ∈ D : ‖c̄ – d0‖ = dist(C, D)
}

,

D0 =
{

d̄ ∈ D|∃c0 ∈ C : ‖c0 – d̄‖ = dist(C, D)
}

.
(8)

The pair (C, D) is called proximinal whenever C = C0 and D = D0. We denote by M�(C, D)
the collection of all pairs of subsets (E, É) inside (C, D) that are nonempty, convex, closed,
bounded, proximinal, and �-invariant in nature such that dist(E, É) = dist(C, D). In gen-
eral, M�(C, D) may be empty, however, if � is cyclic (noncyclic), relatively nonexpansive
with (C, D) as that nonvoid convex pair that agrees to be weakly compact also inside a BS

Y , then (C0, D0) ∈ M�(C, D).
We signify some conditions for � : C ∪ D → C ∪ D by the following notations:
(S1) The pair of subsets (C, D) is nonvoid, convex, closed, and bounded in a BS Y .
(S2) � is relatively nonexpansive.
(S3) � is cyclic.
(S4) � is noncyclic and Y is strictly convex.

Theorem 2.2 ([29]) If C0 �= ∅ and � is compact, then � possesses a bpp and a best prox-
imity pair whenever (S1), (S2), (S3) and (S1), (S2), (S4) hold, respectively.
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Definition 2.3 ([30]) Let η be an arbitraryMNC and the condition (S1) holds. The operator
� : C ∪ D → C ∪ D is called a cyclic (noncyclic), Meir–Keeler condensing (MKC) operator
if ∀ε > 0 ∃δ > 0 : ∀(E, É) ∈ M�(C, D),

ε ≤ η(E ∪ É) < ε + δ �⇒ η
(
�(E) ∪ �(É)

)
< ε. (9)

Definition 2.4 ([31]) A map L : [0,∞) → [0,∞) is known to be an L-function whenever
L(0) = 0 with L(v) > 0 for v ∈ (0,∞) and for any v > 0 there exists δ > 0 such that L(u) ≤ v
provided u ∈ [v, v + δ].

Remark 2.1 The mappings L-function characterized (MK) contractions and was further
proved to be true for (MKC) operators [31]. A map � is a cyclic (noncyclic) L-condensing
operator if for an L-function L, we have η(�E ∪ �É) < L(η(E ∪ É)), for (E, É) ∈ M�(C, D),
whenever η(E ∪ É) > 0.

Theorem 2.5 ([30]) Suppose that η is an arbitrary MNC and � is an MKC operator such
that C0 �= ∅. Then, � has a bpp and a best proximity pair whenever (S1), (S2), (S3) and
(S1), (S2), (S4) hold, respectively.

These were not merely generalizations, rather, they have the potency to show the exis-
tence of a bpp (pair). In recent years, very nice works have been done on the existence
as well as applications of bpps and pairs. The interested readers are advised to read the
articles [23, 26, 28] and references therein. Moving towards the main motivation of this
article, Shahzad et al. defined a A-contraction [32] using the concept of a �-sequence that
submerges the class of all R-contractions, Meir–Keeler contractions, Z-contractions, and
more. Keeping this in view, we define A-condensing operators in terms of MNC η using
the concept of �η-sequence.

3 Best proximity point (pair) results
We now present our notions, namely, the �η-sequence and A-condensing operators. We
say that {χn} := {(αn,βn)} is a �η-sequence if there exists a sequence of pairs {(En, Én)} in
M�(C, D) such that

αn = η(�En ∪ �Én) > 0, βn = η(En ∪ Én) > 0, (10)

for each n ∈ N, where {αn}, {βn} are two real sequences.

Definition 3.1 Let η be an arbitraryMNC. An operator � : C∪D → C∪D isA-condensing
if one can find a function ρ : A×A →R satisfying the subsequent conditions together with
� as: (i) rang(η) ⊆ A ⊆ R; (ii) if {χn} ⊆ A2 is a �η-sequence such that both αn,βn → �

with � ≥ 0 and verifying � < αn along with ρ(αn,βn) > 0 for every n ∈ N then � = 0; (iii)
ρ(η(�E ∪ �É),η(E ∪ É)) > 0, provided η(E ∪ É) > 0 and η(�E ∪ �É) > 0 for every (E, É) ∈
M�(C, D).

It is proved in [32] that not every A-contraction is a Meir–Keeler contraction but the
converse is always true. Along the same lines, we note that not every A-condensing oper-
ator is MKC but the converse is always true.
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Example 3.1 Let Y = l1 be a nonreflexive BS with norm ‖ · ‖1 and {ek} be its standard
basis. Define two sets C and D inside Y as C = conv({e2k–1 : k ∈N}) and D = conv({e2k : k ∈
N}). We choose MNC η operating on any nonempty, bounded subset V ⊆ Y as η(V ) = 0
whenever V is precompact and η(V ) = 1 elsewhere. Define � : C ∪ D → C ∪ D such that

�
(
λe2k–1 + (1 – λ)e2m–1

)
= e2k , �

(
λe2k + (1 – λ)e2m

)
= e2k–1, (11)

where λ ∈ [0, 1] and k, m ∈Nwith k ≤ m. Note that � is cyclic on C∪D. Moreover, (C, D) ∈
M�(C, D) since (C, D) is proximinal. As, η(�C ∪ �D) = η(C ∪ D) > 0, this means that
η(�C ∪�D) ≮ η(C ∪D), and hence, � cannot be MKC. On the other hand, for any nonzero,
positive, and constant function ρ , the condition (A3) is fulfilled. For (A2), let {χn} be a
�η-sequence with αn,βn → �, 0 ≤ � < αn and ρ(αn,βn) > 0 for all n ∈ N. Assume on the
contrary that � > 0. Now, from the definition of a �η-sequence, we have a sequence of
pairs {(En, Én)} in M�(C, D) such that αn = η(�En ∪�Én) > 0 and βn = η(En ∪ Én) > 0. This
means that {αn} is a constant sequence converging to 1 such that αn = � for infinitely many
n, a contradiction. Hence, � is A-condensing.

We proceed towards stating our theorems.

Theorem 3.2 Suppose that (S1), (S2), and (S3) hold. If � is a cyclic A-condensing operator
such that ρ(v, w) ≤ w – v for all v, w ∈ A ∩ (0,∞), then � has a bpp provided C0 �= ∅.

Proof Set I0 = C0 with J0 = D0 and define

In = conv
(
�(In–1)

)
, Jn = conv

(
�(Jn–1)

)
, ∀n ∈N. (12)

Hence, for

n = 1, I1 = conv
(
�(I0)

)
= conv

(
�(C0)

)⊆ D0 = J0,

n = 2, I2 = conv
(
�(I1)

)⊆ conv
(
�(J0)

)
= J1,

· · · · · ·
In+1 ⊆ Jn, ∀n ∈N∪ {0}.

(13)

Analogously, one can derive Jn+1 ⊆ In, for n ∈N∪ {0}. Hence, in general, we write

In+2 ⊆ Jn+1 ⊆ In ⊆ Jn–1, ∀n ∈N. (14)

Hence, the sequence {(I2m,J2m)} of nonempty, convex, and closed pairs in (C0, D0) is de-
creasing in nature. Moreover,

�(I2m) ⊆ �(J2m–1) ⊆ conv
(
�(J2m–1)

)
= J2m,

�(J2m) ⊆ �(I2m–1) ⊆ conv
(
�(I2m–1)

)
= I2m,

(15)

imply that the pair (I2m,J2m) is �-invariant. Also, for (α,β) ∈ C0 × D0 and for all m, we
have

dist(I2m,J2m) ≤ ∥∥�2mα – �2mβ
∥∥≤ ‖α – β‖ = dist(C, D). (16)
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Now, by induction we prove that the pairs (Im,Jm) are proximinal as well. The claim triv-
ially holds for m = 0 and so let the pair (Im–1,Jm–1) be proximinal. For ι = 1, 2, . . . , j ,

v =
j∑

ι=1

λι�(vι) ∈ Im, vι ∈ Im–1,λι ∈ [0, 1],
j∈N∑
ι=1

λι = 1, (17)

there exists wι ∈ Jm–1 such that w =
∑j

ι=1 λι�(wι) ∈ Jm, because of the proximality of the
set Im–1, so that

‖v – w‖ =

∥∥∥∥∥
j∑

ι=1

λι�(vι) –
j∑

ι=1

λι�(wι)

∥∥∥∥∥≤
j∑

ι=1

λι‖vι – wι‖ = dist(C, D), (18)

and vice versa. This implies that the pair (Im,Jm) is proximinal and hence (I2m,J2m) ∈
M�(C, D). Let us now consider the following two cases:

Case (i) Suppose there exists m0 ∈N with max{η(I2m0 ),η(J2m0 )} = 0, then

� : I2m0 ∪J2m0 → I2m0 ∪J2m0 , (19)

is a cyclic, relatively nonexpansive map on the compact set I2m0 ∪ J2m0 and hence by
Theorem 2.2, � will have a bpp.

