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Abstract
We propose a hybrid inertial self-adaptive algorithm for solving the split feasibility
problem and fixed point problem in the class of demicontractive mappings. Our
results are very general and extend several related results existing in the literature
from the class of nonexpansive or quasi-nonexpansive mappings to the larger class of
demicontractive mappings. Examples to illustrate numerically the effectiveness of the
new analytical results are presented.
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1 Introduction
Let H1, H2 be real Hilbert spaces, C, Q be nonempty convex closed subsets of H1 and H2,
respectively, and A : H1 → H2 be a bounded linear operator. The split feasibility problem
(SFP, for short) is asking to find a point

x ∈ C such that Ax ∈ Q. (1)

Under the hypothesis that the SFP is consistent, i.e., (1) has a solution, this is usually de-
noted by

SFP(C, Q) := {x ∈ C such that Ax ∈ Q} (2)

to indicate the two sets involved.
The split feasibility problem includes many important problems in nonlinear analysis

modeling a wide range of inverse problems originating in the real world: signal processing,
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image reconstruction problem of X-ray tomography, statistical learning, etc., a fact that
challenged researchers to construct robust and efficient iterative algorithms that solve (1).

Such an algorithm, known under the name of (CQ) algorithm, has been proposed by
Byrne [7] (see also [6]), who constructed it by using the fact that SFP (1) is equivalent to
the following fixed point problem:

x = PC(
(
I + γ A∗(PQ – I)A

)
x, x ∈ C, (3)

where PC and PQ stand for the orthogonal (metric) projections onto the sets C and Q,
respectively, I is the identity map, γ is a positive constant, and A∗ denotes the adjoint of
A.

By simply applying the Picard iteration corresponding to the fixed point problem (3),
we get the (CQ) algorithm, which is thus generated by an initial value x1 ∈ H1 and the one
step iterative scheme

xn+1 = PC(
(
I + γnA∗(PQ – I)A

)
xn, n ≥ 0, (4)

where the step size γn ∈ (0, 2
‖A‖2 ).

If, for example, one considers the function

f (x) =
1
2
∥∥(I – PQ)Ax

∥∥2, (5)

then we have

∇f (x) = A∗(I – PQ)Ax, (6)

which indicates the fact that (4) is a particular gradient projection type algorithm. Of
course, this is valid in a more general case: if we have a Fréchet differentiable real-valued
valued function f : C →R and we search for a minimizer of the problem

find min
x∈C

f (x), (7)

then by means of an equivalent fixed point formulation, i.e.,

x = PC
(
x – γ∇f (x)

)
, (8)

we obtain the gradient-projection algorithm

xn+1 = PC
(
xn – γ∇f (xn)

)
, n ≥ 0, (9)

which coincides with (4) in the particular case of f given by (5), see [21] for more details.
It is known that when the iteration mapping

PC(
(
I + γ A∗(PQ – I)A

)
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involved in the (CQ) algorithm (4) is of nonexpansive type, then the (CQ) algorithm con-
verges strongly to a fixed point of it, that is, to a solution of SFP (1) (see [7] for more
details).

But in applications, there are at least two major difficulties in implementing algorithm
(4):

(1) the selection of the step size depends on the operator norm, and its computation is
not an easy task at all;

(2) the implementation of the projections PC and PQ, depending on the geometry of the
two sets C and Q, could be very difficult or even impossible.

To overcome the above-mentioned computational difficulties in a gradient-projection
type algorithm, researchers proposed some ways to avoid the calculation of ‖A‖. Another
way to surpass the computation of the norm of A has been suggested by Lopez et al. [12],
who proposed the following formula for expressing the step size sequence γn:

γn :=
ρnf (xn)

‖∇f (xn)‖2 , n ≥ 1, (10)

where ρn is a sequence of positive real numbers in the interval (0, 4).
Another fixed point approach for solving SFP (1) in the class of nonexpansive mappings

is due to Qin et al. [15], who considered a viscosity type algorithm given by

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ C arbitrary

yn = PC((1 – δn)xn – τnA∗(I – PQ)Axn) + δnSxn,

xn+1 = αng(xn) + βnxn + γnyn, n ≥ 1,

(11)

where g : C → C is a Banach contraction, T : C → C is a nonexpansive mapping with
Fix(T) �= ∅, {αn}, {αn}, {βn}, {γn}, {δn}, and τn are sequences in (0, 1) that satisfy some ap-
propriate conditions, denoted by (C1)–(C5).

Under these assumptions, Qin et al. [15] proved that the sequence {xn} generated by
algorithm (11) converges strongly to some x∗ ∈ Fix(T) ∩ SFP(C, Q) and x∗ is the unique
solution of the variational inequality

〈
x – x∗, g

(
x∗) – x∗〉 ≤ 0, ∀x ∈ Fix(T) ∩ SFP(C, Q). (12)

Subsequently, Kraikaew et al. [11] weakened the assumptions (C1), (C2), and (C4) in Lopez
et al. [12] and obtained the same convergence result by a slightly simplified proof.

More recently, Wang et al. [20] extended the previous results in three ways:
(1) by weakening the conditions on the parameters {αn}, {αn}, {βn}, {γn}, and {δn}

involved in algorithm (11);
(2) by inserting an inertial term in algorithm (11) in such a way that for choosing the

step size there is no more need to calculate the norm of the operator A;
(3) by considering the larger class of quasi-nonexpansive mappings instead of

nonexpansive mappings (which were considered in the previous papers).
Starting from the developments presented before, the following question naturally

arises:
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Question Is it possible to extend the results in Wang et al. [20] to more general classes of
mappings that strictly include the class of quasi-nonexpansive mappings?

