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Abstract
In uniformly convex Banach spaces, we study within this research Fibonacci–Ishikawa
iteration for monotone asymptotically nonexpansive mappings. In addition to
demonstrating strong convergence, we establish weak convergence result of the
Fibonacci–Ishikawa sequence that generalizes many results in the literature. If the
norm of the space is monotone, our consequent result demonstrates the
convergence type to the weak limit of the sequence of minimizing sequence of a
function. One of our results characterizes a family of Banach spaces that meet the
weak Opial condition. Finally, using our iterative procedure, we approximate the
solution of the Caputo-type nonlinear fractional differential equation.

Mathematics Subject Classification: 47H09; 47H10; 47H40; 46B20

Keywords: Monotone asymptotically nonexpansive mapping; Bounded away
sequence; Fibonacci–Ishikawa iteration; Minimizing sequence; Weak Opial condition

1 Introduction
A branch of mathematics that is still developing is fixed point theory, which is connected
to functional analysis and topology. The rapidly expanding fields of nonlinear operators
and nonlinear analysis heavily rely on fixed point theory. Fixed point theorems for con-
tractive mappings and their fixed points have historically been fundamental theoretical
tools in topology, differential equations, economy, game theory, optimal control, dynam-
ics, functional analysis, and so on. Many authors have thought of several generalizations
and expansions of contractive mappings [3, 4, 6, 20]. Interest in monotone Lipschitzian
mappings arose after Ran et al. [16] extended the Banach contraction concept to a par-
tially ordered metric structure. The fixed point theory applied to mappings having differ-
ent conditions has numerous uses (see [1, 9, 17]).

Certain iteration procedures are frequently employed to estimate fixed points in con-
tractive mappings. As an illustration, consider the Picard [8], Mann [13], Ishikawa [11],
Noor [14], and KF-iteration [18] iterations. Many mathematicians have been studying
these iterative processes in the past few years.
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Goebel et al. [10] developed the notion of asymptotically nonexpansive mappings in
1972. More specifically, they demonstrated that there is always a fixed point for those
mappings specified on a nonvoid convex closed and bounded set in a uniformly convex
normed linear space. Their evidence was unhelpful. For these kinds of mappings, Schu
[19] created a sequence using a modified Mann iteration, his method has been shown to
be highly effective in computing applications. Following Schu, Xu et al. [21] presented a
modified Ishikawa iteration, and after that, Malih [12] demonstrated several fixed point
results under Fibonacci–Mann and Ishikawa iterations in 2021, as well as a few results of
weak convergence under the Opial condition.

Connected to the T iterates, the positive behavior of the Lipschitz constants is the basis
for the inclusion of the T iterate in the original Ishikawa iteration sequence. When demon-
strating the presence of a fixed point, the Ishikawa iteration fails to produce a monotone
sequence for monotone mappings. Unlike regular Lipschitzian mappings, monotone Lips-
chitzian mappings may not exhibit pleasant topological behavior because the Lipschitzian
condition may not hold across the space and is only satisfied by comparable elements. Even
the continuity of these mappings may be broken. There is not always a single fixed point
when the Banach contraction principle is extended for these kinds of mappings.

Inspired by the aforementioned, we study in this research Fibonacci–Ishikawa iteration
in uniformly convex Banach spaces for monotone asymptotically nonexpansive mappings.
Alongside proving strong convergence, we also prove weak convergence of the Fibonacci–
Ishikawa sequence utilizing the weak Opial condition, which is a characteristic of both
classical Banach spaces and any Hilbert space. We shall demonstrate that in order to
achieve the weak convergence of the Fibonacci–Ishikawa iteration procedure, a less ro-
bust Opial condition, which is retained Lp([0, 1]), 1 < p < +∞, is required. Ultimately, we
prove that our iterative procedure approximates the solution of the Caputo-type nonlinear
fractional differential equation.

2 Preliminaries
To understand the way of defining Fibonacci–Ishikawa iteration procedure, let us first
present the definitions of Mann iteration [13], modified Mann iteration [19], Fibonacci–
Mann iteration [12], Ishikawa iteration [11], and modified Ishikawa iteration [21] proce-
dures respectively as follows:

um+1 = (1 – pm)um + pmTum,

um+1 = (1 – pm)um + pmTmum,

um+1 = (1 – pm)um + pmTF(m)um,

um+1 = (1 – pm)um + pmT
(
(1 – qm)um + qmTum

)
,

and

um+1 = (1 – pm)um + pmTm(
(1 – qm)um + qmTmum

)
.

Let B represent a linear real space. In B, we first supply a partial order � as follows. If a
relation � in B meets any of the following criteria, it is referred to as partial order:
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(i) u � u,∀u ∈ B,
(ii) u � v, v � u ⇒ u = v,∀u, v ∈ B,

(iii) u � v, v � w ⇒ u � w,∀u, v, w ∈ B,
(iv) u � v, w � x ⇒ u + w � v + x,∀u, v, w, x ∈ B,
(v) u � v ⇒ λu � λv,∀u, v ∈ B and λ ≥ 0.