Case (ii) For every m ∈N, let max{η(I2m),η(J2m)} > 0 and consider

η(I2m+1 ∪J2m+1) = max
{
η(I2m+1),η(J2m+1)

}
= max

{
η
(
conv(�I2m)

)
,η
(
conv(�J2m)

)}
≤ max

{
η(I2m),η(J2m)

}
= η(I2m ∪J2m)

= max
{
η
(
conv(�I2m–1)

)
,η
(
conv(�J2m–1)

)}
= max

{
η(�I2m–1),η(�J2m–1)

}
≤ max

{
η(�I2m–2),η(�J2m–2)

}
≤ η(I2m–2 ∪J2m–2). (20)

Hence, {η(I2m ∪ J2m)}∞m=0 is a decreasing sequence converging to its infimum, say �. Set
αm = η(�I2m ∪ �J2m) > 0 and βm = η(I2m ∪ J2m) > 0, then {χn} is a �η-sequence such
that αm → � and βm → � with � ≤ αm. Moreover, ρ(αm,βm) > 0 for all m. Let us suppose
for some m that � ≮ αm then � = αk for all k ≥ m. This means that the sequences {αm}
and {βm} are eventually constant sequences so that ρ(αm,βm) ≤ 0 for infinitely many m, a
contradiction and therefore by (A2) we obtain � = 0. Hence,

lim
m→∞η(I2m) = lim

m→∞η(J2m) = 0. (21)

Define I∞ = ∩I2m and J∞ = ∩J2m. Then, the pair (I∞,J∞) is nonvoid, convex, and com-
pact as well as �-invariant for which dist(I∞,J∞) = dist(C, D). Thus, the application of
Theorem 2.2 guarantees that � has a bpp. �
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Theorem 3.3 Suppose that (S1), (S2), and (S4) hold. Then, � has a best proximity pair
provided C0 �= ∅ and � is a noncyclic A-condensing operator with ρ(v, w) ≤ w – v for v, w ∈
A ∩ (0,∞).

Proof Set I0 = C0 with J0 = D0 and define for all n ∈ N, In = conv(�(In–1)) and Jn =
conv(�(Jn–1)). Thus, for

n = 1, I1 = conv
(
�(I0)

)
= conv

(
�(C0)

)⊆ C0 = I0,

n = 2, I2 = conv
(
�(I1)

)⊆ conv
(
�(I0)

)
= I1,

· · · · · ·
In+1 ⊆ In, ∀n ∈N∪ {0}.

(22)

Analogously, one can deriveJn+1 ⊆ Jn for each n ∈N∪{0}, so that the sequence {(Im,Jm)}
of nonempty, convex, and closed pairs in (C0, D0) is decreasing in nature. Moreover,

�(Im) ⊆ �(Im–1) ⊆ conv
(
�(Im–1)

)
= Im,

�(Jm) ⊆ �(Jm–1) ⊆ conv
(
�(Jm–1)

)
= Jm,

(23)

imply that the pair (Im,Jm) is �-invariant. Also, for (α,β) ∈ C0 × D0 and for each m, we
obtain

dist(Im,Jm) ≤ ∥∥�mα – �mβ
∥∥≤ ‖α – β‖ = dist(C, D). (24)

By induction, one can prove that the pair (Im,Jm) is proximinal, as before, and hence
(Im,Jm) in M�(C, D). Let us now consider the following two cases:

Case (i) Suppose there exists m0 ∈ N such that max{η(Im0 ),η(Jm0 )} = 0, then � : Im0 ∪
Jm0 → Im0 ∪ Jm0 is a noncyclic, relatively nonexpansive map on the compact set Im0 ∪
Jm0 and so � will have a best proximity pair.

Case (ii) For every m ∈N, let max{η(Im),η(Jm)} > 0 and consider

η(Im+1 ∪Jm+1) = max
{
η(Im+1),η(Jm+1)

}
= max

{
η
(
conv(�Im)

)
,η
(
conv(�Jm)

)}
≤ max

{
η(Im),η(Jm)

}
= η(Im ∪Jm). (25)

Hence, {η(Im ∪Jm)}∞m=0 is a decreasing sequence converging to its infimum, say �. Set αm =
η(�Im ∪�Jm) > 0 and βm = η(Im ∪Jm) > 0, then {χm} is a �η-sequence such that αm → �

and βm → � with � ≤ αm. Moreover, ρ(αm,βm) > 0 for all m. Let us suppose for some m
that � ≮ αm then � = αk for all k ≥ m. This means that the sequences {αm} and {βm} are
eventually constant sequences so that ρ(αm,βm) ≤ 0 for infinitely many m, a contradiction
and therefore by (A2) we obtain � = 0. Hence,

lim
m→∞η(Im) = lim

m→∞η(Jm) = 0. (26)

Define I∞ =
⋂

Im and J∞ =
⋂

Jm, then the pair (I∞,J∞) is nonvoid, convex, and com-
pact as well as �-invariant for which dist(I∞,J∞) = dist(C, D). Thus, the application of
Theorem 2.2 guarantees that � has a best proximity pair. �
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We have the following corollaries as a consequence of our main results: Theorems 3.2
and 3.3.

Corollary 3.1 ([24]) Suppose the conditions (S1), (S2), and (S3) hold with η as an arbitrary
MNC. If C0 �= ∅ and for every (V1, V2) ∈ M�(C, D) we have

η(�V1 ∪ �V2) ≤ �
(
η(V1 ∪ V2)

) · η(V1 ∪ V2), (27)

where � : [0,∞) → [0, 1) is a map satisfying, �(vn) → 1 �⇒ vn → 0, then � admits a
bpp.

Proof Set �̃(v) = 1
2 (1 + �(v)), for v ∈ [0,∞). Then, �̃(vn) → 1 implies vn → 0. Moreover,

�(v) < �̃(v) < 1 for v ∈ [0,∞), so that

η(�V1 ∪ �V2) ≤ �
(
η(V1 ∪ V2)

) · η(V1 ∪ V2) < �̃
(
η(V1 ∪ V2)

) · η(V1 ∪ V2). (28)

The definition

ρ
(
η(�V1 ∪ �V2),η(V1 ∪ V2)

)
= �̃

(
η(V1 ∪ V2)

) · η(V1 ∪ V2) – η(�V1 ∪ �V2) > 0, (29)

implies that (A3) is satisfied. For (A2), let {χn} be a �η-sequence satisfying αn → � with
0 ≤ � < αn, βn → �, and for n ∈N, ρ(αn,βn) > 0. Hence,

αn := η(�En ∪ �Én) < �̃
(
η(En ∪ Én)

) · η(En ∪ Én)

< η(En ∪ Én) := βn. (30)

Applying n → ∞, we obtain �̃(η(En ∪ Én)) → 1 and therefore, η(En ∪ Én) → 0 gives � = 0.
Thus, � is A-condensing and so Theorem 3.2 concludes the rest. �

The proof of the remaining corollaries can be similarly obtained. However, for more
details, one can see [32, 33].

Corollary 3.2 ([24]) Suppose the conditions (S1), (S2), and (S4) hold with η as an arbitrary
MNC. If C0 �= ∅ and for every (V1, V2) ∈ M�(C, D), we have

η(�V1 ∪ �V2) ≤ �
(
η(V1 ∪ V2)

) · η(V1 ∪ V2), (31)

where � is as in Corollary 3.1, then � admits a best proximity pair.

Corollary 3.3 Suppose the conditions (S1), (S2), and (S3) hold with η as an arbitrary MNC.
If C0 �= ∅ and for each (V1, V2) ∈ M�(C, D) we have η(�V1 ∪ �V2) ≤ νη(V1 ∪ V2) where
ν ∈ (0, 1), then � admits a bpp.

Corollary 3.4 Suppose the conditions (S1), (S2), and (S4) hold with η as an arbitrary MNC.
If C0 �= ∅ and for every (V1, V2) ∈ M�(C, D) we have η(�V1 ∪ �V2) ≤ νη(V1 ∪ V2), where
0 < ν < 1, then � admits a best proximity pair.
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Corollary 3.5 Suppose the conditions (S1), (S2), and (S3) hold with η as an arbitrary MNC.
If C0 �= ∅ and for every (V1, V2) ∈ M�(C, D) we have

η(�V1 ∪ �V2) ≤ η(V1 ∪ V2) – �
(
η(V1 ∪ V2)

)
, (32)

where � : [0,∞) → [0,∞) is lower semicontinuous with �–1
2 ({0}) = {0}, then � admits a

bpp.

Corollary 3.6 Suppose the conditions (S1), (S2), and (S4) hold with η as an arbitrary MNC.
If C0 �= ∅ and for every (V1, V2) ∈ M�(C, D), we obtain

η(�V1 ∪ �V2) ≤ η(V1 ∪ V2) – �
(
η(V1 ∪ V2)

)
, (33)

where � is as in Corollary 3.5, then � admits a best proximity pair.

4 Coupled best proximity point result
In this section, the coupled bpp theorem has been developed. For this, we first give the
following preliminary concepts.

Suppose (C, D) is a nonvoid pair of subsets inside the metric space (Y , d) and � : (C ×
C) ∪ (D × D) → C ∪ D. The map � is called cyclic if �(C × C) ⊆ D and �(D × D) ⊆ C.
The point (v∗

bpp,v∗
bpp) ∈ (C × C) ∪ (D × D) is a coupled bpp of � whenever

d
(
v

∗
bpp,�

(
v

∗
bpp,w∗

bpp

))
= d
(
w

∗
bpp,�

(
w

∗
bpp,v∗

bpp

))
= dist(C, D). (34)

Lemma 4.1 ([34]) If ηι is an MNC on the metric spaces Yι, ι = 1, 2, . . . , m, respectively,
then η(H) = �(η1(H1),η2(H2), . . . ,ηm(Hm)), is also an MNC on Y1 × Y2 × · · · × Ym, where
Hι stands for the natural projection of H into Yι, respectively, for ι = 1, 2, . . . , m, pro-
vided � : [0,∞)m → [0,∞) is a convex function and �(a1, a2, . . . , am) = 0 iff aι = 0 for all
ι = 1, 2, . . . , m.

