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Abstract
The survey of the available literature shows that a lot of important invariant point
problems of Banach and Heilpern types have been examined in both metric and
quasimetric spaces. However, a handful of the existing results employed the recent
approaches of interpolative contractions. Therefore, based on the new idea of
interpolation techniques in fixed point theory, this article studies new notions of
L-fuzzy contractions and investigates conditions for the existence of L-fuzzy fixed
points for such mappings. On the fact that fixed points of point-to-point mappings
satisfying interpolative-type contraction are not always unique, whence making the
concepts more fitted for invariant point results of crisp set-valued maps, new
multi-valued analogues of the key findings put forward in this work are derived.
Comparative illustrations, which indicate the preeminence of the results presented
herein, are constructed. From application viewpoint, one of the theorems so obtained
is employed to introduce new solvability conditions of Fredholm-type integral
inclusions.
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1 Introduction and preliminaries
Throughout this paper, a metric space, a complete metric space, and a fixed point will
hereon be written as MS, CMS, and FP, respectively.

Banach [2] introduced one of the most known metric FP concepts, commonly named
the Banach contraction principle. Due to the simplicity and usefulness of this principle, it
has enjoyed multiple improvements in several directions. In some refinements of Banach
invariant point idea, the original inequality is reformulated (see, e.g., [3]), and in others,
the topological notions of the space are modified (see [7] and the citations therein). Along
the lane, a chief refinement of the contraction technique was brought up by Hardy and
Rogers [8]. The paradigm of this result (in [8]) is given hereunder.

Theorem 1.1 [8] Let (W , d) be a CMS and S be a single-valued mapping on W satisfying

d(Sh, Sμ) ≤ a1d(h, Sh) + b1d(μ, Sμ) + c1d(h, Sμ) + e1d(μ, Sh) + l1d(h,μ),
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where a1, b1, c1, e1, l1 are nonnegative reals with a1 + b1 + c1 + e1 + l1 < 1, then S has a
unique FP in W .

For not too long, Roldán et al. [24] brought up new FP ideas for a host of contractions
depending on two functions and a few constants, named multiparametric contractions,
and noted out a good number of Hardy–Rogers-type contractions in the frame of met-
ric and quasi-MSs. Of recent as well, Karapinar et al. [14] established some common FP
results for interpolative mappings availing Perov-type operators, which fulfil Suzuki-type
inequalities. The announcement in Theorem 1.1 has also been moved further by more
than a handful of examiners. Related copies of the contraction tools were on several oc-
casions provided by Ćirić [3], Reich [22], and Rus [26].

Definition 1.2 [3, 22, 26]
(i) Rus contraction if we can find a1, b1 ∈R+ with a1 + b1 < 1 such that for all h,μ ∈ W ,

d(Sh, Sμ) ≤ a1d(h,μ) + b1d(μ, Sμ).

(ii) Ćirić–Reich contraction if we can find a1, b1, c ∈R+ with a1 + b1 + c < 1 such that for
all h,μ ∈ W ,

d(Sh, Sμ) ≤ a1d(h,μ) + b1d(h, Sh) + cd(μ, Sμ).

A refined copy of the above findings is given hereunder.

Theorem 1.3 [3, 22, 26] Let (W , d) be a CMS and the self-mapping S : W −→ W be a
Ćirić–Reich–Rus contraction, that is,

d(Sh, Sμ) ≤ c
[
d(h,μ) + d(h, Sh) + d(μ, Sμ)

]

for all h,μ ∈ W , c ∈ [0, 1
3 ). Then S enjoys an FP in W .

Supported by the interpolation theory, Karapinar et al. [13] initiated the idea of
interpolative-type notions as follows.

Definition 1.4 [13] Let (W , d) be an MS. S : W −→ W is named an interpolative Hardy–
Rogers-type contraction if we can find c ∈ [0, 1[ and a1, b1, c1 ∈]0, 1[ with a1 + b1 + c1 < 1:

d(Sh, Sμ) ≤ c
[
d(h,μ)

]b1[d(h, Sh)
]a1[d(μ, Sμ)

]c1
[

1
2
(
d(h, Sμ) + d(μ, Sh)

)
]1–a1–b1–c1

(1.1)

for all h,μ ∈ W \Fix(S), where Fix(S) is the collection of invariant points of S.

For related FP results employing the interpolation approach, the researcher can look up
[10–12, 18]. An intersecting behavior of the known FP results of interpolative type map-
pings is that their FP (if it exists) is not usually one and only one (for reference, see [11,
Example 1]). This makes it seemingly clear that FP theorems via the concept of interpola-
tion are more compatible for FP theory of point-to-set-valued maps.
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On the flip side, a difficulty in modeling practical problems is connected to the inconclu-
siveness caused by our incapability to sort events with adequacy. It is a common knowl-
edge that earlier sciences in the bodywork of crisp sets cannot withstand imprecisions ef-
ficiently. Therefore, a struggle to ameliorate the aforementioned hurdles led to the launch-
ing of fuzzy set by Zadeh [29]. At present, the fundamental ideas of fuzzy sets have been
developed and applied in various domains. In 1981, Heilpern [9] employed the idea of
fuzzy sets to launch the notion of fuzzy set-valued maps and set-up an FP result for fuzzy
mappings, which is a fuzzy improvement of the FP theorems due to Nadler [19] and Ba-
nach [2]. Recently, by using the family of � functions initiated by Patel and Radenovic
[28], Sessa et al. [27] introduced the idea of α�-fuzzy contraction mappings and discussed
the existence of FP for such mappings. Meanwhile, variants of Heilpern-type fuzzy invari-
ant point results have been developed (e.g., see [1, 5, 16, 17] and the references therein).
A very interesting improvement of fuzzy sets by replacing the interval [0, 1] of range set
with a complete distributive lattice was brought up by Goguen [6] and is termed L-fuzzy
set. Along the line, Rashid et al. [20] came up with the concept of L-fuzzy mappings and
obtained common FP theorems through βFL-admissible pair of L-fuzzy mappings. As an
improvement of the idea of Hausdorff distance and d∞-metric for fuzzy sets, Rashid et
al. [21] proposed the ideas of DαL and d∞

L distances for L-fuzzy sets and deduced some
existing FP results for fuzzy set-valued and crisp set-valued maps.