In this case, the pair denoted by (B,�) turns into a partially ordered linear space. In (B,�),
now we establish a norm denoted as ‖ · ‖. Afterward, (B,‖ · ‖,�) is now a normed linear
space that is partially ordered. Partially ordered Banach space (B,‖ · ‖,�) is defined as
complete in relation to the metric defined using the aforementioned norm ‖ ·‖. If for every
ε > 0 there exists some δ > 0 so that ‖u‖ ≤ 1, ‖v‖ ≤ 1, and ‖u – v‖ ≥ ε for u, v ∈ B implies
‖u+v‖ ≤ 2(1–δ), then B is known as a uniformly convex Banach space. Subsets of the type
{u ∈ B : u � w}, {u ∈ B : v � u}, and {u ∈ B : v � u � w} for all v, w ∈ B are known as order
intervals. An order interval C is called convex if (1 – λ)u + λv ∈ C,∀u, v ∈ C, λ ∈ [0, 1].

Definition 2.1 [7] In a convex Banach space (B,‖ · ‖), the function δB(ε), defined in [0, 2]
as δB(ε) = min{1 – ‖u+v‖

2 : ‖u – v‖ ≥ ε,‖u‖ ≤ 1,‖v‖ ≤ 1}, is known as a modulus of uni-
form convexity. This space is “more convex” if δB(ε) is less. In Banach spaces, “uniform
convexity” is defined as the tendency of the modulus of convexity to zero as ε tends to
zero.

Let U be an ultrafilter over N that is nontrivial. It is established that for each bounded
sequence of reals {αm}, limm,U αm exists [2]. In a Banach space B, the set l∞(B) = {{um} ⊂
B : ‖{um}‖ = maxm ‖um‖ < ∞} forms a Banach space in respect of the norm ‖ · ‖∞ and the
set B0 = {{um} ∈ l∞(B) : limm, U ‖um‖ = 0} is closed subspace in l∞(B). The ultrapower of
B is the quotient space BU = l∞(B)/B0 [7], in which the norm for any u ∈ BU is given by
‖u‖U = limm,U ‖um‖, where u = {um}.

Two structures are involved in the idea of monotone Lipschitzian mappings: a metric
distance and a partial order. These two naturally occurring structures, with their intrigu-
ing qualities of natural interweaving, are present in the majority of the places used for
applications.

Definition 2.2 [10] In any partially ordered Banach space (B,‖·‖,�), let C be any nonvoid
set and T : C −→ C be any self mapping. If for arbitrary u, v ∈ C with u � v:

(i) Tu � Tv, then T is known as monotone.
(ii) ‖Tu – Tv‖ � α‖u – v‖ for some α ≥ 0 and T is monotone, then T is known as

monotone Lipschitzian.
(iii) ‖Tmu – Tmv‖ � αm‖u – v‖, m ≥ 1, T is monotone and for some sequence

{αm} ⊂ [1,∞) with limm→∞ αm = 1, then T is known as monotone asymptotically
nonexpansive.

If a map T transforms bounded sets into comparatively compact ones, it is referred to as
compact.

In 2018, Alfuraidan et al. [5], for monotone asymptotically nonexpansive mappings, the
fixed point results of Goebel et al. [10] are presented in a monotone form.

Theorem 2.3 [5] In any partially ordered Banach space (B,‖ · ‖,�), let C be any closed
convex set having at least two points and T : C −→ C be a monotone asymptotically nonex-
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pansive mapping. If T is continuous and u0 � Tu0 (respectively, Tu0 � u0) for some u0 ∈ C,
then T fixes a point u so that u0 � u (respectively, u � u0).

3 Fibonacci–Ishikawa iteration procedure
The characteristics of the Fibonacci–Ishikawa iteration procedure connected to mono-
tone asymptotically nonexpansive mappings in partially ordered Banach space are exam-
ined in this section. Let us start with the concept of Fibonacci–Ishikawa iteration.

Definition 3.1 In any Banach space (B,‖·‖), let C be any nonvoid convex set and T : C −→
C be any self mapping. Then the Fibonacci–Ishikawa iteration procedure is described as

um+1 = (1 – pm)um + pmTF(m)((1 – qm)um + qmTF(m)um
)
, ∀m ∈N∪ {0}, (1)

for random choice u0 ∈ C, where {pm}, {qm} are bounded away sequences in [0, 1] and
{F(m)} is the Fibonacci sequence described as F(0) = F(1) = 1, F(m + 1) = F(m – 1) + F(m).

Now we have a crucial lemma.