Lemma 4.2 ([27]) Let (C, D) be a nonvoid pair inside a metric space (Y , d) and the product
Y ×Y be a metric space together with the metric d∞ as

d∞
(
(v1, v2), (w1, w2)

)
= max

{
d(v1, w1), d(v2, w2)

}
, (35)

for each (v1, v2), (w1, w2) ∈ Y2. Then, (C, D) is proximinal in Y iff (C × C, D × D) is prox-
iminal in Y2.

Before giving the statement for the coupled bpp via A-condensing operators, we define
a �η-sequence. For two real sequences {αn}, {βn}, we say that {χn} = {(αn,βn)} is a �η-
sequence if there exists a sequence of nonempty, convex, bounded, closed, and proximinal
�-invariants pairs {(En, Én)}, {(Fn, F́n)} in (C, D) with

dist(En, Én) = dist(Fn, F́n) = dist(C, D), (36)

such that for each n ∈N,

αn = max
{
η
(
�(En × Fn) ∪ �(Én × F́n)

)
,η
(
�(Fn × En) ∪ �(F́n × F́n)

)}
> 0 (37)
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and βn = max{η(En ∪ Fn),η(Én ∪ F́n)} > 0.

Theorem 4.3 Suppose (C, D) is a nonempty, convex, bounded, and closed pair in a BS Y
with C0 �= ∅ and η is an MNC on Y . Let � be a cyclic map satisfying (A2) along with the
following conditions:

(i) Let (E, É), (F , F́) ⊆ (C, D) be nonempty, convex, bounded, closed, and proximinal and
�-invariants pairs with dist(E, É) = dist(F , F́) = dist(C, D) such that

ρ
(
max

{
η
(
�(E × F) ∪ �(É × F́)

)
,η
(
�(F × E) ∪ �(F́ × F́)

)}
,

max
{
η(E ∪ F),η(É ∪ F́)

})
> 0. (38)

(ii) For all pairs (v1, v2) ∈ C × C and (w1, w2) ∈ D × D, assume that

d
(
�(v1, v2),�(w1, w2)

)≤ d∞
(
(v1, v2), (w1, w2)

)
. (39)

(iii) ρ(v, w) ≤ w – v for every v, w ∈ A ∩ (0,∞).
Then, � affirms to have a coupled bpp.

Proof If Hι stands for the natural projection of H into Yι for ι = 1, 2, we set η̃(H) :=
max{η(H1),η(H2)} then η̃ becomes an MNC for Y2. Let us define � by

⎧⎨
⎩� : (C × C) ∪ (D × D) → (C × C) ∪ (D × D),

�(v, w) = (�(v, w),�(w, v)),
(40)

then � is cyclic on (C × C) ∪ (D × D). This is because, for any (v, w) in C × C and to-
gether with the cyclic nature of � we have (�(v, w),�(w, v)) ∈ D × D, whence �(C × C) ⊆
D × D. Similarly, one has �(D × D) ⊆ C × C. To show � is relatively nonexpansive, let
((v1, v2), (w1, w2)) ∈ (C × C) × (D × D), then

d∞
(
�(v1, v2),�(w1, w2)

)
= d∞

((
�(v1, v2),�(v2, v1)

)
,
(
�(w1, w2),�(w2, w1)

))
= max

{
d
(
�(v1, v2),�(w1, w2)

)
, d
(
�(v2, v1),�(w2, w1)

)}
≤ max

{
d∞
(
(v1, v2), (w1, w2)

)
, d∞

(
(w2, w1), (v2, v1)

)}
= d∞

(
(v1, v2), (w1, w2)

)
, (41)

is the desired condition. Note that

η̃
(
�(E × F) ∪�(É × F́)

)
= max

{
η̃
(
�(E × F)

)
, η̃
(
�(É × F́)

)}
= max

{
η̃
(
�(E × F) × �(F × E)

)
, η̃
(
�(É × F́) × �(F́ × É)

)}
= max

{
max

{
η
(
�(E × F)

)
,η
(
�(F × E)

)}
,

max
{
η
(
�(É × F́)

)
,η
(
�(F́ × É)

)}}



Khokhar et al. Journal of Inequalities and Applications         (2024) 2024:79 Page 12 of 31

= max
{
max

{
η
(
�(E × F)

)
,η
(
�(É × F́)

)}
,

max
{
η
(
�(F × E)

)
,η
(
�(F́ × É)

)}}
= max

{
η
(
�(E × F) ∪ �(É × F́)

)
,η
(
�(F × E) ∪ �(F́ × É)

)}
(42)

and η̃((E × F) ∪ (É × F́)) = η((E ∪ F) ∪ (É ∪ F́)), so that we obtain

ρ
(
η̃
(
�(E × F) ∪�(É × F́)

)
, η̃
(
(E × F) ∪ (É × F́)

))
= ρ
(
max

{
η
(
�(E × F) ∪ �(É × F́)

)
,η
(
�(F × E) ∪ �(F́ × É)

)}
,

max
{
η(E ∪ F),η(É ∪ F́)

})
> 0. (43)

This shows that � satisfies (A3). Hence, � will be A-condensing if � satisfies (A2) too. Let
us assume that {χn} is an �η̃ sequence with αn → �, βn → �, 0 ≤ � < αn and ρ(αn,βn) > 0
for each n ∈ N, then there exists a sequence {(En × Fn, Én × F́n)}∞n=1 such that

αn = η̃
(
�(En × Fn) ∪�(Én × F́n)

)
> 0,

βn = η̃
(
(En × Fn) ∪ (Én × F́n)

)
> 0,

(44)

so that

αn = max
{
η
(
�(En × Fn) ∪ �(Én × F́n)

)
,η
(
�(Fn × En) ∪ �(F́n × Én)

)}
(45)

and βn = max{η(En ∪Fn),η(Én ∪ F́n)}, will be a �η-sequence converging to � = 0. This con-
cludes that � is A-condensing and hence, from Theorem 3.2, � has a bpp (v∗

bpp,w∗
bpp) ∈

(C × C) ∪ (D × D) such that

dist(C, D) = d∞
((
v

∗
bpp,w∗

bpp

)
,�
(
v

∗
bpp,w∗

bpp

))
= d∞

((
v

∗
bpp,w∗

bpp

)
,
(
�
(
v

∗
bpp,w∗

bpp

)
,�
(
w

∗
bpp,v∗

bpp

)))
= max

{
d
(
v

∗
bpp,�

(
v

∗
bpp,w∗

bpp

))
, d
(
w

∗
bpp,�

(
w

∗
bpp,v∗

bpp

))}
. (46)

Therefore, (v∗
bpp,w∗

bpp) becomes a coupled bpp for �. �

5 Applications
Various authors using renowned FPTs have shown the existence of solutions to more and
more generalized forms of such fractional-order DEs. In recent times, Kucche et al. in
their paper [35] stated the most general form and the defined (k, HFD-(ג operator of order
p ∈ (0,∞), type 0 ≤ q ≤ 1 acting on a function η̂ ∈ Cn[a, b] with n = � p

k � ∈N as

k,H
D

p,q;גη̂(v) = k
I

q(nk–p);ג
(

k
(v)′ג

d
dv

)n
k
I

(1–q)(nk–p);גη̂(v), (47)

where k ∈ (0,∞), ג ∈ Cn[a, b] is an increasing function with (v)′ג �= 0 for v ∈ [a, b] and kIp;ג

is the (k, RL-(ג integral of order p ∈ (0,∞) as

k
I

p;גη̂(v) =
∫ v

a
ג
′(�)
[
(v)�ג̆

]p/k–1 η̂(�)
k�k(p)

d�, (48)
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where (v)�ג̆ = (v)ג – (�)ג and �k(p) =
∫∞

0 �p–1e–�k/k d� [36]. Here, we consider a pair of
(k, HFDE-(ג (4) and (5) of order 2 < p < 3, type 0 ≤ q ≤ 1. The following lemma gives an
equivalence between the FDE (4) with the integral equation (49).

Lemma 5.1 Let 2 < p < 3, q ∈ [0, 1] and ϑk = p + q(3k – p), then the equivalent integral to
the above-mentioned DE is

η1(v) = k
I

p;ג
�1
(
v,η1(v)

)
+

ϑk/k–1[a(v)ג̆]

A[̆גa(b)]ϑk/k–1

[
σ3

k
I
ν;ג
u1
(
ζ ,η1(ζ )

)
– σ1

k
I

p;ג
�1
(
b,η1(b)

)
– σ2

k
I

p–k;ג
�1
(
b,η1(b)

)]
, (49)

where A = σ1 + 1
a(b)ג̆

σ2(ϑk – k) �= 0.

We are now about to show the existence of the optimum solution of the system (4) and
(5) for a more general setting. Consider S = C(J ,Y) (here Y is BS) with the supremum
norm and choose two subsets S1 and S2 of S as

S1 =
{
η̂ ∈ S : η ∈ C(J , B1), η̂(a) = 0

}
,

S2 =
{
η̂ ∈ S : η ∈ C(J , B2), η̂(a) = 0

}
,

(50)

where B1 = Bγ̊1 [p0] and B2 = Bγ̊2 [q0] represents two closed balls centered at p0 and q0 with
radius γ̊ι, ι = 1, 2, respectively, in Y . The functions

�1,u1 : J × B1 → Y , �2,u2 : J × B2 → Y ,

are all continuous. Clearly, Sι �= ∅, ι = 1, 2 are both bounded, closed, and convex sets in S .
Define � on S1 ∪ S2 as

�η̂(v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kIp;�2ג(v, η̂(v)) + ϑk/k–1[a(v)ג̆]

A[̆גa(b)]ϑk/k–1 [σ3
kIν;גu2(ζ , η̂(ζ ))

– σ1
kIp;�2ג(b, η̂(b)) – σ2

kIp–k;�2ג(b, η̂(b))], η̂ ∈ S1,
kIp;�1ג(v, η̂(v)) + ϑk/k–1[a(v)ג̆]

A[̆גa(b)]ϑk/k–1 [σ3
kIν;גu1(ζ , η̂(ζ ))

– σ1
kIp;�1ג(b, η̂(b)) – σ2

kIp–k;�1ג(b, η̂(b))], η̂ ∈ S2.