The aim of this paper is to answer this question in the affirmative, see Theorem 1 below
and also its supporting illustration (Example 1). We actually show that we can establish
a strong convergence theorem for Algorithm 1, which is obtained from the inertial algo-
rithm (11) used in [20] by inserting an averaged component. We are thus able to show
that one can solve the split feasibility problem and the fixed point problem in the class of
demicontractive mappings, too.

Our main result (Theorem 1) shows that the new algorithm converges strongly to an
element x∗ ∈ Fix(T) ∩ SFP(C, Q), which uniquely solves the variational inequality (12).

By doing this, we improve significantly the previous related results in the literature since,
by considering averaged mappings in gradient projection type algorithms, one gets impor-
tant benefits, see the motivation in the excellent paper by Xu [21].

2 Preliminaries
Throughout this section, H denotes a real Hilbert space with the norm and the inner prod-
uct denoted as usual by ‖ · ‖ and 〈·, ·〉, respectively. Let C ⊂ H be a closed and convex set
and T : C → C be a self mapping. Denote by

Fix(T) = {x ∈ C : Tx = x}

the set of fixed points of T . In the present paper we consider the classes of nonexpansive
type mappings introduced by the next definition.

Definition 1 The mapping T is said to be:
1) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C; (13)

2) quasi-nonexpansive if Fix(T) �= ∅ and

‖Tx – y‖ ≤ ‖x – y‖ for all x ∈ C and y ∈ Fix(T); (14)

3) k-strictly pseudocontractive of the Browder–Petryshyn type if there exists k < 1 such
that

‖Tx – Ty‖2 ≤ ‖x – y‖2 + k‖x – y – Tx + Ty‖2, ∀x, y ∈ C; (15)

4) k-demicontractive or quasi k-strictly pseudocontractive (see [5]) if Fix(T) �= ∅ and
there exists a positive number k < 1 such that

‖Tx – y‖2 ≤ ‖x – y‖2 + k‖x – Tx‖2 (16)

for all x ∈ C and y ∈ Fix(T).
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For the scope of this paper, it is important to note that any quasi-nonexpansive mapping
is demicontractive but the reverse is no more true, as shown by the following example.

Example 1 ([4], Example 2.5) Let H be the real line with the usual norm and C = [0, 1].
Define T on C by Tx = 7

8 if 0 ≤ x < 1 and T1 = 1
4 . Then: 1) Fix(T) �= ∅; 2) T is demicon-

tractive; 3) T is not nonexpansive; 4) T is not quasi-nonexpansive; 5) T is not strictly
pseudocontractive.

For more details and a complete diagram of the relationships between the mappings
introduced in Definition 1, we also refer to [4].

The following lemmas will be useful in proving our main results in the next section.

Lemma 1 ([13], Lemma 1.1) For any x, y ∈ H , we have
(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(2) ‖tx + (1 – t)y‖2 = t‖x‖2 + (1 – t)‖y‖2 – t(1 – t)‖x – y‖2, ∀t ∈ [0, 1].

Let C be a closed convex subset H . Then the nearest point (metric) projection PC from
H onto C assigns to each x ∈ H its nearest point in C, denoted by PCx, that is, PCx is the
unique point in C with the property

‖x – PCx‖ ≤ ‖x – y‖ for all x ∈ H . (17)

The metrical projection has many important properties, of which we collect the follow-
ing ones.

Lemma 2 ([21], Proposition 3.1) Given x ∈ H and y ∈ C, we have:
(i) z = PCx if and only if 〈x – z, y – z〉 ≤ 0, ∀y ∈ C;

(ii) ‖x – PCx‖2 ≤ ‖x – y‖2 – ‖y – PCy‖2, ∀y ∈ C;
(iii) 〈x – y, PCx – PCy〉 ≤ ‖x – PCx‖2 ≥ ‖PCx – PCy‖2, ∀y ∈ C.

Remark 2.1 Property (i) in Lemma 2 shows that, for any x ∈ H , its projection on the closed
convex set C solves the variational inequality 〈x – z, y – z〉 ≤ 0, ∀y ∈ C;

Property (ii) in Lemma 2 expresses the fact that PC is a firmly nonexpansive mapping,
while property (iii) shows that PC is 1-inverse strongly monotone.

Lemma 3 ([7]) Let f be given by (5). Then ∇f is ‖A‖2-Lipschitzian.

Denote, as usual, the weak convergence in H by ⇀ and the strong convergence by →.
The next concept will be important in our considerations.

Definition 2 A mapping S : C → C is said to be demiclosed at 0 in C ⊂ H if, for any
sequence {xk} in C, such that xk ⇀ x and Suk → 0, we have Sx = 0.

Remark 2.2 In the particular case S = I – T , then it follows that x in Definition 2 is a fixed
point of T .
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Lemma 4 ([8], Lemma 7) Let {xn} be a sequence of nonnegative real numbers, for which
we have

xn+1 ≤ (1 – 	n)xn + 	n
n, n ≥ 1,

and

xn+1 ≤ xn – �n + �n, n ≥ 1,

where 	n ∈ (0, 1), �n ⊂ [0,∞), and {
n} and {�n} are two sequences of real numbers with
the following properties:

(i)
∑∞

n=1 	n = ∞; (ii) limn→∞ �n = 0; (iii) For any subsequence {nk} of {n}, limk→∞ �nk ≤ 0
implies lim sup

k→∞

nk ≤ 0.

