
Liu and Li Journal of Inequalities and Applications         (2024) 2024:76 
https://doi.org/10.1186/s13660-024-03153-x

R E S E A R C H Open Access

On the optimal controllability for a class of
Katugampola fractional systems
Xianghu Liu1* and Yanfang Li1

*Correspondence:
liouxianghu04@126.com
1Department of Mathematics and
Physics, Suqian University, Jiangsu,
Suqian 223800, P.R. China

Abstract
This study is centered on the optimal controllability of differential equations involving
fractional derivatives of Katugampola. We derive both necessary and sufficient
conditions for optimal controllability by extending Gronwall’s inequality with singular
kernels. Furthermore, we establish conditions ensuring the existence and uniqueness
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1 Introduction
This study discusses the optimal controllability of the following Katugampola-type frac-
tional systems:

⎧
⎨

⎩

ρDα
a+ x(t) = Ax(t) + f (t, x(t)) + Bu(t), t ∈ J ′ = (a, b]

ρI1–α
a+ x(a) = D.

(1.1)

ρDα
a+ represents the Katugampola (K) fractional derivative of order α(0 < α < 1). ρI1–α

a+ is
the Katugampola integral of order 1 – α, where ρ > 0. A, B, D ∈ R

n∗n, f (t, x(t)), u(t) ∈ R
n∗n

are given continuous functions, u0(t) represents the initial control function.
In recent decades, fractional differential equations have become a focal point of consid-

erable attention due to their efficacy in unraveling the memory and hereditary character-
istics present in diverse materials and processes across the realms of physics, mechanics,
chemistry, and engineering. Notable monographs by Miller and Ross [1], Podlubny [2],
and Kilbas et al. [3], along with their extensive references, serve as valuable resources for
delving into the intricacies of fractional calculus theory and expanding our comprehen-
sion of this indispensable tool.

Numerous scholars have conducted in-depth investigations into various fractional
types, such as the Caputo type, Hadamard type, Riemann–Liouville type, Hilfer type, and
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others. In 2011, U.N. Katugampola made a substantial contribution by generalizing the
Riemann–Liouville fractional operator and the Hadamard-type fractional operator into
what is now referred to as the K-type operator. This seminal development was accompa-
nied by a thorough examination of the semigroup characteristics and Merlin transforma-
tion associated with K-type fractional calculus. Additionally, he explored the existence and
uniqueness of solutions to equations within the framework of K-type fractional calculus
[4, 5].

Several other experts have delved into the study of the properties of K-type fractional
operators. Utilizing diverse mathematical tools, including fixed point theorems and other
theoretical approaches, they have investigated the qualitative theory of K-type fractional
differential and integral equations. Noteworthy contributions in this field have been made
by Anderson et al. [6], Lupinska et al. [7], Zeng et al. [8], Oliveira [9], Harikrishnan et
al. [10, 11], Gou et al. [12], and the papers referenced therein. These collective works sub-
stantiate the existence and uniqueness of solutions for the K-type fractional system. Fur-
thermore, stability results are established, leading to broader conclusions that enhance the
comprehension of K-type fractional calculus and its diverse applications.

Controllability analysis holds a crucial role in control system design, and in recent years,
there has been a growing emphasis on evaluating the controllability of various fractional-
order systems. For instance, Ding et al. provided both sufficient and necessary conditions
for the optimality of fractional control systems [13]. Mophou applied classical control
theory to a fractional diffusion equation within a bounded domain, utilizing the Laplace
operator [14–17]. Furthermore, Bahaa extended the findings of [14–17] to address con-
stant variable fractional optimal control problems [18–23]. Notably, Bahaa [24] applied
the generalization of the Dubovitskii–Milyutin theorem to interpret the Euler–Lagrange
first-order optimality condition, yielding optimal control results for fractional differential
systems with the Atangana–Baleanu derivative. Bose et al. [25–27] analyzed the approxi-
mate controllability of Hilfer fractional neutral differential equations.

Rohit et al. [28] explored the existence of optimal control for semilinear control systems
of fractional order (1, 2] within a Hilbert space. It is well-acknowledged that demonstrating
the nonsingularity of the Gramian matrix is a central challenge in solving optimal control
problems. The works mentioned above, along with the references therein, significantly
contribute to unraveling key insights in this field.