Lemma 3.2 In any partially ordered Banach space (B,‖ · ‖,�), let C be any nonvoid
bounded convex set and T : C −→ C be any monotonic self mapping. Then, for random
choice u0 ∈ C with u0 � Tu0 (respectively, Tu0 � u0), if u is a fixed point of T so that u0 � u
(respectively, u � u0), then for all m ∈ N the Fibonacci–Ishikawa iteration procedure (1)
satisfies

(a) u0 � um � u (respectively, u � um � u0),
(b) Tmu0 � Tm+1u0 (respectively, Tm+1u0 � Tmu0),
(c) um � um+1 � T2F(m)um (respectively, T2F(m)um � um+1 � um),
(d) TF(m)u0 � TF(m)um � u (respectively, u � TF(m)um � TF(m)u0).

Proof For arbitrary u0 ∈ C, it is given that u0 � Tu0 and u0 � u. Also, given that T is
monotone, we get Tmu0 � Tm+1u0 and Tmu0 � Tmu = u for all m ∈ N. This proves(b).

Now, we have

u1 = (1 – p0)u0 + p0TF(0)((1 – q0)u0 + q0TF(0)u0
)

= u0 + p0
(
T

(
u0 + q0(Tu0 – u0)

)
– u0

)

and

u1 = (1 – p0)u0 + p0TF(0)((1 – q0)u0 + q0TF(0)u0
)

= u0 + p0
(
T

(
u0 + q0(Tu0 – u0)

)
– u0

)

� Tu0 + p0
(
T

(
Tu0 + q0

(
T(Tu0) – Tu0

))
– Tu0

)

� Tu0.

Since {pm}, {qm} are bounded away sequences in [0, 1], i.e., p0, q0 > 0, we have u0 � u1 �
Tu0.
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Again

u1 = (1 – p0)u0 + p0TF(0)((1 – q0)u0 + q0TF(0)u0
)

� (1 – p0)u + p0TF(0)((1 – q0)u + q0TF(0)u
)

� u.

Consequently, u0 � u1 � u and Tmu0 � Tmu1 � Tmu = u for all m ∈ N.
Since

u2 = (1 – p1)u1 + p1TF(1)((1 – q1)u1 + q1TF(1)u1
)

and the order intervals are convex, we have u1 � u2 � TF(1)((1 – q1)u1 + q1TF(1)u1) and
u0 � u1 � (1 – q1)u1 + q1TF(1)u1 � TF(1)u1. Consequently, u1 � u2 � T2F(1)u1 � T2F(1)u =
u.

Again, since

u3 = (1 – p2)u2 + p2TF(2)((1 – q2)u2 + q2TF(2)u2
)

and the order intervals are convex, we have u2 � u3 � TF(2)((1 – q2)u2 + q2TF(2)u2) and
u2 � (1 – q2)u2 + q2TF(2)u2 � TF(2)u2. Consequently, u0 � u2 � u3 � T2F(2)u2 � T2F(2)u =
u.

Proceeding in this way, we have u0 � um � um+1 � T2F(m)um � T2F(m)u = u, also,
TF(m)u0 � TF(m)um � u. This proves (a), (c), and (d). �

The sequence {um} is guaranteed to be monotonic by property (c). The results below
demonstrate how crucial this is.

Proposition 3.3 In any partially ordered reflexive Banach space (B,‖ ·‖,�), let a sequence
{um} be bounded monotone decreasing or increasing. Then {um} is weakly convergent and if
for any nonvoid compact set C in B, limm→∞ d(um, C) = 0, then {um} is strongly convergent.

Proof Assume that {um} increases monotonically, without losing generality. It can be ob-
served that {um} has a bounded subsequence {umn}, which is weakly convergent to a point
u ∈ B, as B is reflexive and {um} is bounded. According to our assertion, {ump}, any other
subsequence of {um}, likewise weakly convergent to u. Let v ∈ B be another point, at which
{ump} is weakly convergent. Order intervals are closed and convex, hence for any m ≥ 1, we
must have um � v since {um} increases monotonically. Specifically, ump � v implies u � v
for every m ≥ 1. This will undoubtedly make u = v. Thus, {um} is weakly convergent.

Since for any nonvoid compact set C in B, limm→∞ d(um, C) = 0, then we can find a
sequence {vm} in C so that limm→∞ ‖um, vm‖ = 0. As {um} is convergent weakly to u, {vm}
also converges weakly to u. Keep in mind that a sequence must be strongly convergent if
it is in a compact subset and is weakly convergent. Conversely, suppose that there is no
strong convergence of {vm} to u. Then, for some ε > 0, there will be a subsequence {vmp}
so that minm≥1 ‖vmp – u‖ ≥ ε. Now the compactness of C will give a subsequence {vmq}
of {vmp}, which is strongly convergent. It may be observed that {vmq} converges strongly
to u, while {vm} converges weakly. It is implied by this contradiction that {vm} strongly
converges to u, and that {um} also strongly converges to u. �
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Remark 3.4 The Proposition 3.3 demonstrates the helpful behavior of monotone se-
quences. Surprisingly, the function spaces Lp([0, 1]), where 1 < p < +∞, known as
Lebesgue function spaces, satisfy a similar result for monotone sequences even though
they violate the weak Opial condition [15]. This fact will be covered in more detail in a
later section.