(51)

Lemma 5.2 The operator �, (51) is cyclic on S1 ∪ S2 whenever

[
1 +

|σ1|
|A| +

|σ2|
|Aϒ(k, k)|

]
�

�
1ϒ(p, k) +

|σ3|
|A| u

�
1ϒ(ν, k) + ‖p0‖ ≤ γ̊1,

[
1 +

|σ1|
|A| +

|σ2|
|Aϒ(k, k)|

]
�

�
2ϒ(p, k) +

|σ3|
|A| u

�
2ϒ(ν, k) + ‖q0‖ ≤ γ̊2,

(52)

where ϒ(r, k) = 1
�k (r+k) r/k[a(b)ג̆] and

�
�
1 = sup

v∈J

{∥∥�1
(
v, η̂(v)

)∥∥ : η̂ ∈ S2
}

,

u
�
1 = sup

v∈J

{∥∥u1
(
v, η̂(v)

)∥∥ : η̂ ∈ S2
}

,
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�
�
2 = sup

v∈J

{∥∥�2
(
v, η̂(v)

)∥∥ : η̂ ∈ S1
}

,

u
�
2 = sup

v∈J

{∥∥u2
(
v, η̂(v)

)∥∥ : η̂ ∈ S1
}

. (53)

Proof Suppose η ∈ S1 and consider

∥∥(�η̂)(v)
∥∥≤ ∥∥k

I
p;ג
�2
(
v, η̂(v)

)∥∥ +
∣∣∣∣ ϑk/k–1[a(v)ג̆]

A[̆גa(b)]ϑk/k–1

∣∣∣∣[∥∥σ3
k
I
ν;ג
u2
(
ζ , η̂(ζ )

)∥∥
+
∥∥σ1

k
I

p;ג
�2
(
b, η̂(b)

)∥∥ +
∥∥σ2

k
I

p–k;ג
�2
(
b, η̂(b)

)∥∥]
≤ ��

2
k�k(p)

∫ v

a
ג
′(�)
[
(v)�ג̆

] p
k –1 d� +

1
|A|
[ |σ3|u�

2
k�k(ν)

∫ ζ

a
ג
′(�)
[
ζ)�ג̆ )

] ν
k –1 d�

+
|σ1|��

2
k�k(p)

∫ b

a
ג
′(�)
[
(b)�ג̆

] p
k –1 d�

+
|σ2|��

2
k�k(p – k)

∫ b

a
ג
′(�)
[
(b)�ג̆

]p–k/k–1 d�

]

≤ ��
p/k[a(v)ג̆]2

p�k(p)
+

1
|A|
[ |σ3|u�

2
ν�k(ν)

[
a(ζג̆ )

]ν/k

+
|σ1|��

2
p�k(p)

[
a(b)ג̆

]p/k +
|σ2|��

2
(p – k)�k(p – k)

[
a(b)ג̆

]p–k/k
]

≤ ��
p/k[a(b)ג̆]2

p�k(p)
+

1
|A|
[ |σ3|u�

ν/k[a(b)ג̆]2

ν�k(ν)

+
|σ1|��

p/k[a(b)ג̆]2

p�k(p)
+

|σ2|��
p–k/k[a(b)ג̆]2

(p – k)�k(p – k)

]

≤ γ̊2 – ‖q0‖,

so that ‖�η̂ – q0‖ ≤ γ̊2 and therefore, we obtain �η̂ ∈ S2. Similarly, we can show that
η̂ ∈ S2 �⇒ �η̂ ∈ S1. Hence, � is cyclic. �

We now prove the mean-value theorem of integral calculus for a (k, RL-(ג integral. The
proof follows a similar technique to that shown in [37].

Lemma 5.3 If p, k > 0 and η is any continuous function then we can find z ∈ (a, b) such
that

k
I

p;גη(v) =
∫ v

a

(�)′ג
k�k(p)

[
(v)�ג̆

]p/k–1
η(�) d� =

p/k[a(v)ג̆]

p�k(p)
η(z). (54)

Proof Observe that the function

(�)ג̂ =
(�)′ג

k�k(p)
[
(v)�ג̆

]p/k–1, (55)
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is continuous and does not change its sign for the given range. By applying the generalized
mean-value theorem of integral calculus, we write

k
I

p;גη(v) = η(z)
∫ v

a

(�)′ג
k�k(p)

[
(v)�ג̆

]p/k–1 d� =
p/k[a(v)ג̆]

p�k(p)
η(z). (56)�

Theorem 5.4 Along with the assumptions of Lemma 5.2, suppose that there exists positive
real scalars λι, ι = 1, 2 such that for all v ∈ J and (η1,η2) ∈ S1 × S2, we have

(H1)

max
{∥∥�2

(
v,η1(v)

)
– �1

(
v,η2(v)

)∥∥,
∥∥u2
(
v,η1(v)

)
– u1

(
v,η2(v)

)∥∥}
≤ λ1

∥∥η1(v) – η2(v)
∥∥, (57)

where λ1� ≤ 1 with

� =
1

|A|
[(

|A| + |σ1| +
|σ2|

ϒ(k, k)

)
ϒ(p, k) + |σ3|ϒ(ν, k)

]
; (58)

(H2)

max
{∥∥u2

(
v,η1(v)

)
– u2(v, 0)

∥∥,
∥∥�2

(
v,η1(v)

)
– �2(v, 0)

∥∥}≤ λ́1
∥∥η1(v)

∥∥,

max
{∥∥u1

(
v,η2(v)

)
– u1(v, 0)

∥∥,
∥∥�1

(
v,η2(v)

)
– �1(v, 0)

∥∥}≤ λ́2
∥∥η2(v)

∥∥,
(59)

where λ2 = max{λ́1, λ́2} ∈ (0, 1] satisfying λ2� < 1. Then, the system (4) and (5) of
(k, HFDE-(ג has an optimal solution.

Proof Clearly, � is cyclic, by its definition. Also, the range of � is uniformly bounded,
since, for η ∈ S1,

∥∥�η1(v)
∥∥ =
∥∥�η1(v) – q0 + q0

∥∥≤ γ̊2 + ‖q0‖. (60)

Similar conclusions can be drawn when η2 ∈ S2. We now show that �(S1) is an equicon-
tinuous set in S. For that, let v < v́ and η1 ∈ S1 then

∥∥�η1(v́) – �η1(v)
∥∥

=
∥∥∥∥k
I

p;ג[
�2
(
v́,η1(v́)

)
– �2

(
v,η1(v)

)]

+
ϑk/k–1[a(v́)ג̆] – ϑk/k–1[a(v)ג̆]

A[̆גa(b)]ϑk/k–1

[
σ3

k
I
ν;ג
u2
(
ζ ,η1(ζ )

)

– σ1
k
I

p;ג
�2
(
b,η1(b)

)
– σ2

k
I

p–k;ג
�2
(
b,η1(b)

)]∥∥∥∥
≤
∥∥∥∥
∫ v

a

(�)′ג
k�k(p)

[[
(v́)�ג̆

]p/k–1 –
[
(v)�ג̆

]p/k–1]
�2
(
�,η1(�)

)
d�

∥∥∥∥
+
∥∥∥∥
∫ v́

v

(�)′ג
k�k(p)

[
(v́)�ג̆

]p/k–1
�2
(
�,η1(�)

)
d�

∥∥∥∥
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+
ϑk/k–1[a(v́)ג̆] – ϑk/k–1[a(v)ג̆]

|A|[̆גa(b)]ϑk/k–1

∥∥σ3
k
I
ν;ג
u2
(
ζ ,η1(ζ )

)
– σ1

k
I

p;ג
�2
(
b,η1(b)

)
– σ2

k
I

p–k;ג
�2
(
b,η1(b)

)∥∥
≤ �

�
2

∫ v

a

(�)′ג
k�k(p)

[[
(v́)�ג̆

]p/k–1 –
[
(v)�ג̆

]p/k–1]d�

+ �
�
2

∫ v́

v

(�)′ג
k�k(p)

[
(v́)�ג̆

]p/k–1 d�

+
ϑk/k–1[a(v́)ג̆] – ϑk/k–1[a(v)ג̆]

|A|[̆גa(b)]ϑk/k–1

∥∥σ3
k
I
ν;ג
u2
(
ζ ,η1(ζ )

)
– σ1

k
I

p;ג
�2
(
b,η1(b)

)
– σ2

k
I

p–k;ג
�2
(
b,η1(b)

)∥∥
≤ ��

2
p�k(p)

[[
a(v́)ג̆

]p/k –
[
v(v́)ג̆

]p/k –
[
a(v)ג̆

]p/k +
[
v(v́)ג̆

]p/k]

+
ϑk/k–1[a(v́)ג̆] – ϑk/k–1[a(v)ג̆]

|A|[̆גa(b)]ϑk/k–1

∥∥σ3
k
I
ν;ג
u2
(
ζ ,η1(ζ )

)
– σ1

k
I

p;ג
�2
(
b,η1(b)

)
– σ2

k
I

p–k;ג
�2
(
b,η1(b)

)∥∥.