However, the optimal controllable result of the evolution equation with the K-type op-
erator is unclear, which prompted us to investigate system (1.1).

Section 2 offers preliminary insights, and in Sect. 3, we present sufficient conditions
for the existence and uniqueness of solutions of system (1.1). Moving to Sect. 4, we de-
rive both necessary and sufficient conditions for optimal controllability. This section also
outlines the assumptions crucial to the optimal control results. Lastly, Sect. 6 includes an
illustrative example designed to showcase the validity of our hypothesis.

2 Preliminaries
This section shows some basic well-known definitions. Allow � to be a Banach space and
the norm is | · |�. C(J ,�), as usual, represents the Banach space of continuous functions
derived from J = [a, b] to �, the norm ‖z‖C(J ,�) = supt∈J ‖z(t)‖�.



Liu and Li Journal of Inequalities and Applications         (2024) 2024:76 Page 3 of 14

Throughout the paper, we denote g(t) = tρ
ρ

and G(t, a) = g(t) – g(a). The weighted spaces
of continuous functions are denoted by

Cμ,ρ[J ,�] =
{

z : (a, b] →R : G(t, a)μz(t) ∈ C[J ,�]
}

, 0 ≤ μ ≤ 1,

and the norm

‖z‖Cμ,ρ =
∥
∥G(t, a)μz

∥
∥

C = supt∈J
∣
∣G(t, a)μz(t)

∣
∣.

Evidently, Cμ,ρ[J ,�] is a Banach space.
We have compiled a list of definitions from Katugampola fractional calculus [4, 5].

Definition 2.1 Let 0 < a < t < ∞ for the function z : (a, +∞) → R, the K-type fractional
integral of order α is

(
ρIα

a+ z
)
(t) =

ρ1–α

�(α)

∫ t

a+

sρ–1

(tρ – sρ)1–α
z(s) ds, α > 0,ρ > 0.

Definition 2.2 Let α > 0,ρ > 0, n = [α] + 1, the function z : (a,∞) → R, then the K-type
fractional derivative can be defined by

(
ρDα

a+ z
)
(t) =

(

t1–ρ d
dt

)n(
ρIn–α

a+ z
)
(t)

=
ρα–n+1

�(n – α)

(

t1–ρ d
dt

)n ∫ t

a+

sρ–1

(tρ – sρ)α–n+1 z(s) ds.

Specially, if 0 < α < 1, then (ρDα
a+ z)(t) = ρα+1

�(–α)
∫ t

a+
sρ–1

(tρ–sρ )α+1 z(s) ds.

Lemma 2.3 Assume that α,β > 0,ρ ≥ c, 0 < a < b, and p ≥ 1 are the finite real numbers,
and ρ, c ∈ R. Then, for z ∈ Xp

c (a, b), the following hold:

(
ρIα

a+
ρIβ

a+ z
)
(t) =

(
ρIα+β

a+ z
)
(t)

and

(
ρDα

a+
ρIα

a+ z
)
(t) = z(t).

Lemma 2.4 Let 0 < α < 1, 0 ≤ γ ≤ 1, if f ∈ Cγ and ρI1–α
a+ f ∈ C1

γ [a, b], then

(
ρIα

a+
ρDα

a+ f
)
(t) = f (t) –

(ρI1–α
a+ f )(a)
�(α)

(
g(t) – g(a)

)α–1.

Definition 2.5 [2] The two-parameter Mittag-Leffler function can be defined as

Eα,β (x) =
∞∑

i=0

xi

�(αi + β)
.
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Specially, β = 1, the series for the one-parameter Mittag-Leffler function is as follows:

Eα(x) =
∞∑

i=0

xi

�(αi + 1)
.

Lemma 2.6 [2] Let α ∈ (0, 1], β > α, and z ≥ 0, then the following inequalities hold:

1
�(β) + �(β – α)z

≤ Eα,β (–z) ≤ 1
�(β) + �(β)�(β)

�(β+α) z
.

Lemma 2.7 [2] Assume that 0 < α < 2, β ∈ R, μ fulfill the inequality πα
2 < μ < min{π ,απ},

then there exist H > 0, M > 0, s.t.