Now we have another useful result.

Lemma 3.5 In any partially ordered Banach space (B,‖ · ‖,�), let C be any nonvoid
bounded convex set and T : C −→ C be any monotone asymptotically nonexpansive map-
ping with Lipschitz constants αm so that

∑∞
m=0(αF(m) – 1)2 < ∞. Then, for random choice

u0 ∈ C with u0 � Tu0 (respectively, Tu0 � u0), if u is a fixed point of T so that u0 � u (respec-
tively, u � u0), then the Fibonacci–Ishikawa iteration procedure (1) provides the existence
of limm→∞ ‖um – u‖.

Proof For arbitrary u0 ∈ C, it is given that u0 � Tu0 and u0 � u. Now, from the Fibonacci–
Ishikawa iteration procedure (1), for all m ∈ N, we have

‖um+1 – u‖ =
∥∥(1 – pm)um + pmTF(m)((1 – qm)um + qmTF(m)um

)
– u

∥∥

≤ (1 – pm)‖um – u‖ + pm
∥
∥TF(m)((1 – qm)um + qmTF(m)um

)
– TF(m)u

∥
∥

≤ (1 – pm)‖um – u‖ + pmαF(m)
∥
∥(1 – qm)um + qmTF(m)um – u

∥
∥

≤ (1 – pm)‖um – u‖ + pm(1 – qm)αF(m)‖um – u‖
+ pmqmαF(m)

∥
∥TF(m)um – TF(m)u

∥
∥

≤ (1 – pm)‖um – u‖ + pm(1 – qm)αF(m)‖um – u‖
+ pmqmα2

F(m)‖um – u‖
= ‖um – u‖ +

(
–pm + pmαF(m) – pmqmαF(m) + pmqmα2

F(m)
)‖um – u‖

= ‖um – u‖ + pm(1 + qmαF(m))(αF(m) – 1)‖um – u‖.

Let δ(C) = max{‖u – v‖ : u, v ∈ C}, and since {pm}, {qm} are bounded away sequences in
[0, 1], we get

‖um+1 – u‖ ≤ ‖um – u‖ + δ(C)(αF(m) – 1)2, ∀m ∈N.

Thus, for any m, n ≥ 1, we get

‖um+n – u‖ ≤ ‖um – u‖ + δ(C)
n–1∑

i=0

(αF(m+i) – 1)2.

Consecutively limiting as n → ∞ and m → ∞ respectively, we get

lim sup
n→∞

‖un – u‖ ≤ lim inf
m→∞ ‖um – u‖ + δ(C)

∞∑

i=m

(αF(i) – 1)2

= lim inf
m→∞ ‖um – u‖,

which indicates the intended outcome. �
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We employ the notion of ultrapower in the following result.

Lemma 3.6 In any partially ordered uniformly convex Banach space (B,‖ · ‖,�), let C
be any nonvoid convex weakly compact set and the mapping T : C −→ C is a continu-
ous asymptotically nonexpansive and monotonic having Lipschitz constants αm so that
∑∞

m=0(αF(m) – 1)2 < ∞. Then, for arbitrary u0 ∈ C with u0 � Tu0 (respectively, Tu0 � u0),
the Fibonacci–Ishikawa iteration procedure (1) satisfies limm→∞ ‖um – TF(m)um‖ = 0.

Proof For arbitrary u0 ∈ C, it is given that u0 � Tu0. Utilizing Theorem 2.3, T fixes a point
u so that u0 � u and utilizing Lemma 3.6, limm→∞ ‖um – u‖ exists. Let R = limm→∞ ‖um –
u‖.

Case 1. Let R = 0. Then

∥
∥um – TF(m)um

∥
∥ ≤ ‖um – u‖ +

∥
∥TF(m)um – u

∥
∥

= ‖um – u‖ +
∥∥TF(m)um – TF(m)u

∥∥

≤ ‖um – u‖ + αF(m)‖um – u‖
= (1 + αF(m))‖um – u‖

implies limm→∞ ‖um – TF(m)um‖ = 0.
Case 2. Let R > 0. Then, from the proof of Lemma 3.5, we have the inequality

‖um+1 – u‖ ≤ (1 – pmqmαF(m))‖um – u‖ + pmqmαF(m)
∥
∥TF(m)um – u

∥
∥.