Indeed, as v → v́, we obtain �η1(v) → �η1(v́). Hence, �(S1) is an equicontinuous subset
of S. With similar arguments, one can show �(S2) to be equicontinuous too. Hence, by
the generalized Arzelá–Ascoli theorem, (S1, S2) is relatively compact. In order to show �

is relatively nonexpansive, let (η1,η2) ∈ S1 × S2, then for any v ∈ J , we write

∥∥�η1(v) – �η2(v)
∥∥ =
∥∥∥∥k
I

p;ג
�2
(
v,η1(v)

)
+

ϑk/k–1[a(v)ג̆]

A[̆גa(b)]ϑk/k–1

× [σ3
k
I
ν;ג
u2
(
ζ ,η1(ζ )

)
– σ1

k
I

p;ג
�2
(
b,η1(b)

)
– σ2

k
I

p–k;ג
�2
(
b,η1(b)

)]
– k

I
p;ג
�1
(
v,η2(v)

)
–

ϑk/k–1[a(v)ג̆]

A[̆גa(b)]ϑk/k–1

[
σ3

k
I
ν;ג
u1
(
ζ ,η2(ζ )

)

– σ1
k
I

p;ג
�1
(
b,η2(b)

)
– σ2

k
I

p–k;ג
�1
(
b,η2(b)

)]∥∥∥∥
≤ k

I
p;ג∥∥u2

(
v,η1(v)

)
– �1

(
v,η2(v)

)∥∥
+

1
|A|
{|σ3|kIν;ג∥∥u2

(
ζ ,η1(ζ )

)
– u1

(
ζ ,η2(ζ )

)∥∥
+ |σ1|kIp;�2∥∥ג

(
b,η1(b)

)
– �1

(
b,η2(b)

)∥∥
+ |σ2|kIp–k;�2∥∥ג

(
b,η1(b)

)
– �1

(
b,η2(b)

)∥∥}
≤ λ1‖η1 – η2‖

{
1

k�k(p)

∫ v

a
ג
′(�)
[
(v)�ג̆

]p/k–1 d�

+
1

|A|
[ |σ3|

k�k(ν)

∫ ζ

a
ג
′(�)
[
ζ)�ג̆ )

]ν/k–1 d�

+
|σ1|

k�k(p)

∫ b

a
ג
′(�)
[
(b)�ג̆

]p/k–1 d�
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+
|σ2|

k�k(p – k)

∫ b

a
ג
′(�)
[
(b)�ג̆

]p–k/k–1 d�

]}

≤ λ1‖η1 – η2‖
{

p/k[a(v)ג̆]

p�k(p)
+

1
|A|
[ |σ3|[̆גa(ζ )]q/k

ν�k(ν)

+
|σ1|[̆גa(b)]p/k

p�k(p)
+

|σ2|[̆גa(b)]p–k/k

(p – k)�k(p – k)

]}

≤ λ1‖η1 – η2‖
{

p/k[a(b)ג̆]

p�k(p)
+

1
|A|
[ |σ3|[̆גa(b)]ν/k

ν�k(ν)

+
|σ1|[̆גa(b)]p/k

p�k(p)
+

|σ2|[̆גa(b)]p–k/k

(p – k)�k(p – k)

]}

= λ1‖η1 – η2‖
{
ϒ(p, k) +

1
|A|
[|σ3|ϒ(ν, k)

+ |σ1|ϒ(p, k) + |σ2|ϒ(p – k, k)
]}

≤ ‖σ1 – σ2‖.

This implies that � is relatively nonexpansive. Also, � is A-condensing, because, for
(E, É) ∈ M�(S1, S2) we have

η(�E ∪ �É) = max
{
η(�E),η(�É)

}
= max

{
sup
v∈J

{
η
({

�η1(v) : η1 ∈ E
})}

, sup
v∈J

{
η
({

�η2(v) : η2 ∈ É
})}}

= max

{
sup
v∈J

{
η

({
k
I

p;ג
�2
(
v,η1(v)

)
+

ϑk/k–1[a(v)ג̆]

A[̆גa(b)]ϑk/k–1

× [σ3
kσ ν;ג

3 u2
(
ζ ,η1(ζ )

)
– σ1

k
I

p;ג
�2
(
b,η1(b)

)
– σ2

k
I

p–k;ג
�2
(
b,η1(b)

)]
: η1 ∈ E

})}
,

sup
v∈J

{
η

({
k
I

p;ג
�1
(
v,η2(v)

)
+

ϑk/k–1[a(v)ג̆]

A[̆גa(b)]ϑk/k–1

× [σ3
k
I
ν;ג
u1
(
ζ ,η2(ζ )

)
– σ1

k
I

p;ג
�1
(
b,η2(b)

)
– σ2

k
I

p–k;ג
�1
(
b,η2(b)

)]
: η2 ∈ É

})}}

= max

{
sup
v∈J

{
η

({
p/k�2(z,η1(z))[a(v)ג̆]

p�k(p)

+
ϑk/k–1[a(v)ג̆]

A[̆גa(b)]ϑk/k–1

[
σ3[̆גa(ζ )]ν/k

ν�k(ν)
u2
(
z,η1(z)

)
–

σ1[̆גa(b)]p/k

p�k(p)
�2
(
z,η1(z)

)

–
σ2[̆גa(b)]p–k/k

p�k(p)
�2
(
z,η1(z)

)]
: for some z ∈ J

})}
,

sup
v∈J

{
η

({
p/k�1(z,η2(z))[a(v)ג̆]

p�k(p)
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+
ϑk/k–1[a(v)ג̆]

A[̆גa(b)]ϑk/k–1

[
σ3[̆גa(ζ )]ν/k

ν�k(ν)
u1
(
z,η2(z)

)
–

σ1[̆גa(b)]p/k

p�k(p)
�1
(
z,η2(z)

)

–
σ2[̆גa(b)]p–k/k

p�k(p)
�1
(
z,η2(z)

)]
: for some z ∈ J

})}}

< max

{
p/k[a(b)ג̆]

p�k(p)
η
({
�2
(
z,η1(z)

)
+ �2(z, 0) – �2(z, 0)

})

+
1

|A|
[ |σ3|[̆גa(b)]ν/k

ν�k(ν)
η
({
u2
(
z,η1(z)

)
+ u2(z, 0) – u2(z, 0)

})

+
|σ1|[̆גa(b)]p/k

p�k(p)
η
({
�2
(
z,η1(z)

)
+ �2(z, 0) – �2(z, 0)

})

+
|σ2|[̆גa(b)]p–k/k

(p – k)�k(p – k)
η
({
�2
(
z,η1(z)

)
+ �2(z, 0) – �2(z, 0)

})]
,

p/k[a(b)ג̆]

p�k(p)
η
({
�1
(
z,η2(z)

)
+ �1(z, 0) – �1(z, 0)

})

+
1

|A|
[ |σ3|[̆גa(b)]ν/k

ν�k(ν)
η
({
u1
(
z,η2(z)

)
+ u1(z, 0) – u1(z, 0)

})

+
( |σ1|Lp/k

p�k(p)
+

|σ2|[̆גa(b)]p–k/k

(p – k)�k(p – k)

)

× η
({
�1
(
z,η2(z)

)
+ �1(z, 0) – �1(z, 0)

})]}

≤ max
{
λ2�η(E),λ2�η(É)

}
= λ2�η(E ∪ É).

By choosing ρ(v, w) = λ2w� – v, the operator � becomes A-condensing. Hence, the hy-
pothesis of Theorem 3.2 is fulfilled and hence, the bpp of � is the optimum solution of
the system (4) and (5). �

6 Illustrative examples
The following examples reveal the hidden realities in the application of the results of this
article. In the first example, we examine our results as an application to find a mild solution
of the system (4) and (5) for different states of .ג

Example 6.1 According to the system (4) and (5), we consider the system (2.1, HFDE-(ג

under conditions for v ∈ J = [0, 1] in the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2.1,HD9/4,3/5;גη1(v) =
√

2 exp(v/8) sin(η1(v))
3√65(0.5+v2)

,

η1(0) = η′
1(0) = 0,

23
15η1(1) + 45

22δגη1(1) = 32
65

2.1I12/17;ג( (2+|v|) tan(η1(v))
3√31

√
5

),

(61)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2.1,HD9/4,3/5;גη2(v) = 3v2(1+|v|) sin(η2(v))
4√27(6+cos2 v)(

√
10+sin2(η2(v)))

,

η2(0) = η′
2(0) = 0,

23
15η2(1) + 45

22δגη2(1) = 32
65

2.1I12/17;ג[ 10v tan(η2(v))
3√30(5+tan(πv/4)) exp(|v|)[√7+(tan–1(v))2]

],

(62)
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with four cases of ג as

(v)1ג = 1.5v, (v)2ג = v, (v)3ג = ln
2v + 1
300

, (v)4ג =
√

v, (63)

which are in C(J ) and ′ג
i(v) > 0 on J , where δג = 2.1

(v)′ג
d
dv . Clearly, p = 9

4 ∈ (2, 3), q = 3
5 ∈

[0, 1], and ν = 12
17 > 0. Then, ϑ2.1 = p + q(6.3 – p) = 117

25 . Also, by using the data, we obtain

A = σ1 +
1

a(b)ג̆
σ2(ϑk – k) =

23
15

+
45
22 ( 63

10 – 3)
i(1)ג – i(0)ג

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

12.0878, (v)1ג = 1.5v,
6.8106, (v)2ג = v,
6.3369, (v)3ג = ln 2v+1

300 ,
6.8106, (v)4ג =

√
v,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�= 0.