Then limn→∞ xn = 0.

Lemma 5 ([3], Lemma 3.2) Let H be a real Hilbert space, C ⊂ H be a closed and convex
set. If T : C → C is k-demicontractive, then for any λ ∈ (0, 1 – k), Tλ is quasi-nonexpansive.

3 Main results
To solve SFP (1), we consider the following self-adaptive inertial algorithm.

Algorithm 1
Step 1. Take x0, x1 ∈ H1 arbitrarily chosen; let n := 1;
Step 2. Compute xn by means of the following formulas:

⎧
⎪⎪⎨

⎪⎪⎩

un := xn + θn(xn – xn–1)

yn := PC((1 – δn)un – τnA∗(I – PQ)Aun) + δnSλun,

xn+1 := αng(xn) + βnun + γnyn,

(18)

with Sλ = (1 – λ)I + λS, λ ∈ (0, 1),

θn :=

⎧
⎨

⎩
min{θ , εn

‖xn–xn–1‖ }, if xn �= xn–1

θ , otherwise,
(19)

θ ≥ 0 is a given number, τn = ρnf (xn)
‖f (un)‖2 , where f is given by (5), ρn ∈ (0, 4) and {αn}, {βn}, {γn},

{δn} are sequences in (0, 1) satisfying the following conditions:
(c1) lim sup

n→∞
βn < 1;

(c2) limn→∞ εn
αn

= 0;
(c3) limn→∞ αn = 0 and

∑∞
n=1 = +∞;

(c4) 0 < lim inf
n→∞ δn ≤ lim sup

n→∞
δn < 1;

(c5) αn + βn + γn = 1, n ≥ 1.
Step 3. If ∇f (un) = 0, then Stop, otherwise let n := n + 1 and go to Step 2.

The next technical lemmas will be useful in proving our main result in this paper.
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Lemma 6 Let S : H1 → H1 be a k-demicontractive mapping and {xn} be the sequence gen-
erated by Algorithm 1. If x∗ ∈ Fix(S), then the sequence {‖xn – x∗‖} is bounded.

Proof Since S is k-demicontractive, by Lemma 5 we deduce that the averaged mapping
Sλ = (1 – λ)I + λS is also quasi-nonexpansive for any λ ∈ (0, 1 – k), and that Fix(S) = Fix(Sλ)
for any λ ∈ (0, 1] (see for example [3]).

In the following, to simplify writing, we shall denote Sλ by T . So, Fix(T) �= ∅ and let
x∗ ∈ Fix(T) ∩ SFP(C, Q). Let yn be defined by (18).

Then, by using (5) and (6), Lemma 1, and Lemma 2 and exploiting the fact that T is
quasi-nonexpansive, we have successively

∥
∥yn – x∗∥∥2 = ‖PC

(
(1 – δn)

(
un – τnA∗(I – PQ)Aun

)
+ δnTun

)
– x∗‖2

≤ ‖((1 – δn)un – τnA∗(I – PQ)Aun
)

+ δnTun) – x∗‖2

–
∥∥(I – PC)

(
(1 – δn)

(
un – τnA∗(I – PQ)Aun

)
+ δnTun

)∥∥2

=
∥∥δn

(
Tun – x∗) + (1 – δn)

(
un – τnA∗(I – PQ)Aun – x∗)∥∥2

–
∥∥(I – PC)

(
(1 – δn)

(
un – τnA∗(I – PQ)Aun

)
+ δnTun

)∥∥2

≤ δn
∥
∥un – x∗∥∥2 + (1 – δn)

∥
∥un – τn∇f (un) – x∗∥∥2

– δn(1 – δn)
∥
∥Tun – un + τn∇f (un)

∥
∥2

–
∥
∥(I – PC)

(
(1 – δn)

(
un – τn∇f (un)

)
+ δnTun

)∥∥2

≤ δn
∥
∥un – x∗∥∥2 + (1 – δn)

(∥∥un – x∗∥∥2 + τ 2
n
∥
∥∇f (un)

∥
∥2

– 2τn
〈∇f (un), un – x∗〉) – δn(1 – δn)

∥
∥Tun – un + τnA∗(I – PQ)Aun

∥
∥2

–
∥∥(I – PC)

(
(1 – δn)

(
un – τn∇f (un)

)
+ δnTun

)∥∥2. (20)

On the other hand,

〈∇f (un), un – x∗〉 =
〈
A∗(I – PQ)Aun, un – x∗〉

=
〈
(I – PQ)Aun – (I – PC)Ax∗, Aun – Ax∗〉

≥ ∥
∥(I – PQ)Aun

∥
∥2 = 2f (un). (21)

So, by inserting (21) in (20), we obtain

∥
∥yn – x∗∥∥2 ≤ ∥

∥un – x∗∥∥2 – 4(1 – δn)τnf (xn) + (1 – δn)τ 2
n
∥
∥∇f (un)

∥
∥2

– δn(1 – δn)
∥∥Tun – un + τnA∗(I – PQ)Aunk

∥∥2

–
∥∥(I – PC)

(
(1 – δn)

(
un – τn∇f (un)

)
+ δnTun

)∥∥2.