Now if U is a nontrivial ultrafilter over N, then limU pm = p, limU pm = p for some 0 < p,
q < 1, and consequently

R = lim
U

‖um+1 – u‖ ≤ lim
U

(1 – pqαF(m))‖um – u‖ + pq lim
U

αF(m)
∥
∥TF(m)um – u

∥
∥

≤ R – pq lim
U

αF(m)‖um – u‖ + pq lim
U

αF(m)
∥
∥TF(m)um – u

∥
∥

implies

R ≤ lim
U

∥
∥TF(m)um – u

∥
∥.

Again ‖TF(m)um – u‖ ≤ ‖TF(m)um – TF(m)u‖ ≤ αF(m)‖um – u‖ implies lim sup
m→∞

‖TF(m)um –

u‖ ≤ R. Thus R ≤ limU ‖TF(m)um –u‖ ≤ lim sup
m→∞

‖TF(m)um –u‖ ≤ R implies limU ‖TF(m)um –

u‖ = R.
Let us set a = {um}U , b = {TF(m)um}U and c = {u}U in the ultrapower BU . Then ‖a – c‖U =

‖b – c‖U = ‖pa + (1 – p)b – c‖U = R. Since B is uniformly convex, we have BU is strictly
convex and as 0 < p < 1, we get a = b, i.e., limU ‖um – TF(m)um‖ = 0. From the arbitrariness
of the nontrivial ultrafilter U , we deduce that limm→∞ ‖um – TF(m)um‖ = 0. �

Now we have a result that generalizes the result of Malih [12] in monotone sense.
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Theorem 3.7 In any partially ordered uniformly convex reflexive Banach space (B,‖·‖,�),
let C be any nonvoid convex weakly compact set and the mapping T : C −→ C is asymp-
totically nonexpansive and monotonic having Lipschitz constants αm so that

∑∞
m=0(αF(m) –

1)2 < ∞ and for some m ≥ 1, Tm is compact. Then, for arbitrary u0 ∈ C with u0 � Tu0 (re-
spectively, Tu0 � u0), the Fibonacci–Ishikawa iteration procedure (1) strongly converges to
a point, say u, which is fixed by T and u0 � u (respectively, u � u0).

Proof For arbitrary u0 ∈ C, it is given that u0 � Tu0. Utilizing Lemmas 3.2 and 3.6, we
have u0 � um,∀m ∈ N and limm→∞ ‖um – TF(m)um‖ = 0. Let n ≥ 1 be fixed so that Tn is
compact. Thus C0 = Tn(C) is nonvoid compact set and Tm(v) ∈ C0, v ∈ C for any m >
n. Consequently, TF(m)(um) ∈ C0 as m > n implies F(m) > n. Hence limm→∞ d(un, C0) ≤
limm→∞ ‖um – TF(m)um‖ = 0 and limm→∞ d(Tmu0, C0) = 0. So, the strong convergence of
{um} and {Tmu0} is implied by Proposition 3.3 as B is reflexive and both sequences are
monotone.

Also, {TF(m)um} likewise exhibits strong convergence and possesses an identical limit
as {um}. Define u as the limit of {Tmu0}, then we assert that u represents a fixed point of
T . As we know Tmu0 � u,∀m ∈ N, by the monotonicity of {Tmu0} and ‖Tm+1u0 – Tu‖ ≤
α1‖Tmu0 – u‖, ∀m ∈ N, by definition. Consequently, {Tmu0} converges to both Tu and u,
i.e., Tu = u. Again, utilizing Lemma 3.2, we get TF(m)u0 � TF(m)um � u,∀m ∈ N. The fact
that order intervals are closed leads us to the conclusion that u is likewise the limit of {um}
and TF(m)um, thereby indicating that {um} strongly converges to a fixed point of T . �

In the subsequent outcome, we prove that the minimizing sequence of some functions is
strongly convergent to the limit of the sequence, at which it converges weakly if the norm
is monotone. In a Banach space (B,‖ · ‖,�) if sup{‖v – u‖,‖w – v‖} ≤ ‖w – u‖ whenever
u � v � w,∀u, v, w ∈ B, then the norm ‖ · ‖ of B is known as monotone. If a sequence {um}
is monotone increasing (respectively, decreasing) and the norm ‖ · ‖ is monotone, then for
any v ∈ B, {‖um – v‖} is a decreasing sequence so that um � v (respectively, v � um), and
so lim inf

m→∞ ‖um – v‖ = limm→∞ ‖um – v‖ = infm→∞ ‖um – v‖. Let C ⊂ B and ζ : C −→ [0,∞),
then a sequence {um} is known as a minimizing sequence of ζ if limm→∞ ζ (um) = inf{ζ (u) :
u ∈ C}.

Proposition 3.8 Let ‖ · ‖ be a monotone norm in a uniformly convex Banach space (B,‖ ·
‖,�) and {um} be a monotone increasing (respectively, decreasing) sequence having weak
limit v. Let

C = {u : um � u respectively, u � um∀m ∈N}

and define ζ : C −→ [0,∞) by ζ (u) = limm→∞ ‖um – u‖. Then all possible minimizing se-
quences {vm} of ζ in C strongly converge to v. In fact, ζ has a unique minimal.