We define

�1
(
v,η(v)

)
=

√
2 exp( v

8 ) sin(η1(v))
3√65(0.5 + v2)

, u1
(
v,η1(v)

)
=

(2 + |v|) tan(η1(v))
3√31

√
5

,

�2
(
v,η2(v)

)
=

3v2(1 + |v|) sin(η2(v))
4√27(6 + cos2 v)(

√
10 + sin2(η2(v)))

,

u2
(
v,η2(v)

)
=

10v tan(η2(v))
3√30(5 + tan(πv/4)) exp(|v|)(√7 + (tan–1(v))2)

. (64)

We observe that,

∣∣�2
(
v,η1(v)

)
– �1

(
v,η2(v)

)∣∣
=
∣∣∣∣ 3v2(1 + |v|) sin(η1(v))

4√27(6 + cos2 v)(
√

10 + sin2(η1(v)))
–

√
2 exp(v/8) sin(η2(v))

3√65(0.5 + v2)

∣∣∣∣
≤
∣∣∣∣ sin(η1(v))√

10 4√27
–

√
2 sin(η2(v))
1.5 3√65

∣∣∣∣≤
√

2
1.5 3√35

∣∣η1(v) – η2(v)
∣∣,

∣∣u2
(
v,η2(v)

)
– u1

(
v,η1(v)

)∣∣
=
∣∣∣∣ 10v tan(η2(v))

3√30(5 + tan(πv/4)) exp(|v|)(√7 + (tan–1(v))2)
–

(2 + |v|) tan(η1(v))
3√31

√
5

∣∣∣∣
≤
∣∣∣∣2 tan(η2(v))√

7 3√30
–

2 tan(η1(v))√
5 3√31

∣∣∣∣≤ 2√
5 3√31

∣∣η1(v) – η2(v)
∣∣. (65)

Hence, to confirm assumption (H1), from Eq. (57), we have

max
{∥∥�2

(
v,η1(v)

)
– �1

(
v,η2(v)

)∥∥,
∥∥u2
(
v,η1(v)

)
– u1

(
v,η2(v)

)∥∥}
≤ max

{ √
2

1.5 3√65

∥∥η1(v) – η2(v)
∥∥,

2√
5 3√31

∥∥η1(v) – η2(v)
∥∥}

≤ λ1
∥∥η1(v) – η2(v)

∥∥, (66)

where λ1 = 2√
5 3√31

. Now, thanks to Eq. (58), we obtain

� =
1

|A|
[(

|A| + |σ1| +
|σ2|

ϒ(k, k)

)
ϒ(p, k) + |σ3|ϒ(ν, k)

]
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=
1

|Ai|
[(

|Ai| +
∣∣∣∣23
15

∣∣∣∣ +
|45/22|

ϒ(3, 3)

)
ϒ

(
9
4

, 3
)

+
∣∣∣∣32
65

∣∣∣∣ϒ
(

12
17

, 3
)]

=
1

|Ai|
[(

|Ai| +
∣∣∣∣23
15

∣∣∣∣ +
|45/22|

1
�(6) i(1)ג] – [i(0)ג

)
1

�( 21
4 )
[
i(1)ג – i(0)ג

]3/4

+
∣∣∣∣32
65

∣∣∣∣ 1
�(63/17)

[
i(1)ג – i(0)ג

]4/17
]

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.4107, (v)1ג = 1.5v,

0.8750, (v)2ג = v,

0.9695, (v)3ג = 2v+1
300 ,

0.8750, (v)4ג =
√

v.

(67)

Furthermore,

λ1� �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.1169, (v)1ג = 1.5v,
0.2491, (v)2ג = v,
0.2760, (v)3ג = 2v+1

300 ,
0.2491, (v)4ג =

√
v.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

< 1. (68)

Hence, assumption (H1) holds. In Figs. 1 and 2a, 2b, we have plotted the results of � and
λ1�, λ2� for the system (61) and (62). Also, these results are shown in Tables 1 and 2. To
check the next assumption (H2), we take help from relations (59). Hence,

∣∣u2
(
v,η1(v)

)
– u2(v, 0)

∣∣
=
∣∣∣∣ 10v tan(η1(v))

3√30(5 + tan(πv/4)) exp(|v|)(√7 + (tan–1(v))2)

∣∣∣∣≤ 2
3√30

√
7

∣∣η1(v)
∣∣, (69)

Figure 1 Representation of � in assumption (H1) for four cases of ג in the system (61) and (62) in Example 6.1
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Figure 2 2D plot of λ1� and λ2� in assumption (H2) for four cases of ג in the system (61) and (62) in
Example 6.1

Table 1 Numerical values of �, and λ1� in Example 6.1 when (v)ג = 1.5v , v

v (v)1ג = 1.5v (v)2ג = v

� λ1� < 1 λ2� < 1 v λ1� < 1 λ2� < 1

0.08 0.0224 0.0064 0.0219 0.0584 0.0166 0.0572
0.17 0.0483 0.0137 0.0473 0.1240 0.0353 0.1215
0.25 0.0763 0.0217 0.0748 0.1928 0.0549 0.1889
0.33 0.1063 0.0303 0.1042 0.2639 0.0751 0.2585
0.42 0.1382 0.0393 0.1354 0.3366 0.0958 0.3298
0.50 0.1717 0.0489 0.1683 0.4107 0.1169 0.4024
0.58 0.2070 0.0589 0.2029 0.4859 0.1384 0.4761
0.67 0.2441 0.0695 0.2392 0.5622 0.1601 0.5508
0.75 0.2830 0.0806 0.2773 0.6393 0.1820 0.6264
0.83 0.3237 0.0922 0.3171 0.7172 0.2042 0.7027
0.92 0.3662 0.1043 0.3588 0.7958 0.2266 0.7797
1.00 0.4107 0.1169 0.4024 0.8750 0.2491 0.8573

Table 2 Numerical values of �, and λ1� λ1� in Example 6.1 when (v)ג = ln 2v+1
300 ,

√
v

v (v)3ג = ln 2v+1
300 (v)4ג =

√
v

� λ1� < 1 λ2� < 1 v λ1� < 1 λ2� < 1

0.08 0.1139 0.0324 0.1116 0.2256 0.0642 0.2210
0.17 0.2247 0.0640 0.2202 0.3292 0.0937 0.3225
0.25 0.3267 0.0930 0.3201 0.4107 0.1169 0.4024
0.33 0.4204 0.1197 0.4119 0.4805 0.1368 0.4708
0.42 0.5067 0.1443 0.4965 0.5427 0.1545 0.5318
0.50 0.5866 0.1670 0.5747 0.5995 0.1707 0.5874
0.58 0.6609 0.1882 0.6475 0.6521 0.1857 0.6389
0.67 0.7303 0.2079 0.7156 0.7014 0.1997 0.6872
0.75 0.7954 0.2265 0.7793 0.7479 0.2130 0.7328
0.83 0.8567 0.2439 0.8394 0.7922 0.2255 0.7762
0.92 0.9146 0.2604 0.8961 0.8344 0.2376 0.8176
1.00 0.9695 0.2760 0.9499 0.8750 0.2491 0.8573

∣∣�2
(
v,η1(v)

)
– �2(v, 0)

∣∣ =
∣∣∣∣ 3v2(1 + |v|) sin(η1(v))

4√27(6 + cos2 v)(
√

10 + sin2(η1(v)))

∣∣∣∣
≤ 1

4√27

∣∣∣∣ sin(η1(v))√
10 + sin2(η1(v))

∣∣∣∣≤ 1√
10 4√27

∣∣η1(v)
∣∣ (70)
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and

max
{∥∥u2

(
v,η1(v)

)
– u2(v, 0)

∥∥,
∥∥�2

(
v,η1(v)

)
– �2(v, 0)

∥∥}
= max

{
2

3√30
√

7

∥∥η1(v)
∥∥,

1√
10 4√27

∥∥η1(v)
∥∥}≤ λ́1

∥∥η1(v)
∥∥, (71)

where λ́1 = 2
3√30

√
7

. In addition,

∣∣u1
(
v,η2(v)

)
– u1(v, 0)

∣∣ =
∣∣∣∣ (2 + |v|) tan(η2(v))

3√31
√

5

∣∣∣∣
≤ 3√

5 3√31

∣∣tan
(
η2(v)

)∣∣≤ 3√
5 3√31

∣∣η2(v)
∣∣,

∣∣�1
(
v,η2(v)

)
– �1(v, 0)

∣∣ =
∣∣∣∣
√

2 exp(v/8) sin(η2(v))
3√65(0.5 + v2)

∣∣∣∣
≤ e1/8

√
2

0.5 3√65

∣∣sin
(
η2(v)

)∣∣≤ 2e1/8
√

2
3√65

∣∣η2(v)
∣∣ (72)

and

max
{∥∥u1

(
v,η2(v)

)
– u1(v, 0)

∥∥,
∥∥�1

(
v,η2(v)

)
– �1(v, 0)

∥∥}
= max

{
3√

5 3√31

∥∥η2(v)
∥∥,

2e1/8
√

2
3√65

∥∥η2(v)
∥∥}≤ λ́2

∥∥η2(v)
∥∥, (73)

where λ́2 = 2e1/8√
2

3√35
. Therefore,

λ2 = max{λ́1, λ́2} =
{

2
3√30

√
7

,
2e1/8

√
2

3√35

}
=

2e1/8
√

2
3√35

∈ (0, 1] (74)

and

λ2� �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.4024, (v)1ג = 1.5v,
0.8573, (v)2ג = v,
0.9499, (v)3ג = 2v+1

300 ,
0.8573, (v)4ג =

√
v.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

< 1. (75)

Then, all the conditions of Theorem 5.4 are satisfied. Hence, the system (61) and (62) of
(2.1, HFDE-(ג has an optimal solution.