Following the new interpolation approach in the study of FP results launched in [10–
13], we noticed that the equivalent concepts with respect to L-fuzzy sets have not yet
been studied or, at least, their analogues in fuzzy mathematics are very limited. Hence,
this manuscript proposes the idea of interpolative Hardy–Rogers-type and interpolative
Reich–Rus–Ćirić-type L-fuzzy contractions in MS and examines new ways for analyzing
the L-fuzzy FPs of such contractions. It is worthy to indicate that FP of a single-valued
mapping enjoying the interpolative-type expression is not necessarily unique. Therefore,
the interpolative techniques are more appropriate for FP theorems of multi-valued maps.
On this observation, some new set-valued copies of the L-fuzzy FP theorems studied here-
with are discussed.

We now list a few preliminaries that are specific to our main results. Let (W , d) be an MS
and V(W ) be the collation of compact subsets of W . Take M, U ∈ V(W ) and r > 0 be arbi-
trary. Then the sets Nd(r, M) and Ed

(M,U) and the distance function d(M, U) are respectively
defined as follows:

Nd(r, M) =
{

h ∈ W : d(h, y) < r, for some y ∈ M
}

.

Ed
(M,U) =

{
r > 0 : M ⊆ Nd(r, U), U ⊆ Nd(r, M)

}
.

d(M, U) = inf
h∈M,μ∈U

d(h,μ).

Then the Hausdorff metric Ĥ on V(W ) generated by the metric d is defined as Ĥ(M, U) =
inf Ed

(M,U) (see [19, P. 3]).
Recall that an ordinary subset M of W is determined by its characteristic function χM ,

defined by χM : M −→ {0, 1}:

χM(h) =

⎧
⎨

⎩
1, if h ∈ M

0, if h /∈ M.
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The value χM(h) specifies whether an element belongs to M or not. This idea was em-
ployed to define fuzzy sets by permitting an element h ∈ A to take any value within
[0, 1] = I .

Definition 1.5 [4] A relation � on a nonempty set L is termed a partial order if it is
(i) reflexive;

(ii) antisymmetric;
(iii) transitive.

A set L together with a partial ordering � is named a partially ordered set (poset, for
short) and is denoted by (L,�L). Recall that partial orderings are used to give an order
to sets that may not have a natural one. Let L be a nonempty set and (L,�) be a partially
ordered set. Then any two elements β ,� ∈ L are said to be comparable if either β � � or
� � β .

Definition 1.6 [4] A partially ordered set (L,�L) is named:
(i) a lattice if β ∨ � ∈ L, β ∧ � ∈ L for any β ,� ∈ L;

(ii) a complete lattice if
∨∇ ∈ L,

∧∇ ∈ L for any ∇ ⊆ L;
(iii) distributive lattice if β ∨ (� ∧ ξ ) = (β ∨ �) ∧ (β ∨ ξ ), β ∧ (� ∨ ξ ) = (β ∧ �) ∨ (β ∧ ξ ),

for any β ,�, ξ ∈ L.

A partially ordered set L is named a complete lattice if for every doubleton {β ,�} in L,
either sup{β ,�} = β

∨
� or inf{β ,�} = β

∧
� exists.

Definition 1.7 [6] An L-fuzzy set ∇ on a nonempty set W is a function with domain W
whose range lies in a complete distributive lattice L with top and bottom elements 1L and
0L, respectively.

Remark 1.8 [6] The class of L-fuzzy sets is larger than the class of fuzzy sets as an L-fuzzy
set reduces to a fuzzy set if L = I = [0, 1].

We denote the class of all L-fuzzy sets on a nonempty set W by LW .

Definition 1.9 [6]The τ̂L-level set of an L-fuzzy set ∇ is denoted by [∇]τ̂L and is defined
as follows:

[∇]τ̂L =

⎧
⎨

⎩
{β ∈ W : 0L �L ∇(β)}, if τ̂L = 0

{β ∈ W : τ̂L �L ∇(β)}, if τ̂L ∈ L \ {0L}.

Definition 1.10 [20] Let W be an arbitrary nonempty set and Y be an MS. A mapping
	̂ : W −→ LY is named an L-fuzzy mapping. The function value 	̂(d)(�) is named the
degree of membership of � in 	̂(d). For any two L-fuzzy mappings S, 	̂ : W −→ LY , a
point o ∈ W is named an L-fuzzy FP of S if we can find τ̂L ∈ L \ {0L} such that o ∈ [So]τ̂L .
A point o is known as a common L-fuzzy FP of S and 	̂ if o ∈ [So]τ̂L ∩ [	̂o]τ̂L .

If we can find τ̂L ∈ L \ {0L} such that [S]τ̂L , [U]τ̂L ∈ V(W ), then we define

pτ̂L (S, U) = inf
h∈[S]̂τL ,μ∈[U ]̂τL

d(h,μ).
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Dτ̂L (S, U) = Ĥ
(
[S]τ̂L , [U]τ̂L

)
.

p(S, U) = sup
τ̂L

pτ̂L (S, U).

d∞
L (S, U) = sup

τ̂L
Dτ̂L (S, U).

Observe that pτ̂L is a nondecreasing function of τ̂L (see [9]), d∞
L is a metric on V(W ),

and since (W , d) is complete, then (VF (W ), d∞
L ) (see [9]) is also. Adding with, (W , d) �−→

(V(W ), Ĥ) �−→ (VF (W ), d∞
L ) are isometric embeddings under h −→ {h} and M −→ χM ,

respectively, where

VF (W ) =
{

S ∈ LW : [S]τ̂L ∈ V(W ), for each τ̂L ∈ L \ {0L}
}

.