=
∥
∥un – x∗∥∥2 – (1 – δn)ρn(4 – ρn) · f 2(un)

‖∇f (un)‖2

– δn(1 – δn)
∥
∥Tun – un + τnA∗(I – PQ)Aunk

∥
∥2

–
∥∥(I – PC)

(
(1 – δn)

(
un – τn∇f (un)

)
+ δnTun

)∥∥2. (22)
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Now, having in view that ρn ∈ (0, 4) and δn ∈ (0, 1), by (20) and (22) we deduce that

∥
∥yn – x∗∥∥ ≤ ∥

∥un – x∗∥∥. (23)

Denote

vn :=
1

1 – αn
(βnun + γnyn) (24)

and apply Lemma 1, by keeping in mind condition (c5), to get

∥∥vn – x∗∥∥2 =
∥
∥∥
∥

βn

1 – αn
un +

γn

1 – αn
yn – x∗

∥
∥∥
∥

2

=
∥
∥∥∥

βn

1 – αn

(
un – x∗) +

γn

1 – αn

(
yn – x∗)

∥
∥∥∥

2

=
βn

1 – αn

∥∥un – x∗∥∥2 +
γn

1 – αn

∥∥yn – x∗∥∥2 –
βn

1 – αn
· γn

1 – αn
‖un – yn‖2. (25)

Now, using assumptions (c1)–(c5), from the above inequality we get

∥
∥vn – x∗∥∥2 ≤ βn

1 – αn

∥
∥un – x∗∥∥2 +

γn

1 – αn

∥
∥yn – x∗∥∥2,

which, by using (23) and (22), yields

∥
∥vn – x∗∥∥2 ≤ βn

1 – αn

∥
∥un – x∗∥∥2 +

γn

1 – αn

∥
∥un – x∗∥∥2

– (1 – δn)ρn(4 – ρn) · γn

1 – αn
· f 2(un)
‖∇f (un)‖2

– δn(1 – δn)
γn

1 – αn
· ∥∥Tun – un + τn∇f (un)

∥
∥2

–
γn

1 – αn
· ∥∥(I – PC)

(
(1 – δn)

(
un – τn∇f (un)

)
+ δnTun

)∥∥2

=
∥∥un – x∗∥∥2 – (1 – δn)ρn(4 – ρn) · γn

1 – αn
· f 2(un)
‖∇f (un)‖2

– δn(1 – δn)
γn

1 – αn
· ∥∥Tun – un + τn∇f (un)

∥
∥2

–
γn

1 – αn
· ∥∥(I – PC)

(
(1 – δn)

(
un – τn∇f (un)

)
+ δnTun

)∥∥2. (26)

The previous inequality implies

∥∥vn – x∗∥∥ ≤ ∥∥un – x∗∥∥, n ≥ 1. (27)

By (24), (c5), and the third equation in (18), we obtain

xn+1 = αng(xn) + (1 – αn)vn, n ≥ 1, (28)
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and so

∥∥xn+1 – x∗∥∥ =
∥∥αng(xn) + (1 – αn)vn – x∗∥∥

=
∥∥αn

(
g(xn) – x∗) + (1 – αn)

(
vn – x∗)∥∥

≤ αn
∥∥g(xn) – x∗∥∥ + (1 – αn)

∥∥vn – x∗∥∥

≤ αn
∥
∥g(xn) – g

(
x∗)∥∥ + αn

∥
∥g

(
x∗) – x∗∥∥ + (1 – αn)

∥
∥vn – x∗∥∥.

Now, using the fact that g is a c-contraction, we have

∥∥xn+1 – x∗∥∥ ≤ αnc
∥∥xn – x∗∥∥ + αn

∥∥g
(
x∗) – x∗∥∥

+ (1 – αn)
∥
∥xn – x∗ + θn(xn – xn–1)

∥
∥

≤ αnc
∥
∥xn – x∗∥∥ + αn

∥
∥g

(
x∗) – x∗∥∥ + (1 – αn)

∥
∥xn – x∗∥∥

+ (1 – αn)θn‖xn – xn–1‖
≤ (

1 – αn(1 – c)
)∥∥xn – x∗∥∥ + αn

∥∥g
(
x∗) – x∗∥∥ + θn‖xn – xn–1‖.

Denote εn := θn‖xn – xn–1‖. Then, by the previous inequalities, we get

∥∥xn+1 – x∗∥∥ ≤ (
1 – αn(1 – c)

)∥∥xn – x∗∥∥

+ αn(1 – c)
(‖g(x∗) – x∗‖

1 – c
+

εn

αn(1 – c)

)
. (29)

Having in mind assumption (c2), take M > 0, for which εn
αn

≤ M for all n ≥ 1. Then, by
denoting M1 := ‖g(x∗)–x∗‖+M

1–c , inequality (29) yields

∥
∥xn+1 – x∗∥∥ ≤ (

1 – αn(1 – c)
)∥∥xn – x∗∥∥ + αn(1 – c)M1

≤ max
{∥∥xn – x∗∥∥, M1

}
,

from which we easily obtain

∥
∥xn+1 – x∗∥∥ ≤ max

{∥∥xn – x∗∥∥, M1
}

, n ≥ 1, (30)

and this shows that {‖xn – x∗‖} is bounded. �

Lemma 7 Let S : H1 → H1 be a k-demicontractive mapping such that I – T is demiclosed
at zero, g : H1 → H1 be a c-Banach contraction, and suppose that {αn}, {βn}, {γn}, {δn} are
sequences in (0, 1) satisfying conditions (c1)–(c5) in Algorithm 1.