In the next example, we can see the correctness of the results for the existence of an
optimal solution of the system (4) and (5) for different fractional derivatives of order p.

Example 6.2 We consider the system of (2.1, HFDE-(ג (61) and (62) in Example 6.1 for
v ∈ J = [0, 1] in the form

⎧⎨
⎩

2.1,HDp,3/5;v/2η1(v) =
√

2ev/8 sin(η1(v))
3√65(0.5+v2)

,
2.1,HDp,3/5;v/2η2(v) = 3v2(1+|v|) sin(η2(v))

4√27(6+cos2 v)(
√

10+sin2(η2(v)))
,

(76)
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for the following three cases of p: p = { 9
4 , 5

2 , 23
8 }, under the same conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
η1(0) = η′

1(0) = 0, η2(0) = η′
2(0) = 0,

23
15η1(1) + 45

22δv/2η1(1) = 32
65

2.1I12/17;v/2( (2+|v|) tan(η1(v))
3√31

√
5

),
23
15η2(1) + 45

22δv/2η2(1) = 32
65

2.1I12/17;v/2( 10v tan(η2(v))
3√30(5+tan(πv/4)) exp(|v|)(√7+(tan–1(v))2)

),

(77)

for v ∈ J and (v)ג = 1
2 v ∈ C(J ). Clearly, q = 3

5 ∈ [0, 1] and ν = 12
17 > 0. Then,

ϑ2.1 = pi + q(6.3 – pi) =

⎧⎪⎪⎨
⎪⎪⎩

4.68, p = 9
4 ,

4.78, p = 5
2 ,

4.93, p = 23
8

(78)

and

A = σ1 +
σ2(ϑ2.1i – k)
(1)ג – (0)ג

�

⎧⎪⎨
⎪⎩

12.0878, p = 9
4 ,

12.4969, p = 5
2 ,

13.1106, p = 23
8 ,

⎫⎪⎬
⎪⎭ �= 0. (79)

By choosing the same defined functions �1(v,η(v)), u1(v,η1(v)), �2(v,η2(v)), and
u2(v,η2(v)), again, assumptions (H1) and (H2) are valid with

∥∥�2
(
v,η1(v)

)
– �1

(
v,η2(v)

)∥∥≤
√

2
1.5 3√35

∥∥η1(v) – η2(v)
∥∥,

∥∥u2
(
v,η2(v)

)
– u1

(
v,η1(v)

)∥∥≤ 2√
5 3√31

∥∥η1(v) – η2(v)
∥∥ (80)

and λ1 = 2√
5 3√31

∈ (0, 1), λ2 = 2
√

2
3√35

e1/8 ∈ (0, 1]. In addition, Eq. (58) implies that

� =
1

|Ai|
[(

|Ai| + |σ1| +
|σ2|

ϒ(k, k)

)
ϒ(pi, k) + |σ3|ϒ(ν, k)

]
�

⎧⎪⎪⎨
⎪⎪⎩

0.4106, p = 9
4 ,

0.3263, p = 5
2 ,

0.2300, p = 23
8 .

In Fig. 3, we have plotted the results of � for the system (76) and (77). Also, these results
are shown in Table 3. Furthermore,

λ1� �

⎧⎪⎨
⎪⎩

0.1169, p = 9
4 ,

0.0929, p = 5
2 ,

0.0655, p = 23
8 ,

⎫⎪⎬
⎪⎭ < 1, λ2� �

⎧⎪⎨
⎪⎩

0.4024, p = 9
4 ,

0.3198, p = 5
2 ,

0.2254, p = 23
8 ,

⎫⎪⎬
⎪⎭ < 1. (81)

In Figs. 4a and 4b, we have plotted the results of λ1� and λ2� for the system (76) and
(77). Also, these results are shown in Table 3. Then, all the conditions of Theorem 5.4 are
satisfied. Hence, the system (76) and (77) of (2.1, HFDE-(ג has an optimal solution.

The next example examines the results for different values of type q.
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Figure 3 Representation of � in assumption (H1) for three cases of order p in the system (76) and (77) in
Example 6.2

Table 3 Numerical values of �, and λ1� λ2� in Example 6.2 when p = 9
4 ,

5
2 ,

23
8

v p = 9
4 p = 5

2 p = 23
8

� λ1� < 1 λ2� < 1 � λ1� < 1 λ2� < 1 � λ1� < 1 λ2� < 1

0.08 0.0275 0.0078 0.0270 0.0164 0.0047 0.0161 0.0077 0.0022 0.0076
0.17 0.0584 0.0166 0.0572 0.0378 0.0108 0.0370 0.0199 0.0057 0.0195
0.25 0.0907 0.0258 0.0889 0.0615 0.0175 0.0603 0.0347 0.0099 0.0340
0.33 0.1240 0.0353 0.1215 0.0870 0.0248 0.0852 0.0513 0.0146 0.0503
0.42 0.1581 0.0450 0.1549 0.1138 0.0324 0.1115 0.0696 0.0198 0.0682
0.50 0.1928 0.0549 0.1889 0.1417 0.0403 0.1388 0.0893 0.0254 0.0875
0.58 0.2281 0.0650 0.2235 0.1706 0.0486 0.1671 0.1102 0.0314 0.1080
0.67 0.2639 0.0751 0.2585 0.2003 0.0570 0.1963 0.1322 0.0377 0.1296
0.75 0.3000 0.0854 0.2940 0.2308 0.0657 0.2262 0.1553 0.0442 0.1522
0.83 0.3366 0.0958 0.3298 0.2621 0.0746 0.2568 0.1793 0.0511 0.1757
0.92 0.3735 0.1063 0.3659 0.2939 0.0837 0.2880 0.2043 0.0582 0.2001
1.00 0.4107 0.1169 0.4024 0.3264 0.0929 0.3198 0.2300 0.0655 0.2254

Figure 4 2D plot of λ1� and λ2� in assumption (H2) for three cases of p in the system (76) and (77) in
Example 6.2
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Example 6.3 Consider the system (61) and (62) in Example 6.1 for v ∈ J = [0, 1] in the
form

⎧⎨
⎩

2.1,HD11/4,q;
√

2vη1(v) =
√

2ev/4 sin(η1(v))
(0.5+v2) 3√65

,
2.1,HD11/4,q;

√
2vη2(v) = 3v2(1+|v|) sin(η2(v))

4√27(6+cos2 v)(
√

10+sin2(η2(v)))
,

(82)

for the following four cases of q: q = { 8
11 , 9

11 , 10
11 , 1}, with conditions

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

η1(0) = η′
1(0) = 0, η2(0) = η′

2(0) = 0,
23
15η1(1) + 45

22δ
√

2vη1(1) = 32
65

2.1I12/17;
√

2v( (2+|v|) tan(η1(v))√
5 3√31

),
23
15η2(1) + 45

22δ
√

2vη2(1)

= 32
65

2.1I12/17;
√

2v[ 10v tan(η2(v))
3√30(5+tan(πv/4)) exp(|v|)(√7+(tan–1(v))2)

],

(83)

for v ∈ J and (v)ג =
√

2v ∈ C(J ). Clearly, p = 11
4 ∈ (2, 3) and ν = 12

17 > 0. Then,

ϑ2.1 = p + qi(6.3 – p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

5.3318, q = 8
11 ,

5.6545, q = 9
11 ,

5.9772, q = 10
11 ,

6.3000, q = 1

(84)

and

A = σ1 +
σ2(ϑ2.1i – k)
(1)ג – (0)ג

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6.2076, q = 8
11 ,

6.6744, q = 9
11 ,

7.1412, q = 10
11 ,

7.6080, q = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�= 0. (85)

We checked the correctness of assumptions (H1) and (H2) in Example 6.1, only here we
present new numerical results for different values of q. We saw that λ1 = 2√

5 3√31
∈ (0, 1]

and λ2 = 2e1/8√
2

3√35
∈ (0, 1]. Now, by employing Eq. (58), we obtain

� =
1

|Ai|
[(

|Ai| + |σ1| +
|σ2|

ϒ(k, k)

)
ϒ(pi, k) + |σ3|ϒ(ν, k)

]
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.9594, q = 8
11 ,

0.9278, q = 9
11 ,

0.9004, q = 10
11 ,

0.8763, q = 1.