The following observation made in [19] is useful in discussing our main idea.

Lemma 1.11 [19] Let S and U be nonempty closed and bounded subsets of an MS W . If
a ∈ S, then d(a, U) ≤ Ĥ(S, U).

2 Main results
The idea of L-fuzzy contraction of Hardy–Rogers-type is launched in this section, and the
corresponding FP results are studied.

Definition 2.1 Given an MS (W , d), the L-fuzzy set-valued map S : W −→ LW is named
an interpolative Hardy–Rogers-type (IH-RT) L-fuzzy contraction if we can find a mapping
τ̂L : W −→ L \ {0L} and constants c, a1, b1, c1 ∈ (0, 1) with a1 + b1 + c1 < 1 such that for all
h,μ ∈ W \Fix(S),

Ĥ
(
[Sh]τ̂L(h), [Sμ]τ̂L(μ)

)

≤ c
[
d(h,μ)

]b1[d
(
h, [Sh]τ̂L(h)

)]a1[d
(
μ, [Sμ]τ̂L(μ)

)]c1

×
[

1
2
(
d
(
h, [Sμ]τ̂L(μ)

)
+ d

(
μ, [Sh]τ̂L(h)

))]1–a1–b1–c1

,

(2.1)

where

Fix(S) =
{
o ∈ W : o ∈ [So]τ̂L(o), for some τ̂L(o) ∈ L \ {0L}

}
.

Theorem 2.2 Let (W , d) be a CMS and S : W → LW be an IH-RT L-fuzzy contraction.
Suppose that [Sh]τ̂L(h) is a nonempty compact subset of W for each h ∈ W . Then S has an
L-fuzzy FP in W .

Proof Let h0 ∈ W be arbitrary. Then, by hypothesis, [Sh0]τ̂L(h0) ∈ V(W ). Choose h1 ∈
[Sh0]τ̂L(h0), then for this h1 ∈ W , [Sh1]τ̂L(h1) is a nonempty compact subset of W . There-
fore, we can find h2 ∈ [Sh1]τ̂L(h1) such that

d(h1, h2) = d
(
h1, [Sh1]τ̂L(h1)

) ≤ Ĥ
(
[Sh0]τ̂L(h0), [Sh1]τ̂L(h1)]

)
. (2.2)
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Setting h = h0 and μ = h1 in (2.1) and using the fact that the function 
 (h) = h1–a1–b1–c1 is
nondecreasing yields

Ĥ
(
[Sh0]τ̂L(h0), [Sh1]τ̂L(h1)

)

≤ c
[
d(h0, h1)

]b1[d
(
h0, [Sh0]τ̂L(h0)

)]a1[d
(
h1, [Sh1]τ̂L(h1)

)]c1

·
[

1
2
(
d
(
h0, [Sh1]τ̂L(h1)

)
+ d

(
h1, [Sh0]τ̂L(h0)

))
]1–a1–b1–c1

≤ c
[
d(h0, h1)

]b1[d(h0, h1)
]a1 d(h1, h2)]c1

[
1
2
(
d(h0, h2) + d(h1, h1)

)
]1–a1–b1–c1

≤ c
[
d(h0, h1)

]b1[d(h0, h1)
]a1 d(h1, h2)]c1

[
1
2
(
d(h0, h1) + d(h1, h2)

)
]1–a1–b1–c1

.

(2.3)

Suppose that d(h0, h1) ≤ d(h1, h2), then (2.3) produces

Ĥ
(
[Sh0]τ̂L(h0), [Sh1]τ̂L(h1)

) ≤ c
[
d(h1, h2)

]a1+b1+c1[d(h1, h2)
]1–a1–b1–c1

≤ c
(
d(h1, h2)

)

< d(h1, h2),

(2.4)

a contradiction. Therefore, d(h1, h2) < d(h0, h1). Therefore, for ζ =
√

c and � = ζd(h0, h1),
(2.3) yields

Ĥ
(
[Sh0]τ̂L(h0), [Sh1]τ̂L(h1)

) ≤≤ c
[
d(h0, h1)

]a1+b1+c1[d(h0, h1)
]1–a1–b1–c1

≤ cd(h0, h1)

≤ �.

It follows that d(h1, h2) < � for some h2 ∈ [Sh1]τ̂L(h1). Thus, � ∈ Ed
([Sh0]̂τL(h0),[Sh1]̂τL(h1)). This

implies that [Sh0]τ̂L ⊆ Nd(�, [Sh0]τ̂L(h0)) and h1 ∈ Nd(�, [Sh1]τ̂L(h1)). On similar steps, we
can find h2 ∈ Nd(ζd(h0, h1), [Sh2]τ̂L(h2)) and h3 ∈ [Sh2]τ̂L(h2) such that for �2 = ζ 2d(h0, h1)
we have

d(h2, h3) ≤ ζd(h1, h2)

≤ �2.

Therefore, �2 ∈ Ed
([Sh1]̂τL(h1),[Sh2]̂τL(h2)). By induction, we come up with a sequence {hx}x≥1 in

W such that hx+1 ∈ [Shx]τ̂L(hx) and

d(hx, hx+1) ≤ ζ xd(h0, h1) for all x ≥ 1.
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We now demonstrate that {hx}x≥1 is Cauchy in W . So, for all k ≥ 1,

d(hx, hx+k) ≤ d(hx, hx+1) + d(hx+1, hx+2) + · · · + d(hx+k–1, hx+k)

...

≤ ζ x

1 – ζ
d(h0, h1).