Let x∗ ∈ Fix(T) ∩ SFP(C, Q), {xn} be the sequence generated by Algorithm 1, f be defined
by (5), and let {vn} be the sequence given by (24). For n ≥ 1, let us denote

	n := 2(1 – c)αn;�n := 2αn
〈
g(xn) – vn, xn+1 – x∗〉,


n :=
1

2(1 – c)

(
αn

∥∥g(xn) – x∗∥∥2 + 2αn
∥∥g(xn) – x∗∥∥∥∥vn – x∗∥∥

+ αn
∥
∥xn – x∗∥∥2 +

2εn

αn

∥
∥vn – x∗∥∥ + 2

〈
g
(
x∗) – x∗, vn – x∗〉

)
,
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and

�n := (1 – δn)
γn

1 – αn
ρn(4 – ρ)

f 2(un)
‖∇f (un)‖2

+ δn(1 – δn)
γn

1 – αn
· ∥∥Tun – un + τn∇f (un)

∥∥2

+
γn

1 – αn
· ∥∥(I – PC)

(
(1 – δn)

(
un – τn∇f (un)

)
+ δnTun

)∥∥2. (31)

Then, for any subsequence {nk} of {n}, we have

lim sup
k→∞


nk ≤ 0, (32)

whenever

lim
k→∞

�nk = 0. (33)

Proof Assume (33) holds. Then by (31) one deduces that all terms in the expression of �nk

tend to zero as k → ∞. So,

lim
k→∞

ρnk (4 – ρnk )
f 2(unk )

‖∇f (unk )‖2 = 0

and, based on assumptions (c1)–(c5), it follows that in fact

lim
k→∞

f 2(unk )
‖∇f (unk )‖2 = 0. (34)

On the other hand, since by Lemma 3 ∇f (unk ) is Lipschitzian, it follows that ‖∇f (unk )‖ is
bounded, and therefore by (34) we deduce that f (unk ) → 0 as k → ∞, which implies that

lim
k→∞

∥∥(I – PQ)Aunk

∥∥ = 0.

By (33) we also get

lim
k→∞

∥
∥Tunk – unk + τnk A∗(I – PQ)Aunk

∥
∥2 = 0, (35)

and due to the fact that

lim
k→∞

τnk

∥
∥∇f (unk )

∥
∥ = lim

k→∞
ρnk f (unk

‖∇f (unk )‖ = 0, (36)

we obtain

lim
k→∞

‖Tunk – unk ‖ = 0. (37)

On the other hand, by (33) we also obtain

lim
k→∞

∥
∥(I – PC)

(
(1 – δnk )

(
unk – τnk ∇f (unk )

)
+ δnk Tunk

)∥∥ = 0, (38)
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which, by using the definition of ynk , yields

lim
k→∞

∥
∥(1 – δnk )

(
unk – τnk ∇f (unk )

)
+ δnk Tunk – ynk

∥
∥ = 0,

and this can be written in the expanded form

lim
k→∞

‖(1 – δnk )unk – (1 – δnk )τnk ∇f (unk )) + δnk Tunk – ynk ‖ = 0. (39)

By (39) and (36) we get

lim
k→∞

∥∥(1 – δnk )unk + δnk Tunk – ynk

∥∥ = 0,

which means that

lim
k→∞

∥∥unk – ynk + δnk (Tunk – unk )
∥∥ = 0. (40)

Now, using the fact that

‖unk – ynk ‖ =
∥∥unk – ynk + δnk (Tunk – unk ) – δnk (Tunk – unk )

∥∥

≤ ∥
∥unk – ynk + δnk (Tunk – unk )

∥
∥ + δnk ‖Tunk – unk ‖,

by (37) and (40) we immediately obtain

lim
k→∞

‖unk – ynk ‖ = 0. (41)

By using the definition of vn in (24), we have

‖vnk – unk ‖ =
∥
∥∥∥

βnk

1 – αnk

unk +
γnk

1 – αnk

ynk – unk

∥
∥∥∥

=
∥
∥∥
∥

γnk

1 – αnk

unk +
γnk

1 – αnk

ynk

∥
∥∥
∥

=
γnk

1 – αnk

· ‖ynk – unk ‖,

which, by (41), yields

lim
k→∞

‖vnk – unk ‖ = 0. (42)

Since I – S is demiclosed at zero and T = (1 – λ)I + λT , it follows that T is also demiclosed
at zero. By means of (37), this implies that ωw(unk ) ⊂ Fix(T).

So, we can choose a subsequence unkj
of unk with the following property:

lim sup
k→∞

〈
g
(
x∗) – x∗, unk – x∗〉 = lim

j→∞
〈
g
(
x∗) – x∗, unkj

– x∗〉.

We can assume, without any loss of generality, that for the above subsequence unkj
one

has unkj
⇀ u′.
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Since f (unk ) → 0, we obtain

0 ≤ f
(
u′) ≤ lim inf

j→∞ f (unkj
) = 0,

which implies f (u′) = 0 and Au′ ∈ Q.
Therefore, by (41), u′ ∈ SFP(C, Q) and so u′ ∈ Fix(T) ∩ SFP(C, Q). Now, based on (42),

we get

lim sup
k→∞

〈
g
(
x∗) – x∗, vnk – x∗〉 = lim sup

k→∞

〈
g
(
x∗) – x∗, unk – x∗〉

= lim
j→∞

〈
g
(
x∗) – x∗, unkj

– x∗〉 =
〈
g
(
x∗) – x∗, u′ – x∗〉 ≤ 0,

which shows that (32) holds. �

Now we are ready to state and prove the main result of our paper.