Proof Let us assume δB to be the modulus of uniform convexity of (B,‖ · ‖,�). It is given
that {um} is a monotone increasing sequence having weak limit v, as the order intervals
are convex and closed, we get v ∈ C. In fact, um � v � w,∀m ∈N for any w ∈ C.

Since the norm ‖ · ‖ is monotone, we have ‖v – um‖ ≤ ‖w – um‖, ∀m ∈ N, and so
ζ (v) ≤ ζ (w). This shows that v in C is the minimum point of ζ . Now, if {vm} in C is a
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minimizing sequence of ζ and since ‖vm – v‖ ≤ ζ (vm) + ζ (v), ∀m ∈ N, we get {vm} is a
bounded sequence.

Again, if ζ (v) = 0, {vm} converges strongly to v. On the contrary, suppose that {vm} does
not converge strongly to v, subsequently for some ε > 0, there exists a subsequence {vmn}
so that ‖vmn – v‖ ≥ ε. Let us define ξ = δB( ε

sup{‖vm–um‖,‖v–um‖}+1 ), since {vm} is bounded, ξ is
well defined. Since B is uniformly convex, we get

∥∥∥
∥um –

vmn + v
2

∥∥∥
∥ ≤ (1 – ξ ) sup

{‖um – vmn‖,‖um – v‖}, ∀m, n ∈N.

Limiting m → ∞, we get ζ ( vmn +v
2 ) ≤ (1 – ξ ) sup{ζ (vmn ), ζ (v)} = (1 – ξ )ζ (vmn ), i.e., ζ (v) ≤

(1 – ξ )ζ (vmn ), ∀n ∈ N. Again, limiting n → ∞, we get ζ (v) ≤ (1 – ξ )ζ (v). Since ζ (v) > 0, we
arrived at a contradiction to ξ ≥ 1. �

The conclusion below, which characterizes a family of Banach spaces that meet the weak
Opial condition, is a direct outcome of Proposition 3.8.

Theorem 3.9 Let (B,‖ · ‖,�) be a partially ordered Banach space that is uniformly convex
and has closed, convex order intervals. Let us assume that ‖ · ‖ is a monotone norm. The
weak Opial condition is then satisfied by (B,‖ · ‖,�).

This consequence arises from the fact that the function spaces Lp([0, 1]), 1 < p < +∞
having monotone norm are uniformly convex.

Corollary 3.10 The function spaces Lp([0, 1]), 1 < p < +∞, known as Lebesgue function
spaces, satisfy the weak Opial condition.

Our next topic of discussion is the Fibonacci–Ishikawa sequence’s weak convergence,
which is mentioned in Remark 3.4 and that generalizes the results of Malih [12] in mono-
tone sense and the result of Alfuraidan et al. [5]. Typically, this is accomplished by the
weak Opial condition [15], which is a characteristic that both classical Banach spaces
and any Hilbert space satisfy. We shall demonstrate that in order to achieve the weak
convergence of the Fibonacci–Ishikawa iteration procedure, a weaker Opial condition,
which is retained in Lp([0, 1]), 1 < p < +∞, is required. If for any weakly convergent se-
quence {um} in a Banach space (B,‖ · ‖,�), which is monotone increasing (respectively,
decreasing), converging to u, we have lim inf

m→∞ ‖um – u‖ < lim inf
m→∞ ‖um – v‖, ∀u 
= v with

um � v respectively, v � um ∀m ∈ N.

Theorem 3.11 Let ‖ · ‖ be a monotone norm in any partially ordered uniformly convex
reflexive Banach space (B,‖ · ‖,�), C be any nonvoid convex weakly compact set, and the
mapping T : C −→ C is a monotone asymptotically nonexpansive having Lipschitz con-
stants αm so that

∑∞
m=0(αF(m) –1)2 < ∞ and for some m ≥ 1. Then, for arbitrary u0 ∈ C with

u0 � Tu0 (respectively, Tu0 � u0), the Fibonacci–Ishikawa iteration procedure (1) weakly
converges to a point, say u, which is fixed by T and u0 � u (respectively, u � u0).

Proof For arbitrary u0 ∈ C, it is given that u0 � Tu0. We now understand that the se-
quence {Tmu0} is monotonic increasing and weakly convergent to some point u because
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C is weakly compact. It can be inferred from Theorem 3.9 that B meets the weak Opial
condition. Thus, the minimal of ζ : C∞ −→ [0,∞) is u, where C∞ = {v : Tmu0 � v,∀m ∈N}
and ζ is described as

ζ (v) = lim inf
m→∞

∥∥Tmu0 – v
∥∥ = lim

m→∞
∥∥Tmu0 – v

∥∥.