(2.5)

Passing to limit in (2.5) as x −→ ∞, limx→∞ d(hx, hx+k) = 0. Therefore, {hx}x≥1 is a Cauchy
sequence in W . By completeness of W , we can find o ∈ W such that hx −→ o as x −→ ∞.
Now, to show that o is an L-fuzzy FP of S, assume that o /∈ [So]τ̂L(o) for all τ̂L ∈ L. Then,
replacing h, μ with hx and o, respectively, in (2.1) leads to

d
(
hx+1, [So]τ̂L(o)

)

≤ Ĥ
(
[Shx]τ̂L(hx), [So]τ̂L(o)

)

≤ c
[
d(hx,o)

]b1[d
(
hx, [Shx]τ̂L(hx)

)]a1[d
(
o, [So]τ̂L(o)

)]c1

·
[

1
2

(d
(
hx, [So]τ̂L(o)

)
+ d

(
o, [Shx]τ̂L(hx)

)
]1–a1–b1–c1

≤ c
[
d(hx,o)

]b1[d(hx, hx+1)
]a1[d

(
o, [So]τ̂L(o)

)]c1

·
[

1
2

(d
(
hx, [So]τ̂L(o)

)
+ d(o, hx+1)

]1–a1–b1–c1

.

(2.6)

Letting x −→ ∞ in (2.6) and using the continuity of d, we obtain d(o, [So]τ̂L(o)) = 0. This
proves that o ∈ [So]τ̂L(o) for some τ̂L(o) ∈ L \ {0L}. �

Example 2.3 Let L = {a, b, c, g, s, m, n, v} be such that a �L s �L c �L v, a �L g �L b �L v,
s �L m �L v, g �L m �L v, n �L b �L v; and each element of the doubletons {c, m}, {m, b},
{s, n}, {n, g} is not comparable. Whence, (L,�L) is a complete distributive lattice. Let W =
{2, 6, 7, 12, 20} and define d : W × W −→ R by d(h,μ) = |h – μ| for all h,μ ∈ W . Clearly,
(W , d) is a CMS. Define the mapping S : W −→ L \ {a} as follows:

S(h)(ᵀ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v, if ᵀ ∈ {2, 6}
m, if ᵀ = 7

g, if ᵀ = 12

b, if ᵀ = 20.

Suppose that τ̂L(h) = v \ {a} for all h ∈ W . Then

[Sh]v =
{
ᵀ ∈ W : v � S(h)(ᵀ)

}

= {2, 6}.

To show that S is a Hardy–Rogers-type L-fuzzy contraction, take h,μ ∈ W \Fix(S). Obvi-
ously, h,μ ∈ {12, 20}. Thus,

Ĥ
(
[S12]τ̂L(12), [S20]τ̂L(20)

)
= Ĥ

(
[S20]τ̂L(20), [S12]τ̂L(12)

)
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= Ĥ
({2, 6}, {2, 6}) = 0.

Therefore, all the conditions of Theorem 2.2 are verified. We can see that the set of all
L-fuzzy FP of S is given by Fix(S) = {2, 6}.

Turned on by Theorem 1.3 and the idea of [12, Theorem 4], we investigate the next no-
tion of interpolative Reich–Rus–Ćirić-type (IRRC-T) L-fuzzy contraction and investigate
the condition for the existence of L-fuzzy FP for such contraction.

Definition 2.4 Let (W , d) be an MS. An L-fuzzy set-valued map S : W −→ LW is named
IRRC-T L-fuzzy contraction if we can find a mapping τ̂L : W −→ L \ {0L} and constants
η̂ ∈ [0, 1), a1, b1 ∈ (0, 1) with a1 + b1 < 1 such that

Ĥ
(
[Sh]τ̂L(h), [Sμ]τ̂L(μ)

) ≤ η̂
[
d(h,μ)

]a1[d
(
h, [Sh]τ̂L(h)

)]b1[d
(
μ, [Sμ]τ̂L(μ)

)]1–a1–b1 (2.7)

for all h,μ ∈ W \Fix(S).

Theorem 2.5 Let (W , d) be a CMS and S : W −→ LW be an IRRC-T L-fuzzy contraction.
Suppose further that [Sh]τ̂L(h) is a nonempty compact subset of W for each h ∈ W . Then S
has a fuzzy FP in W .

Proof Let h0 ∈ W be given. Then, by hypothesis, we can find τ̂L(h0) ∈ L \ {0L} such
that [Sh0]τ̂L(h0) ∈ V(W ). By compactness of [Sh0]τ̂L(h0), we can find h1 ∈ [Sh0]τ̂L(h0) with
d(h0, h1) > 0 such that d(h0, h1) = d(h0, [Sh0]τ̂L(h0)). In the same way, by assumption, we can
find τ̂L(h1) ∈ L\{0L} such that [Sh1]τ̂L(h1) is a nonempty compact subset of W . Thus, we can
find h2 ∈ [Sh1]τ̂L(h1) with d(h1, h2) > 0 such that d(h1, h2) = d(h1, [Sh1]τ̂L(h1)). In this fashion,
we come up with a sequence {hx}x≥1 of points of W with hx+1 ∈ [Shx]τ̂L(hx), d(hx, hx+1) > 0
such that d(hx, hx+1) = d(hx, [Shx]τ̂L(hx)). By Lemma 1.11, we have

d(hx, hx+1) ≤ Ĥ
(
[Shx–1]τ̂L(hx–1), [Shx+1]τ̂L(hx+1)

)
. (2.8)

Now, we show that {hx}x≥1 is a Cauchy sequence in W . Setting h = hx and μ = hx–1 in (2.7),
we get

d(hx, hx+1) ≤ Ĥ
(
[Shx]τ̂L(hx), [Shx–1]τ̂L(hx–1)

)

≤ η̂
[
d(hx, hx–1)

]a1[d
(
hx, [Shx]τ̂L(hx)

)]b1[d
(
hx–1, [Shx–1]τ̂L(hx–1)

)]1–a1–b1

≤ η̂
[
d(hx, hx–1)

]a1[d(hx, hx+1)
]b1[d(hx–1, hx)

]1–a1–b1

= η̂
[
d(hx, hx–1)

]1–b1[d(hx, hx+1)
]b1 .