Theorem 1 Let T : H1 → H1 be a k-demicontractive mapping such that I –T is demiclosed
at zero, and let g : H1 → H1 be a c-Banach contraction. Suppose that {αn}, {βn}, {γn}, {δn}
are sequences in (0, 1) satisfying conditions (c1)–(c5) in Lemma 7.

If Fix(T) ∩ SFP(C, Q) �= ∅, then the sequence {xn} generated by Algorithm 1 converges
strongly to an element x∗ ∈ Fix(T) ∩ SFP(C, Q), which solves uniquely the variational in-
equality (12).

Proof Using the fact that any metric projection is nonexpansive, on one hand, and that
the composition of a nonexpansive mapping and of a contraction is a contraction, on the
other hand, it follows that PFix(T)∩SFP(C,Q)g is a c-contraction since g is a c-contraction.

Hence PFix(T)∩SFP(C,Q)g has a unique fixed point x∗ ∈ H1:

x∗ = PFix(T)∩SFP(C,Q)g
(
x∗).

Moreover, in view of Lemma 2, x∗ ∈ Fix(T) ∩ SFP(C, Q) is a solution of the variational
inequality (12).

Let p ∈ Fix(T) ∩ SFP(C, Q) be arbitrary. By Lemma 6, it follows that the sequence {‖xn –
x∗‖} is bounded.

Let {un} be given by the corresponding inertial equation in (18). The we have

‖un – p‖2 =
∥∥xn + θn(xn – xn–1)

∥∥2,

which by applying Lemma 1 yields

‖un – p‖2 ≤ ‖xn – p‖2 + 2θn〈xn – xn–1, un – p〉
≤ ‖xn – p‖2 + 2θn‖xn – xn–1‖‖un – p‖ ≤ ‖xn – p‖2 + 2εn‖un – p‖.

Hence

‖un – p‖2 ≤ ‖xn – p‖2 + 2εn‖un – p‖. (43)
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As p ∈ Fix(T) ∩ SFP(C, Q) has been taken arbitrarily, we can let it be

p := x∗ = PFix(T)∩SFP(C,Q)g
(
x∗).

By using (28), we have

∥
∥xn+1 – x∗∥∥2 =

∥
∥αng(xn) + (1 – αn)vn – x∗∥∥2

=
∥∥αn

(
g(xn) – x∗) + (1 – αn)

(
vn – x∗)∥∥2 ≤ α2

n
∥∥g(xn) – x∗∥∥2

+ (1 – αn)2∥∥vn – x∗∥∥2 + 2αn
〈
g(xn) – x∗, vn – x∗〉

– 2α2
n
〈
g(xn) – x∗, vn – x∗〉

≤ α2
n
∥
∥g(xn) – x∗∥∥2 + (1 – αn)2∥∥vn – x∗∥∥2 + 2αn

〈
g(xn) – x∗, vn – x∗〉

+ 2α2
n
∥
∥g(xn) – x∗∥∥∥

∥vn – x∗∥∥ = α2
n
∥
∥g(xn) – x∗∥∥2 + (1 – αn)2∥∥vn – x∗∥∥2

+ 2αn
〈
g(xn) – g

(
x∗), vn – x∗〉 + 2αn

〈
g
(
x∗) – x∗, vn – x∗〉

+ 2α2
n
∥∥g(xn) – x∗∥∥∥∥vn – x∗∥∥

≤ α2
n
∥∥g(xn) – x∗∥∥2 + 2α2

n
∥∥g(xn) – x∗∥∥∥∥vn – x∗∥∥ + (1 – αn)2∥∥vn – x∗∥∥2

+ αn · c · (∥∥xn – x∗∥∥2 +
∥∥vn – x∗∥∥2) + 2αn

〈
g
(
x∗) – x∗, vn – x∗〉. (44)

Now, by (23) and (43) we obtain

∥
∥vn – x∗∥∥2 ≤ ∥

∥xn – x∗∥∥2 + 2εn
∥
∥un – x∗∥∥, (45)

and so, by using (44), we deduce that

∥∥xn+1 – x∗∥∥2 ≤ α2
n
∥∥g(xn) – x∗∥∥2 + 2α2

n
∥∥g(xn) – x∗∥∥∥∥vn – x∗∥∥

+ αn · c · (∥∥xn – x∗∥∥2 +
∥∥vn – x∗∥∥2) + 2εn

∥∥un – x∗∥∥

+ 2αn
〈
g
(
x∗) – x∗, vn – x∗〉

+ (1 – αn)2 · (∥∥xn – x∗∥∥2 + 2εn
∥
∥un – x∗∥∥)

= α2
n
∥
∥g(xn) – x∗∥∥2 + 2α2

n
∥
∥g(xn) – x∗∥∥∥

∥vn – x∗∥∥

+
(
α2

n +
(
1 – 2αn(1 – c)

)) · ∥∥xn – x∗∥∥2 +
(
2εn(1 – αn)2

+ 2αncεn
) · ∥∥un – x∗∥∥

+ 2αn
∥∥g(xn) – x∗∥∥∥∥vn – x∗∥∥ ≤ α2

n
∥∥g(xn) – x∗∥∥2

+ 2α2
n
∥
∥g(xn) – x∗∥∥∥

∥vn – x∗∥∥

+ α2
n · ∥∥xn – x∗∥∥2 +

(
1 – 2αn(1 – c)