From the definition of ζ and T , we have

ζ (u) ≤ ζ
(
Tmv

) ≤ αmζ (u), ∀m ∈N,

which further implies that {Tmu} is a minimizing sequence of ζ . Utilizing Proposition 3.8,
{Tmu} strongly converges to u, Tmu0 � u implies Tm+1u0 � Tu, and by the closeness of
the order intervals, we have u � Tu. Again, based on the monotone property of T , we can
infer that the sequence {Tmu} converges to u and increases monotonically. Therefore, for
any m ∈N, we must have Tmu � u. Specifically, T(u) � u suggests that Tu = u.

Now Lemma 3.2 implies TF(m)u0 � TF(m)um � u,∀m ∈ N. We deduce that {TF(m)um}
also converges weakly to u by the convex and closed property of the order intervals and the
monotone property of the sequence {Tmu0}. Hence, by Lemma 3.6, we get limm→∞ ‖um –
TF(m)um‖ = 0, that is, {um} weakly converges to a point u, which is fixed by T . �

Now we provide some examples to understand and increase the readability of the theory.

Example 3.12 An example of a uniformly convex Banach space is the lp space for p in
the range 1 < p < ∞. The lp spaces are spaces of sequences equipped with certain norms.
Specifically, for 1 < p < ∞, the lp space is defined as follows: Let {un} be a sequence of real
or complex numbers. Then, the lp norm of {un} is given by

∥
∥{un}

∥
∥

p =

( ∞∑

n=1

|un|p
) 1

p

.

This norm induces a metric on the space of sequences, and when completed with respect
to this metric, it forms a Banach space denoted lp.

Example 3.13 The space C[0, 1] consisting of all continuous functions f : [0, 1] −→ R

equipped with the supremum norm, denoted as ‖f ‖∞ = supu∈[0,1] |f (u)|, a partial order,
by saying f ≤ g if and only if f (u) ≤ g(u) for all u ∈ [0, 1], is a partially ordered uniformly
convex Banach space. The compatibility between the partial order and the norm is crucial
here. The partial order is defined based on the pointwise order of functions, and this order
is consistent with the norm structure (that is, if f ≤ g , then ‖f ‖∞ ≤ ‖g‖∞).

Example 3.14 Let T : C[01] −→ C[0, 1] be a mapping defined as (Tf )(u) = αf (u) + (1 –
α)g(x), where f , g ∈ C[0, 1], 0 < α < 1 is a constant, and u ∈ [0, 1]. Now with the supremum
norm ‖ · ‖∞, we have

‖Tf – Tg‖∞ =
∥∥αf + (1 – α)g –

(
αg + (1 – α)g

)∥∥∞ =
∥∥(α – 1)g

∥∥ ≤ ‖f – g‖∞
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for all f 
= g . Thus, for each m ∈ N, we can define αm = 1 + 1
m2 so that ‖Tmf – Tmg‖∞ ≤

αm‖f – g‖∞. Clearly, T is monotone, and since {αm} ⊂ [1,∞) with limm→∞ αm = 1, T is a
monotone asymptotically nonexpansive mapping.

Example 3.15 Let us consider the Banach space C[0, 1] equipped with the supremum
norm ‖ · ‖∞, which is a partially ordered uniformly convex Banach space. Consider the
mapping T : C[0, 1] −→ C[0, 1] defined as follows:

(Tf )(u) = 2f (u) – u2.

This mapping is monotone asymptotically nonexpansive (for the proof, see Example 3.14)
and satisfies all conditions of Theorem 3.7 for a particular choice of the parameters.

To find fixed points of T , we need to solve the equation Tf = f , which leads to 2f (u)–u2 =
f (u), or equivalently, f (u) = u2. So, any function f in C[0, 1] that satisfies f (u) = u2 is a fixed
point of T . There are multiple functions that satisfy this equation. The function f (u) = u2

itself is a fixed point. There are other functions, such as f (u) = 0, f (u) = sin2(u), f (u) = u2

2 ,
etc., that also satisfy f (u) = u2 and hence are fixed points.

Numerically, we apply Fibonacci–Ishikawa iteration procedure (1) to find a fixed point
of T . Let us choose an initial point u0 = 0 and set pm = 1

3+2m , qm = 1+m
m+4 . Starting with

u0 = 0: u1 = 0. For m = 1: u2 = 0. For m = 2: u3 = 0. This pattern continues um = 0 for all m.
Therefore, the iteration scheme converges to u = 0, which is a fixed point of the mapping
T corresponding to f (u) = 0.

Let us choose an initial point u0 = 1 and set pm = 1
3+2m , qm = 1+m

m+4 . Starting with u0 =
1: u1 = 1. For m = 1: u2 = 1. For m = 2: u3 = 1. This pattern continues um = 1 for all m.
Therefore, the iteration scheme converges to u = 1, which is a fixed point of the mapping
T corresponding to f (u) = u2.