(2.9)

From (2.9), we have

d(hx, hx+1) ≤ η̂
1

1–b1 d(hx–1, hx) for all x ∈N. (2.10)

We deduce from (2.10) that for all x ∈N,

d(hx, hx+1) ≤ η̂d(hx–1, hx) ≤ η̂xd(h0, h1). (2.11)
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From (2.11), following the proof of Theorem 2.2, we infer that {hx}x≥1 is a Cauchy sequence
in W . The completeness of this space implies that we can find o ∈ W such that hx −→ o

as x −→ ∞. Now, we show that o is an L-fuzzy FP of W . For this, replacing h and μ with
hx and o, respectively, in (2.7) and using Lemma 1.11 gives

d
(
o, [So]τ̂L(o)

) ≤ d(o, hx+1) + d
(
hx+1, [So]τ̂L(o)

)

≤ d(o, hx+1) + Ĥ
(
[Shx]τ̂L(hx), [So]τ̂L(o)

)

≤ d(o, hx+1) + η̂
[
d(hx, u)

]a1[d(hx, hx+1)
]b1[d

(
o, [So]τ̂L(o)

)]1–a1–b1 .

(2.12)

Letting x −→ ∞ in (2.12) and using the continuity of the metric d yields d(o, [So]τ̂L(o)) = 0.
Therefore, o ∈ [So]τ̂L(o). �

As an extension of the result of Heilpern [9, Theorem 3.1], next we study FP theorems
of Hardy–Rogers-type L-fuzzy contraction and Reich–Rus–Ćirić-type L-fuzzy contrac-
tion, availing the interpolative technique in association with d∞

L -metric for L-fuzzy sets.
Worthy of note is the fact that L-fuzzy FP results in the setting of d∞

L -metric are very
paramount in computing Hausdorff dimensions. These dimensions aid us to analyze the
concept of ε∞-space, which is of enormous gain in higher energy physics.

Theorem 2.6 Let (W , d) be a CMS and S : W −→ VF (W ) be an L-fuzzy set-valued map.
Suppose that the following conditions are satisfied: we can find c, a1, b1, c1 ∈ (0, 1) with a1 +
b1 + c1 < 1 such that, for all h,μ ∈ W \Fix(S),

d∞
L (Sh, Sμ) ≤ c

[
d(h,μ)

]b1[p(h, S(h)
]a1[p(μ, Sμ)

]c1
[

1
2
(
p(h, Sμ) + p(μ, Sh)

)]1–a1–b1–c1

.(2.13)

Then S has an L-fuzzy FP in W .

Proof Let h ∈ W be arbitrary, and define the mapping τ̂L : W −→ L \ {0L} by τ̂L(h) = 1L,
where 1L is the top element of L. Then, by hypothesis, [Sh]1L ∈ V(W ). Now, for every
h,μ ∈ W \Fix(S),

D1L (Sh, Sμ)

≤ d∞
L (Sh, Sμ)

≤ c
[
d(h,μ)

]b1[p(h, Sh)
]a1[p(μ, Sμ)

]c1
[

1
2
(
p(h, Sμ) + p(μ, Sh)

)
]1–a1–b1–c1

.

Since [Sh]1L ⊆ [Sh]τ̂L(h) ∈ V(W ), therefore d(h, [Sh]τ̂L(h)) ≤ d(h, [Sh]1L ) for each τ̂L(h) ∈ L \
{0L}. It follows that p(h, Sh) ≤ d(h, [Sh]1L ). Thus,

Ĥ
(
[Sh]1L , [Sμ]1L

)

≤ c
[
d(h,μ)

]b1[d
(
h, [Sh]1L

)]a1[d
(
μ, [Sμ]1L

)]c

×
[

1
2
(
d
(
h, [Sμ]1L

)
, d

(
μ, [Sh]1L

))]1–a1–b1–c

.

(2.14)

Therefore, Theorem 2.2 can be invited to find o ∈ W such that o ∈ [So]1L . �
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By ignoring some terms in Theorem 2.6, we can obtain the next result using similar
arguments.

Theorem 2.7 Let (W , d) be a CMS and S : W −→ VF (W ) be an L-fuzzy set-valued map.
Suppose that the following conditions are satisfied: we can find η̂ ∈ [0, 1) and a1, b1 ∈ (0, 1)
with a1 + b1 < 1 such that, for all h,μ ∈ W \Fix(S),

d∞
L (Sh, Sμ) ≤ η̂

[
d(h,μ)

]a1[p(h, S(h)
]b1[p(μ, Sμ)

]1–a1–b1 . (2.15)

Then S has an L-fuzzy FP in W .

Example 2.8 Let W = {℘x = x(x+1)
5 : x = 1, 2, . . .} ∪ {0} and d(h,μ) = |h – μ| for all h,μ ∈ W .

Then (W , d) is a CMS. Let L = {a, b, c, g, s, m, n, v} be such that a �L s �L c �L v, a �L g �L

b �L v, s �L m �L v, g �L m �L v, n �L b �L v; and each element of the doubletons {c, m},
{m, b}, {s, n}, {n, g} is not comparable. Then (L,�L) is a complete distributive lattice. Define
an L-fuzzy set-valued map S : W −→ VF (W ) as follows:

For h = 0,

S(0)(ᵀ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b, if ᵀ = 0

v, if ᵀ = ℘1

g, if ᵀ = ℘2

s, if ᵀ = ℘x, x≥ 3,

and for h ∈ W \ {0},

S(h)(ᵀ) =

⎧
⎪⎪⎨

⎪⎪⎩

c, if ᵀ = ℘1

m, if ᵀ = ℘2

v, if ᵀ ∈ {℘3,℘4, . . . ,℘x–1}, x≥ 3.

Define the mapping τ̂L : W −→ L \ {a} by τ̂L(h) = v for all h ∈ W . Then

[Sh]τ̂L(h) =

⎧
⎨

⎩
{℘1}, if h = 0

{℘3,℘4, . . . ,℘x–1}, if h �= 0, x ≥ 3.