)∥∥xn – x∗∥∥2

+ 4εn ·
(

αn
∥∥g(xn) – x∗∥∥2 + 2αn

∥∥g(xn) – x∗∥∥∥∥vn – x∗∥∥ + αn
∥∥xn – x∗∥∥2

+
4εn

αn
· ∥∥un – x∗∥∥ + 2

〈
g
(
x∗) – x∗, vn – x∗〉

)
=

(
1 – 2αn(1 – c)

)∥∥xn – x∗∥∥2
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+ 2αn(1 – c)
1

2(1 – c)

[
αn

∥
∥g(xn) – x∗∥∥2 + 2αn

∥
∥g(xn) – x∗∥∥∥

∥vn – x∗∥∥

+ αn
∥
∥xn – x∗∥∥2 +

4εn

αn
· ∥∥un – x∗∥∥ + 2

〈
g
(
x∗) – x∗, vn – x∗〉

]
. (46)

On the other hand, by Lemma 1 and the definition of {xn}, we have

∥
∥xn+1 – x∗∥∥2 =

∥
∥αng(xn) + (1 – αn)vn – x∗∥∥2 ≤ ∥

∥vn – x∗∥∥2 + 2αn
〈
g(xn) – vn, vn – x∗〉. (47)

Therefore, by combining (26), (43), and (47) and denoting S = (1 – λ)I + λT , we obtain
successively

∥∥xn+1 – x∗∥∥2 ≤ ∥∥un – x∗∥∥2 – (1 – δn) · γn

1 – αn
· ρn(4 – ρn) · f 2(un)

‖∇f (un)‖2

–
γn

1 – αn
· δn(1 – δn) · ∥∥Sun – un + τnA∗(I – PQ)Aun

∥∥2

–
γn

1 – αn
· ‖(I – PC)((1 – δn)

(
un – τnA∗(I – PQ)Aun

)
+ δnSun‖2

+ 2αn · 〈g(xn) – vn, vn – x∗〉 ≤ ∥∥xn – x∗∥∥2 + 2εn
∥∥un – x∗∥∥2

– (1 – δn) · γn

1 – αn
· ρn(4 – ρn) · f 2(un)

‖∇f (un)‖2

–
γn

1 – αn
· δn(1 – δn) · ∥∥Sun – un + τnA∗(I – PQ)Aun

∥
∥2

–
γn

1 – αn
· ‖(I – PC)((1 – δn)

(
un – τnA∗(I – PQ)Aun

)
+ δnSun‖2

+ 2αn · 〈g(xn) – vn, vn – x∗〉,

which yields

∥
∥xn+1 – x∗∥∥2 ≤ ∥

∥xn – x∗∥∥2 + 2εn
∥
∥un – x∗∥∥2 – (1 – δn) · γn

1 – αn
· ρn(4 – ρn) · f 2(un)

‖∇f (un)‖2

–
γn

1 – αn
· δn(1 – δn) · ∥∥Sun – un + τnA∗(I – PQ)Aun

∥
∥2

–
γn

1 – αn
· ‖(I – PC)((1 – δn)

(
un – τnA∗(I – PQ)Aun

)
+ δnSun‖2

+ 2αn · 〈g(xn) – vn, vn – x∗〉. (48)

Now, for n ≥ 1, let us denote

	n := 2(1 – c)αn;�n := 2αn
〈
g(xn) – vn, xn+1 – x∗〉,


n :=
1

2(1 – c)

(
αn

∥∥g(xn) – x∗∥∥2 + 2αn
∥∥g(xn) – x∗∥∥∥∥vn – x∗∥∥

+ αn
∥∥xn – x∗∥∥2 +

2εn

αn

∥∥vn – x∗∥∥ + 2
〈
g
(
x∗) – x∗, vn – x∗〉

)
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and

�n := (1 – δn)
γn

1 – αn
ρn(4 – ρ)

f 2(un)
‖∇f (un)‖2

+ δn(1 – δn)
γn

1 – αn
· ∥∥Tun – un + τn∇f (un)

∥∥2

+
γn

1 – αn
· ∥∥(I – PC)

(
(1 – δn)

(
un – τn∇f (un)

)
+ δnTun

)∥∥2.

In view of these notations, inequalities (46) and (48) can be briefly written as

∥∥xn+1 – x∗∥∥2 ≤ (1 – 	n)
∥∥xn – x∗∥∥2 + 	n
n, n ≥ 1,

∥
∥xn+1 – x∗∥∥2 ≤ ∥

∥xn – x∗∥∥2 – �n + �n, n ≥ 1,

respectively.
By assumptions (c1) – (c5) it is easy to deduce that

lim
n→∞	n = 0, lim

n→∞�n = 0 and
∞∑

n=0

	n = ∞.

In the end, by applying Lemma 7 and Lemma 4, it follows that

lim
n→∞

∥
∥xn – x∗∥∥ = 0,

which shows that the sequence {xn} generated by Algorithm 1 converges strongly to x∗. �

Remark 3.1 We note that the technique of the proof of Theorem 1 is similar to that used in
[20] and is based on inserting an averaged component that produces a perturbed version
of the inertial algorithm, thus imbedding the demicontractive mappings in the class of
quasi-nonexpansive mappings, in view of Lemma 5.

Example 2 Let H be the real line with the usual norm, C = [0, 1], and T be the mapping
in Example 1. Since T is demicontractive, our Theorem 1 can be applied to solve any
consistent split feasibility problem over the set of fixed points of T , whenever Fix(T) ∩
SFP(C, Q) �= ∅.