4 Application to Caputo-type nonlinear fractional differential equations
Since its discovery, fractional differential equations have been the subject of extensive in-
vestigation, with many important studies conducted in this field. This can be due to the
fact that fractional differential equations are used in a wide variety of fields. Fluid flow, sig-
nal processing, electronics, biology, robotics, telecommunication systems, electrical, net-
works, diffusive transport, traffic flow, gas dynamics, generalized Casson fluid modeling
with heat generation, and chemical reaction are just a few of the fields in which fractional
differential equations are used.

In this case, we want to use our iteration procedure (1) to approximate the solution
of the following Caputo-type nonlinear fractional differential equations with boundary
conditions in order to accomplish our goal:

⎧
⎪⎪⎨

⎪⎪⎩

cDηw(u) + f (u, w(u)) = 0, 1 < η < 2,

w(0) = w(1) = 0,

0 ≤ u ≤ 1,

(2)

where f : [0, 1] × R −→ R is a continuous function and cDη is a Caputo-type fractional
differential of order η.
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Assume the partially ordered uniformly convex Banach space C[0, 1] as in Example 3.13
with the standard supremum norm, containing continuous real functions from [0, 1] into
R. Then, in C[0, 1], we have the following associated integral equation:

w(u) =
∫ 1

0
g(v, u)f

(
u, w(u)

)
du,

where g : [0, 1] × [0, 1] −→R is the Green function described as follows:

g(v, u) =

⎧
⎨

⎩

v(1–u)η–1–(v–u)η–1

	(η) , 0 ≤ u ≤ v ≤ 1,
v(1–u)η–1

	(η) , 0 ≤ v ≤ u ≤ 1.

Theorem 4.1 Let T : C[0, 1] −→ C[0, 1] be a mapping described as

Tw(u) =
∫ 1

0
g(v, u)f

(
u, w(u)

)
du for all w(u) ∈ C[0, 1], u ∈ [0, 1].

Let the iteration procedure {un} be defined as in (1) and the continuous function f : [0, 1] ×
R −→R satisfy

∣∣f (u, w1) – f (w, w2)
∣∣ ≤ |w1 – w2| for all w1, w2 ∈ C[0, 1], u ∈ [0, 1].

Then the iteration procedure {un} converges to the solution of the Caputo-type nonlinear
fractional differential equation (2).

Proof It is evident that w ∈ C[0, 1] can only be a solution of the Caputo-type nonlinear
fractional differential equation (2) if and only if it can also be a solution of the associated
integral equation.

Now, let w1, w2 ∈ C[0, 1] for u ∈ [0, 1], then

∣∣Tw1(u) – Tw2(u)
∣∣ =

∣∣∣
∣

∫ 1

0
g(v, u)f

(
u, w1(u)

)
du –

∫ 1

0
g(v, u)f

(
u, w2(u)

)
du

∣∣∣
∣

≤
∫ 1

0
g(v, u)

∣∣f
(
u, w1(u)

)
– f

(
u, w2(u)

)∣∣du

≤
∫ 1

0
g(v, u)

∣∣w1(u) – w2(u)
∣∣du.

Utilizing the standard supremum norm of the Banach space C[0, 1], we get

∣∣Tw1(u) – Tw2(u)
∣∣ ≤ ‖w1 – w2‖.

Thus, in a similar way to Example 3.14, we can consider T as a monotone asymptoti-
cally nonexpansive mapping, which consequently satisfies all the criteria of Theorem 3.7.
Hence, the iteration procedure {un} defined in (1) converges to a unique fixed point of T ;
consequently, {un} converges to the solution of Caputo-type nonlinear fractional differen-
tial equation (2). �



Alam et al. Journal of Inequalities and Applications         (2024) 2024:81 Page 13 of 14

5 Conclusions
We studied in this research Fibonacci–Ishikawa iteration in uniformly convex Banach
spaces for monotone asymptotically nonexpansive mappings. If the norm of the space
is monotone, our consequent result demonstrated the strong convergence of minimizing
sequence depending on certain functions to the weak limit of the sequence. In addition
to demonstrating strong convergence, we proved weak convergence of the Fibonacci–
Ishikawa sequence that generalizes the results of Malih [12] in a monotone sense and
the result of Alfuraidan et al. [5]. Typically, this is accomplished by the weak Opial con-
dition [15], which is a characteristic that both classical Banach spaces and any Hilbert
space satisfy. We also demonstrated that in order to achieve the weak convergence of the
Fibonacci–Ishikawa iteration procedure, a weaker Opial condition, which is retained in
Lp([0, 1]), 1 < p < +∞, is required. Finally, our novel iterative procedure has been applied
to approximate the solution of the Caputo-type nonlinear fractional differential equation.
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