Now, to see that the contractive condition (2.15) holds, let h,μ ∈ W \Fix(S). Clearly, h =
μ = ℘1. Therefore,

d∞
(
S(h), S(μ)

)
= 0 ≤ η̂

[
d(h,μ)

]a1[p
(
h, S(h)

)]b1[p
(
μ, S(μ)

)]1–a1–b1

for all η̂ ∈ (0, 1). This shows that (2.15) holds for all h,μ ∈ W . Therefore, all the assump-
tions of Theorem 2.7 are satisfied. We see that S has many L-fuzzy FP in W .
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In contrast, S is not a fuzzy set-valued contraction in the sense of Heilpern [9]. To show
this, take h = 0 and μ = ℘x–1, x ≥ 3, we have

sup
x≥3

Ĥ([S0]v, [S℘x–1]v)
d(0,℘x–1)

= sup
x≥3

℘x–1 – 1
℘x–1

= sup
x≥3

x(x–1)
5 – 1
x(x–1)

5

= sup
x≥3

[
1 –

5
x(x – 1)

]
= 1.

Therefore, the main result of Heilpern [9] is inapplicable to this example.

3 Applications to crisp set-valued and single-valued mappings
Let (W , d) be an MS, CB(W ) and N (W ) be the classes of nonempty closed and bounded
and nonempty subsets of W , respectively. A mapping � : W −→N (W ) is named a multi-
valued contraction (see [19]) if we can find a constant c ∈ (0, 1) such that Ĥ(Fh, Fμ) ≤
cd(h,μ) for all h,μ ∈ W . A point o ∈ W is termed an FP of � if o ∈ Fo. Nadler [19, The-
orem 5] noted that each multi-valued contraction on a CMS enjoys an FP. Among the
extensions of multi-valued contractions in the sense of Nadler that we are concerned with
here are the ones studied by Reich [23] and Rus [25].

Theorem 3.1 (see Rus [25]) Let (W , d) be a CMS and � : W −→ CB(W ) be a multi-valued
mapping. Suppose that we can find a1, b1 ∈ R+ with a1 + b1 < 1 such that, for all h,μ ∈
W ,

Ĥ(Fh, Fμ) ≤ a1d(h,μ) + b1d(μ, Fμ).

Then we can find o ∈ W such that o ∈ Fo.

Theorem 3.2 (see Reich [23]) Let (W , d) be a CMS and � : W −→ CB(W ) be a multi-
valued mapping. Suppose that we can find a1, b1 ∈ R+ with a1 + b1 + c < 1 such that, for all
h,μ ∈ W ,

Ĥ(Fh, Fμ) ≤ a1d(h,μ) + b1d(h, Fh) + cd(μ, Fμ).

Then we can find o ∈ W such that o ∈ Fo.

Herewith, we come up with some consequences and equivalent results of our main theo-
rems in the framework of both single-valued and multi-valued mappings. First, we present
multi-valued analogues of Theorems 2.2 and 2.5. They are also crisp set-valued refine-
ments of the recently established FP theorems due to Karapinar et al. [13, Theorem 4] and
Karapinar et al. [11, Corollary 1], respectively.

Corollary 3.3 Let (W , d) be a CMS and F : W −→ V(W ) be a multi-valued mapping.
Suppose that we can find c, a1, b, c,∈ (0, 1] with a1 + b + c < 1 such that, for all h,μ ∈ W \
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Fix(F),

Ĥ(Fh, Fμ) ≤ c
[
d(h,μ)

]b[d(h, Fh)
]a1[d(μ, Fμ)

]c
[

1
2
(
d(h, Fμ) + d(μ, Fh)

)
]1–a1–b–c

. (3.1)

Then we can find o ∈ W such that o ∈ Fo.

Proof Consider a mapping ϑ : W −→ L\{0L} and an L-fuzzy set-valued map S : W −→ LW

defined by

S(h)(ᵀ) =

⎧
⎨

⎩
ϑh, if ᵀ ∈ Fh

0L, if ᵀ /∈ Fh.

Taking τ̂L(h) = ϑ(h) for all h ∈ W leads to

[Sh]τ̂L(h) =
{
ᵀ ∈ W : τ̂L(h) � S(h)(ᵀ)

}
= Fh.

Therefore, Theorem 2.2 can be used to find o ∈ W such that o ∈ Fo = [So]τ̂L . �

Example 3.4 Let W = [1, 5] and d(h,μ) = |h – μ| for all h,μ ∈ W . Then (W , d) is a CMS.
Define � : W −→ V(W ) by

Fh =

⎧
⎨

⎩
[1, 2], if 1 ≤ h < 2

[3, 5], if 2 ≤ h ≤ 5.

Let h,μ ∈ W \Fix(F). Clearly, h,μ ∈ (1, 2) and

Ĥ(Fh, Fμ) = Ĥ
(
[1, 2], [1, 2]

)
= 0

≤ c
[
d(h,μ)

]b1[d(h, Fh)
]a1[d(μ, Fμ)

]c1
[

1
2
(
d(h, Fμ) + d(μ, Fh)

)]1–a1–b1–c1

.

Therefore, all the assumptions of Corollary 3.3 are satisfied. We see that � has many FP
in W .

In contrast, � is not a multi-valued contraction since for h = 1 and μ = 2 we have

Ĥ(F1, F2) = Ĥ
(
[1, 2], [3, 5]

)

= 3 > c(1) = cd(1, 2)

for all c ∈ (0, 1). Therefore, the result of Nadler [19, Theorem 5] is not applicable in this
example to obtain an FP of �. In the same way, since �1 = [1, 2] and �2 = [3, 5], we have

d(1, F1) = inf
�∈[1,2]

d(1,�) = 0,

d(2, F2) = inf
ξ∈[3,5]

d(2, ξ ) = 1.