We also note that Theorem 2.1 in Qin and Wang [15] cannot be applied to solve con-
sistent split feasibility problems over the set of fixed points of T (because T is not nonex-
pansive) and also Theorem 1 in Wang et al. [20] cannot be applied to the same problem
(because T is not quasi-nonexpansive).

4 Numerical examples
Example 3 We consider the problem given in Example 1 in Wang et al. [20], which is
devoted to the solution of a linear system of equations Ax = b. We work similarly in H1 =
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H2 = R
5, with the same data, first by taking the mapping S given by

S =

⎛

⎜⎜⎜
⎜⎜
⎜
⎝

1
3

1
3 0 0 0

0 1
3

1
3 0 0

0 0 1
3

1
3 0

0 0 0 1
3

1
3

0 0 0 0 1

⎞

⎟⎟⎟
⎟⎟
⎟
⎠

and then considering a nonviscosity type algorithm, i.e., taking the contraction mapping
g to be the null function g ≡ 0. To allow a numerical comparison, we also take

A =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

1 1 2 2 1
0 2 1 5 –1
1 1 0 4 1
2 0 3 1 5
2 2 3 6 1

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

, b =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

43
16
2
19
16
51
8

41
8

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

.

This is a particular example of a split feasibility problem with C = Fix(S) and Q = {b}.
We performed several numerical experiments in MatLab by using our Algorithm 1 with

various particular values on the parameters and compared the obtained results to those
presented in Wang et al. [20] (Table 1 and Fig. 1).

By analyzing the diversity of the numerical results thus obtained, we noted a very inter-
esting fact, i.e., that most of the assumptions on the parameters αn, βn, δn, θn, τn involved
in the iterative process (18) are in fact imposed merely for technical reasons when proving
analytically the strong convergence of the sequence {xn} generated by Algorithm 1.

Therefore, some of these assumptions appear to be not necessary for the convergence
of the iterative process {xn} in most practical situations, as shown by the numerical results
presented in Table 1.

Table 1 Numerical results for the starting point x = (1, 1, 1, 1, 1)T

n x(1)n x(2)n x(3)n x(4)n x(5)n

0 1 1 1 1 1
1 0.766667 0.766667 0.766667 0.766667 1
2 0.587778 0.587778 0.587778 0.642222 1
3 0.450630 0.450630 0.463333 0.575852 1
4 0.345483 0.348447 0.381477 0.540454 1
5 0.265562 0.274850 0.329560 0.521576 1
6 0.205764 0.223484 0.297466 0.511507 1
7 0.161887 0.188600 0.278000 0.506137 1
8 0.130347 0.165454 0.266366 0.503273 1
9 0.108124 0.150394 0.259492 0.501746 1
10 0.092758 0.140758 0.255470 0.500931 1
11 0.082315 0.134681 0.253134 0.500497 1
12 0.075327 0.130894 0.251788 0.500265 1
13 0.070716 0.128561 0.251015 0.500141 1
14 0.067713 0.127136 0.250574 0.500075 1
15 0.065779 0.126273 0.250324 0.500040 1
. . . . . . . . . . . . . . . . . .
20 0.062790 0.125089 0.250018 0.500002 1
. . . . . . . . . . . . . . . . . .
32 0.062501 0.125000 0.250000 0.500000 1
33 0.062500 0.125000 0.250000 0.500000 1
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These results were obtained for the same starting point x like the one in Wang et al. [20]
but with the following particular values of the involved parameters: βn = 0, δn = 1 (which
do not satisfy all the assumptions in (c1) – (c5)), θn = 0, and λ = 0.5.

It is also worth mentioning that we obtained the exact solution x∗ = ( 1
16 , 1

8 , 1
4 , 1

2 , 1) of the
problem after n = 33 iterations.

If we compare our numerical results to the results given in Table 1 and Figure in Wang
et al. [20], where the authors have taken the values αn = 1

10n , βn = 0.5, δn = 0.5, . . . , and the
same starting point x = (1, 1, 1, 1, 1)T for Algorithm (9), we observe that the exact solution
was not obtained even after 10,000 iterations. . .

In fact, both algorithms considered in Wang et al. [20], i.e., algorithms (7) and (9), are
extremely slow: even after performing 10,000 iterations the exact solution x∗ is obtained
with an error of 9.4925 × 10–5.

In our opinion, this is because any inertial type algorithm (i.e., with θn �= 0) is usually
slower than the noninertial ones, as illustrated by the numerical examples in Table 1, see
also the results reported in Berinde [2], but for a slightly different context.

5 Conclusions
1. We introduced a hybrid inertial self-adaptive algorithm for solving the split feasibility
problem and fixed point problem in the class of demicontractive mappings.

2. As shown by Example 2, our theoretical results extend several related results existing
in the literature from the class of nonexpansive or quasi-nonexpansive mappings to the
larger class of demicontractive mappings.

3. We performed numerical experiments, see Example 3, designed to compare our re-
sults to those presented in Wang et al. [20]. The numerical results presented in Table 1
clearly illustrate the superiority of our results over the related existing ones in the litera-
ture. These numerical results also naturally raise an open problem: find weaker conditions
on the parameters αn, βn, δn, θn, τn such that the iterative process (18) still converges to an
element x∗ ∈ Fix(T) ∩ SFP(C, Q).

4. For other related works that allow similar developments to the ones in the current
paper, we refer the readers to Berinde [1], Hu et al. [9], Kingkam and Nantadilok [10],
Padcharoen et al. [14], Sharma and Chandok [16], Shi et al. [17], Tiammee and Tiamme
[18], Uba at al. [19], etc.
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