In Fig. 5, we have plotted the results of � for the system (82) and (83). Also, these results
are shown in Table 4. Furthermore,

λ1� �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.2732, q = 8
11 ,

0.2642, q = 9
11 ,

0.2564, q = 10
11 ,

0.2495, q = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

< 1, λ2� �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.9401, q = 8
11 ,

0.9092, q = 9
11 ,

0.8823, q = 10
11 ,

0.8586, q = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

< 1. (86)
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Figure 5 Representation of � in assumption (H1) for four cases of type q in the system (82) and (83) in
Example 6.3

Table 4 Numerical values of �, and λ1� λ2� in Example 6.3 when q = 8
11 ,

9
11 ,

10
11 , 1

v � λ1� < 1 λ2� < 1 � λ1� < 1 λ2� < 1

q = 8
11 q = 9

11

0.08 0.1856 0.0528 0.1819 0.1784 0.0508 0.1748
0.17 0.2932 0.0835 0.2873 0.2822 0.0803 0.2765
0.25 0.3833 0.1091 0.3755 0.3692 0.1051 0.3617
0.33 0.4635 0.1320 0.4542 0.4468 0.1272 0.4378
0.42 0.5373 0.1530 0.5264 0.5182 0.1475 0.5077
0.50 0.6062 0.1726 0.5939 0.5849 0.1665 0.5731
0.58 0.6713 0.1911 0.6578 0.6480 0.1845 0.6350
0.67 0.7334 0.2088 0.7186 0.7083 0.2017 0.6940
0.75 0.7929 0.2258 0.7769 0.7660 0.2181 0.7506
0.83 0.8502 0.2421 0.8331 0.8217 0.2340 0.8051
0.92 0.9057 0.2579 0.8874 0.8756 0.2493 0.8579
1.00 0.9595 0.2732 0.9401 0.9279 0.2642 0.9092

q = 10
11 q = 1

0.08 0.1724 0.0491 0.1689 0.1672 0.0476 0.1638
0.17 0.2728 0.0777 0.2673 0.2648 0.0754 0.2594
0.25 0.3571 0.1017 0.3499 0.3467 0.0987 0.3397
0.33 0.4325 0.1231 0.4237 0.4200 0.1196 0.4116
0.42 0.5018 0.1429 0.4916 0.4875 0.1388 0.4777
0.50 0.5666 0.1613 0.5552 0.5507 0.1568 0.5396
0.58 0.6280 0.1788 0.6153 0.6105 0.1738 0.5982
0.67 0.6866 0.1955 0.6727 0.6676 0.1901 0.6542
0.75 0.7428 0.2115 0.7278 0.7225 0.2057 0.7079
0.83 0.7970 0.2269 0.7809 0.7754 0.2208 0.7597
0.92 0.8495 0.2419 0.8323 0.8266 0.2354 0.8099
1.00 0.9004 0.2564 0.8823 0.8763 0.2495 0.8586

In Figs. 6a and 6b, we have plotted the results of λ1� and λ2� for the system (82) and
(83). Also, these results are shown in Table 4. Then, all the conditions of Theorem 5.4 are
satisfied. Hence, the system (82) and (83) of (2.1, HFDE-(ג has an optimal solution.
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Figure 6 2D plot of λ1� and λ2� in assumption (H2) for four cases of type q in the system (82) and (83) in
Example 6.3

We have discussed the results of the article by changing the order of the fractional inte-
gral ν in the next example.

Example 6.4 We consider the same system in Example 6.1 for v ∈ J = [0, 1] in the form

⎧⎨
⎩

2.1,HD8/3,7/12;1.5v
η1(v) =

√
2ev/8 sin(η1(v))
(0.5+v2) 3√65

,
2.1,HD8/3,7/12;1.5v

η2(v) = 3v2(1+|v|) sin(η2(v))
4√27(6+cos2 v)(

√
10+sin2(η2(v)))

,
(87)

for the following four cases of ν ∈ (0,∞): ν = { 12
17 , 24

17 , 35
17 , 47

17 }, under the same conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
η1(0) = η′

1(0) = 0, η2(0) = η′
2(0) = 0,

23
15η1(1) + 45

22δ1.5vη1(1) = 32
65

2.1Iν;1.5v ( (2+|v|) tan(η1(v))
3√31

√
5

),
23
15η2(1) + 45

22δ1.5vη2(1) = 32
65

2.1Iν;1.5v ( 10v tan(η2(v))
3√30(5+tan(πv/4)) exp(|v|)(√7+(tan–1(v))2)

),

(88)

for v ∈ J with (v)ג = 1.5v ∈ C(J ). Clearly, p = 8
3 ∈ (2, 3) and p = 7

12 ∈ [0, 1]. Then,

ϑ2.1 = p + q(6.3 – p) = 4.7861, A = σ1 +
σ2(ϑ2.1 – k)
(1)ג – (0)ג

� 12.5219 �= 0.

We checked the correctness of assumptions (H1) and (H2) in Example 6.1, only here we
present new numerical results for different values of fractional integral order ν . As in the
previous examples, Eq. (58) implies

� =
1

|A|
[(

|A| + |σ1| +
|σ2|

ϒ(k, k)

)
ϒ(p, k) + |σ3|ϒ(νi, k)

]
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.2822, ν = 12
17 ,

0.2716, ν = 24
17 ,

0.2647, ν = 35
17 ,

0.2601, ν = 47
17 .

In Fig. 7, we have plotted the results of � for the system (87) and (88). Also, these results
are shown in Table 5. Furthermore,
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Figure 7 Representation of � in assumption (H1) for four cases of fractional integral order ν in the system
(87) and (88) in Example 6.4

Figure 8 2D plot of λ1� and λ2� in assumption (H2) for four cases of fractional integral order ν in the
system (87) and (88) in Example 6.4

λ1� �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.0804, ν = 12
17 ,

0.0773, ν = 24
17 ,

0.0754, ν = 35
17 ,

0.0741, ν = 47
17 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

< 1, λ2� �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.2766, ν = 12
17 ,

0.2662, ν = 24
17 ,

0.2594, ν = 35
17 ,

0.2549, ν = 47
17 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

< 1. (89)

In Figs. 8a and 8b, we have plotted the results of λ1� and λ2� for the system (87) and
(88). Also, these results are shown in Table 5. Then, all the conditions of Theorem 5.4 are
satisfied. Hence, the system (87) and (88) of (2.1, HFDE-(ג has an optimal solution.

7 Conclusion
In this work, we define a class of cyclic and noncyclic A-condensing operators and prove
the existence of a bpp and pair for them in the setting of BSs. Also, our main results lead
to some of the important results in the existing literature, presented as corollaries. In ad-
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Table 5 Numerical values of �, and λ1� λ2� in Example 6.4 when ν = 12
17 ,

24
17 ,

35
17 ,

47
17

v � λ1� < 1 λ2� < 1 � λ1� < 1 λ2� < 1

ν = 12
17 ν = 24

17

0.08 0.0093 0.0026 0.0091 0.0086 0.0025 0.0084
0.17 0.0229 0.0065 0.0224 0.0214 0.0061 0.0210
0.25 0.0393 0.0112 0.0385 0.0369 0.0105 0.0361
0.33 0.0580 0.0165 0.0568 0.0546 0.0155 0.0535
0.42 0.0788 0.0224 0.0772 0.0744 0.0212 0.0729
0.50 0.1017 0.0290 0.0997 0.0964 0.0274 0.0944
0.58 0.1266 0.0361 0.1241 0.1203 0.0343 0.1179
0.67 0.1536 0.0437 0.1505 0.1463 0.0417 0.1434
0.75 0.1826 0.0520 0.1789 0.1744 0.0497 0.1709
0.83 0.2137 0.0608 0.2093 0.2046 0.0583 0.2005
0.92 0.2469 0.0703 0.2419 0.2370 0.0675 0.2322
1.00 0.2823 0.0804 0.2766 0.2717 0.0773 0.2662

ν = 35
17 ν = 47

17

0.08 0.0085 0.0024 0.0083 0.0084 0.0024 0.0082
0.17 0.0209 0.0060 0.0205 0.0208 0.0059 0.0204
0.25 0.0360 0.0102 0.0352 0.0356 0.0101 0.0349
0.33 0.0532 0.0152 0.0521 0.0526 0.0150 0.0516
0.42 0.0725 0.0206 0.0711 0.0716 0.0204 0.0702
0.50 0.0938 0.0267 0.0919 0.0925 0.0264 0.0907
0.58 0.1171 0.0334 0.1148 0.1154 0.0329 0.1131
0.67 0.1425 0.0406 0.1396 0.1403 0.0399 0.1374
0.75 0.1698 0.0484 0.1664 0.1671 0.0476 0.1637
0.83 0.1993 0.0567 0.1953 0.1960 0.0558 0.1920
0.92 0.2309 0.0658 0.2263 0.2270 0.0646 0.2224
1.00 0.2648 0.0754 0.2594 0.2601 0.0741 0.2549

dition, we discuss some coupled bpp results. The main result is applied to establish the
existence of optimum solutions for the class of a system of (k, HFDE-(ג of order 2 < p < 3,
type 0 ≤ q ≤ 1 under integral and initial conditions. In the final step, we designed exam-
ples, and obtained numerical results of the system that well confirm the assumptions used.
The technique used in this article can be used as a generalization in the area of solutions
of nonlinear fractional and q-fractional differential equations via the bpp theory. The re-
sults of this research can establish more capabilities in the articles, such as [18, 38–43],
that are presented about the existence and uniqueness of fractional differential equations
and inclusions.
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2. Gabeleh, M., Malkowsky, E., Mursaleen, M., Rakočević, V.: A new survey of measures of noncompactness and their

applications. Axioms 11(6), 299 (2022). https://doi.org/10.3390/axioms11060299
3. Samei, M.E.: Employing Kuratowski measure of noncompactness for positive solutions of system of singular fractional

q-differential equations with numerical effects. Filomat 34(9), 1–19 (2020).
https://doi.org/10.1186/10.2298/FIL2009971S

4. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. Springer, New York (1986)
5. Schauder, J.: Der fixpunktsatz in funktionalraumen. Stud. Math. 2, 171–180 (1930)
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