Shagari et al. Journal of Inequalities and Applications         (2024) 2024:83 Page 13 of 17

Therefore,

Ĥ(F1, F2) = Ĥ
(
[1, 2], [3, 5]

)

= 3 > a1 + b1 = a1(1) + b1(1)

= a1d(1, 2) + b1d(2, F2)

for all a1, b1 ∈ R+ satisfying a1 + b1 < 1. That is to say, Theorem 3.1 due to Rus [25] is
inapplicable to this example to find an FP of �.

In like manner,

Ĥ(F1, F2) = Ĥ
(
[1, 2], [3, 5]

)

= 3 > a1 + c1 = a1(1) + b1(0) + c1(1)

= a1d(1, 2) + b1d(1, F1) + c1d(2, F2)

for all a1, b1, c1 ∈R+ with a1 + b1 + c1 < 1. Therefore, Theorem 3.2 due to Reich [23] is not
applicable in this case to locate any FP of �.

Corollary 3.5 (see Karapinar et al. [13, Theorem 4]) Let (W , d) be a CMS and f : W → W
be a single-valued mapping. Suppose that we can find c, a1, b1, c1 ∈ (0, 1) with a1 +b1 +c1 < 1
such that, for all h,μ ∈ W \Fix(f ), we have

d(fh, f μ) ≤ c
[
d(h,μ)

]b1[d(h, fh)
]a1[d(μ, f μ)

]c1
[

1
2
(
d(h, f μ) + d(μ, fh)

)]1–a1–b1–c1

. (3.2)

Then we can find o ∈ W such that f o = o.

Proof Let τ̂L : W −→ L \ {0L} be a mapping, and define an L-fuzzy set-valued map S :
W −→ LW as follows:

S(h)(ᵀ) =

⎧
⎨

⎩
τ̂L(h), if t = fh

0L, if ᵀ �= fh.

Then

[Sh]τ̂L(h) =
{
ᵀ ∈ W : τ̂L(h) � S(h)(ᵀ)

}
= {fh}.

Clearly, {fh} ∈ V(W ) for all h ∈ W . Note that in this case Ĥ([Sh]τ̂L(h), [Sh]τ̂L(μ)) = d(fh, f μ)
for all h,μ ∈ W . Therefore, Theorem 2.2 can be invited to find o ∈ W such that o ∈
[So]τ̂L(o) = {f o}, which signifies further that o = f o. �

By maintaining the procedure for determining Corollary 3.5, additionally, we can arrive
at the following.

Corollary 3.6 (see Karapinar et al. [11, Corollary 1]) Let (W , d) be a CMS and f : W → W
be a single-valued mapping. Suppose that we can find c, a1, b1 ∈ (0, 1) with a1 + b1 < 1 such
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that, for all h,μ ∈ W \Fix(f ), we have

d(fh, f μ) ≤ c
[
d(h,μ)

]a1[d(h, fh)
]b1[d(μ, f μ)

]1–a1–b1 . (3.3)

Then we can find o ∈ W such that f o = o

4 Applications to Fredholm-type integral inclusions
Herewith, we apply Theorem 2.2 to investigate new conditions for the existence of solu-
tions to a Fredholm-type integral inclusion, given as

h(ᵀ) ∈
[
τ̂ (ᵀ) +

∫ j

d
L

(
ᵀ, t, h(t)

)
dt,ᵀ ∈ [d, j]

]
, (4.1)

where h ∈ C([d, j],R) is an unknown real-valued continuous function defined on [d, j], τ̂

is a given real-valued continuous function, and L is a given set-valued map. The family of
nonempty compact and convex subsets of R is denoted by �cv(R).

Now, we study the existence of solutions of (4.1) under the following assumptions.

Theorem 4.1 Let W = C([d, j],R) and suppose that:
(C1) the set-valued map L : [d, j] × [d, j] ×R −→�cv(R) is such that, for every h ∈ W , the

map Lh(ᵀ, t) := L(ᵀ, t, h(t)) is lower semicontinuous;
(C2) τ̂ ∈ C([d, j],R);
(C3) we can find a function ξ : (0,∞) −→ R such that, for all h,μ ∈ W ,

Ĥ
(
Lh(ᵀ, t), Lμ(ᵀ, t)

) ≤ π (ᵀ, t)ξ (ᵀ)
(∣∣h(t) – μ(t)

∣
∣)r

for each ᵀ, t ∈ [d, j], where supd≤t≤j(
∫ j

d π (ᵀ, t) ds) ≤ 1, π (ᵀ, .) ∈ L1[d, j] and r ∈ (0, 1).
Then the integral inclusion (4.1) has at least one solution in W .

Proof Define d : W × W −→R by

d(h,μ) = max
d≤ᵀ≤j

∣∣h(h) – μ(ᵀ)
∣∣ for all h,μ ∈ W ,

then (W , d) is a complete MS. Let S : W −→ LW be an L-fuzzy set-valued map. Consider
the τ̂L-level set of S defined as

[Sh]τ̂L(h) =
{
μ ∈ W : μ(ᵀ) ∈ τ̂ (ᵀ) +

∫ j

d
L

(
ᵀ, t, h(t)

)
ds,ᵀ ∈ [d, j]

}
.

Obviously, the set of solutions of equation (4.1) coincides with the set of L-fuzzy FP of
the set-valued map S. Therefore, we need to show that under the given assumptions, S
has at least one L-fuzzy FP in W . To do this, we will verify that all the assumptions of
Theorem 2.2 are satisfied.