∣
∣Eα,β (z)

∣
∣ ≤ H

1 + |z| = M, z ∈C,μ ≤ ∣
∣arg(z)

∣
∣ ≤ π .

Lemma 2.8 [12] Let α > 0, y(t) and a(t) be nonnegative functions, and nondecreasing func-
tion b(t) be a nonnegative and nondecreasing function for t ∈ [t0, T], T > 0, b(t) ≤ K , where
K is a constant. If

y(t) ≤ a(t) + b(t)
∫ t

a
sρ–1G(t, s)α–1y(s) ds, t ∈ [t0, T],

then

y(t) ≤ a(t)Eα

(
b(t)�(α)G(t, s)α

)
,

where g(t) = tρ
ρ

and G(t, a) = g(t) – g(a).

Lemma 2.9 [29] Assume 0 < α ≤ 1 and 0 < a ≤ t, W (t) : [–a, +∞) → R+ is bounded on
[–a, 0] and continuous. The following generalized Laplace transform holds:

L
(cDα,ρ

a+ W (t)
)

= sαL
(
W (t)

)
– sα–1W (0)

and

L

((
tρ – τρ

ρ

)β–1

Eα,β

(

–λ

(
tρ – τρ

ρ

)α–1))

=
sα–β

sα + λ
.

The following results are based on Sect. 6 in [9].

Theorem 2.10 The function x ∈ C1,ρ[J ,�] is called a solution of (1.1), suppose ρI1–α
a+ x(a) =

D such that

x(t) =
D

�(α)
G(t, a)α–1 +

1
�(α)

∫ t

a
sρ–1G(t, s)α–1[Ax(s) + f

(
s, x(s)

)
+ Bu(s)

]
ds. (2.1)

One can rewrite the solution in terms of the Mittag-Leffler function

x(t) = DG(t, a)α–1Eα

[
AG(t, a)α

]
(2.2)
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+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

](
f
(
s, x(s)

)
+ Bu(s)

)
ds,

where g(t) = tρ
ρ

and G(t, a) = g(t) – g(a).

Proof Performing ρIα
a+ to both sides of (1.1) and using Definition 2.2, one can get the fol-

lowing integral equation:

x(t) =
D

�(α)
G(t, a)α–1 +

1
�(α)

∫ t

a
sρ–1G(t, s)α–1[Ax(s) + f

(
s, x(s)

)
+ Bu(s)

]
ds.

The sequence can be derived through the method of successive approximations, yielding
the following outcome:

x0(t) =
D

�(α)
G(t, a)α–1,

xk(t) = x0(t) +
1

�(α)

∫ t

a
sρ–1G(t, s)α–1[Axk–1(s) + f

(
s, xk–1(s)

)
+ Buk–1(s)

]
ds,

k ∈ N , k ≥ 1, then

x1(t) = x0(t) +
1

�(α)

∫ t

a
sρ–1G(t, s)α–1[Ax0(s) + f

(
s, x0(s)

)
+ Bu0(s)

]
ds

= x0(t) +
1

�(α)

∫ t

a
sρ–1G(t, s)α–1Ax0(s) ds

+
1

�(α)

∫ t

a
sρ–1G(t, s)α–1f

(
s, x0(s)

)
ds

+
1

�(α)

∫ t

a
sρ–1G(t, s)α–1Bu0(s) ds

=
D

�(α)
G(t, a)α–1 +

A
�(α)

∫ t

a
sρ–1G(t, s)α–1 D

�(α)
G(t, a)α–1 ds

+
1

�(α)

∫ t

a
sρ–1G(t, s)α–1f

(
s, x0(s)

)
ds

+
1

�(α)

∫ t

a
sρ–1G(t, s)α–1Bu0(s) ds

=
D

�(α)
G(t, a)α–1 +

DA
�(2α)

G(t, a)2α–1

+
1

�(α)

∫ t

a
sρ–1G(t, s)α–1f

(
s, x0(s)

)
ds

+
1

�(α)

∫ t

a
sρ–1G(t, s)α–1Bu0(s) ds

= D
2∑

i=1

Ai–1

�(αi)
G(t, a)αi–1 +

1
�(α)