Let h ∈ W be arbitrary. Since the set-valued map Lh : [d, j]2 −→ �cv(R) is lower semi-
continuous, it follows from Michael’s selection theorem ([15, Theorem 1]) that we can find
a continuous map ρh : [d, j]2 −→ R such that ρh(ᵀ,ρh(ᵀ, t) ∈ Lh(ᵀ, t) for each (ᵀ, t) ∈ [d, j]2.
Thus, τ̂ (ᵀ) +

∫ j
d ρh(ᵀ, t) ds ∈ [Sh]τ̂L(h). So [Sh]τ̂L(h) is nonempty. One can easily see that
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[Sh]τ̂L(h) is a compact subset of W . In other words, given that τ̂ ∈ C([d, j]) and Lh(ᵀ, t)
is continuous on [d, j]2, their range sets are also continuous for each h ∈ W .

Take h1, h2 ∈ W . Then we can find τ̂L(h1), τ̂L(h2) ∈ L \ {0L} such that [Sh1]τ̂L(h1) and
[Sh2]τ̂L(h2) are nonempty compact subsets of W . Then we can find an arbitrary point
μ1 ∈ [Sh1]τ̂L(h1) with

μ1(ᵀ) ∈ τ̂ (ᵀ) +
∫ j

d
L

(
ᵀ, t, h1(t)

)
ds, ᵀ ∈ [d, j].

This means that for each (ᵀ, t) ∈ [d, j]2 there exists ρh1 ∈ Lh1 (ᵀ, t) such that

μ1(ᵀ) = τ̂ (ᵀ) +
∫ j

d
ρh1 (ᵀ, t) ds, ᵀ ∈ [d, j].

Since from (C2)

Ĥ
(
L

(
ᵀ, t, h1(t)

)
,L

(
ᵀ, t, h2(t)

)) ≤ π (ᵀ, t)ξ (ᵀ)
(∣∣h1(t) – h2(t)

∣
∣)r

for each ᵀ, t ∈ [d, j] and r ∈ (0, 1), we can find ρh2 ∈ Lh2 (ᵀ, t) such that

∣∣ρh1 (ᵀ, t) – ρh2 (ᵀ, t)
∣∣ ≤ π (ᵀ, t)ξ (ᵀ)

(∣∣h1(t) – h2(t)
∣∣)r

for all (ᵀ, t) ∈ [d, j]2.
Now, consider the set-valued map M defined by

M(ᵀ, t) = Lh2 (ᵀ, t) ∩ {
� ∈R :

∣
∣ρh1 (ᵀ, t) – �

∣
∣ ≤ π (ᵀ, t)ξ (ᵀ)

(∣∣h1(t) – h2(t)
∣
∣)r}.

Taking into account the fact that from (C1), M is lower semicontinuous, we can find a
continuous map ρh2 : [d, j]2 −→R such that ρh2 (ᵀ, t) ∈M(ᵀ, t) for all (ᵀ, t) ∈ [d, j]2. Then

μ2(ᵀ) = τ̂ (ᵀ) +
∫ j

d
ρh1 (ᵀ, t) ds

∈ τ̂ (ᵀ) +
∫ j

d
L

(
ᵀ, t, h2(t)

)
ds, ᵀ ∈ [d, j].

Thus, μ2 ∈ [Sh2]τ̂L(h2) and

∣
∣μ1(ᵀ) – μ2(ᵀ)

∣
∣ ≤

(∫ j

d

∣
∣ρh1 (ᵀ, t) – ρh2 (ᵀ, t)

∣
∣ds

)

≤ sup

(∫ j

d
π (ᵀ, t) ds

)
ξ (ᵀ)

(∣∣h1(t) – h2(t)
∣∣)r

≤ ξ (ᵀ)
(∣∣h1(t) – h2(t)

∣∣)r .

Therefore,

Ĥ
(
[Sh1]τ̂L(h1), [Sh2]τ̂L(h2)

) ≤ ξ (ᵀ)
(
d(h1, h2)

)r . (4.2)
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Therefore, taking h = h1 and μ = h2 in (4.2) yields

Ĥ
(
[Sh]τ̂L(h), [Sμ]τ̂L(μ)

) ≤ ξ (ᵀ)
(
d(h,μ)

)r .

Therefore, all the conditions of Theorem 2.2 are fulfilled with ξ (ᵀ) = cᵀ for all ᵀ > 0 and
c ∈ (0, 1). As a result, the conclusion of Theorem 4.1 holds good. �

5 Conclusion
New invariant point results of L-fuzzy maps were introduced and conditions under which
such mappings possess FPs were studied (see Theorems 2.2, 2.5, 2.6, 2.7) in this paper. The
presented results are refinements of some already announced ideas in [9–13, 19, 23, 25].
Comparative examples (Examples 2.8 and 3.4) were constructed to support the theoretical
assumptions of the proposed concepts. From the usability point of consideration, Theo-
rem 2.2 was applied to set up new condition for analyzing the existence of solutions to a
Fredholm-type integral inclusion.

The findings of this work widened up the coverage of nonclassical mathematics by in-
corporating interpolation approaches in L-fuzzy FP theory. However, the ideas presented
herein, being set up in the framework of MS, are rudimentary. Whence, they can be fine-
tuned when studied in the setting of some generalized MS or quasi-MS.
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3. Ćirić, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45(2), 267–273 (1974)
4. Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order. Cambridge Unversity Press, Cambridge (1990)
5. Eyaraman, M., Suganthi, M., Shatanawi, W.: Common fixed point theorems in intuitionistic generalized fuzzy cone

metric spaces. FMathematics 8(8), 12 (2020)
6. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)



Shagari et al. Journal of Inequalities and Applications         (2024) 2024:83 Page 17 of 17

7. Gupta, V., Shatanawi, W., Kanwar, A.: Coupled fixed point theorems employing CLR-property on V-fuzzy metric
spaces. Mathematics 8(3), 404 (2020)

8. Hardy, G.E., Rogers, T.D.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16(2), 201–206 (1973)
9. Heilpern, S.: Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 83(2), 566–569 (1981)
10. Karapinar, E.: Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2(2), 85–87

(2018)
11. Karapinar, E., Agarwal, R., Aydi, H.: Interpolative Reich–Rus–Ćirić type contractions on partial metric spaces.
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