∫ t

a
sρ–1G(t, s)α–1f

(
s, x0(s)

)
ds

+
1

�(α)

∫ t

a
sρ–1G(t, s)α–1Bu0(s) ds



Liu and Li Journal of Inequalities and Applications         (2024) 2024:76 Page 6 of 14

= D
2∑

i=1

Ai–1

�(αi)
G(t, a)αi–1 + ρIα

a+ f (t, x0) + ρIα
a+ (Bu0).

x2(t) = x0(t) +
1

�(α)

∫ t

a
sρ–1G(t, s)α–1[Ax1(s) + f

(
s, x1(s)

)
+ Bu1(s)

]
ds

= x0(t) +
1

�(α)

∫ t

a
sρ–1G(t, s)α–1Ax1(s) ds

+
1

�(α)

∫ t

a
sρ–1G(t, s)α–1f

(
s, x1(s)

)
ds

+
1

�(α)

∫ t

a
sρ–1G(t, s)α–1Bu1(s)) ds

= D
3∑

i=1

Ai–1

�(αi)
G(t, a)αi–1 +

∫ t

a

2∑

i=1

Ai–1

�(αi)
sρ–1G(t, s)αi–1f

(
s, xi–1(s)

)
ds

+
∫ t

a

2∑

i=1

Ai–1

�(αi)
sρ–1G(t, s)αi–1Bui–1(s)) ds.

Continuing with this analytical approach, one can derive

xk(t) = x0(t) +
1

�(α)

∫ t

a
sρ–1G(t, s)α–1[Axk–1(s) + f

(
s, xk–1(s)

)
+ Buk–1(s)

]
ds

= D
k+1∑

i=1

Ai–1

�(αi)
G(t, a)αi–1 +

∫ t

a

k∑

i=1

Ai–1

�(αi)
sρ–1G(t, s)αi–1f

(
s, xi–1(s)

)
ds

+
∫ t

a

k∑

i=1

Ai–1

�(αi)
sρ–1G(t, s)αi–1Bui–1(s)) ds,

and k → ∞, we have

x(t) = D
∞∑

i=1

Ai–1

�(αi)
G(t, a)αi–1 +

∫ t

a

∞∑

i=1

Ai–1

�(αi)
sρ–1G(t, s)αi–1f

(
s, xi–1(s)

)
ds

+
∫ t

a

∞∑

i=1

Ai–1

�(αi)
sρ–1G(t, s)αi–1Bui–1(s)) ds.

In view of i = 0, we show that

x(t) = D
∞∑

i=0

Ai

�(αi + 1)
G(t, a)αi +

∫ t

a

∞∑

i=0

Ai

�(αi + 1)
sρ–1G(t, s)αif

(
s, xi(s)

)
ds

+
∫ t

a

∞∑

i=0

Ai

�(αi + 1)
sρ–1G(t, s)αiBui(s)) ds.

x(t) = DG(t, a)α–1
∞∑

i=0

Ai

�(αi + 1)
G(t, a)αi

+
∫ t

a
sρ–1G(t, s)α–1

∞∑

i=0

Ai

�(αi + 1)
G(t, s)αif

(
s, x0(s)

)
ds.
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The Mittag-Leffler function can be used to express the solution as follows:

x(t) = DG(t, a)α–1Eα

[
AG(t, a)α

]
(2.3)

+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
f
(
s, x(s)

)
ds.

In the subsequent steps, we will demonstrate that the solution to (1.1) can be represented
using (2.3).

Leveraging the generalized Laplace transform as outlined in Sect. 3.3 of [29] and Sect. 5
of [30], we proceed by applying the transform to both sides of (1.1), resulting in the fol-
lowing expressions:

L
(cDα,ρ

a+ x(t)
)

= sαL
(
x(t)

)
– D = AL

(
x(t)

)
+ L

(
f
(
t, x(t)

))

and

L
(
x(t)

)
=

D
sα – A

+
1

sα – A
L

(
f
(
t, x(t)

))
.

In light of Lemma 2.9, one can get

x(t) = DG(t, a)α–1Eα

[
AG(t, a)α

]
(2.4)

+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
f
(
s, x(s)

)
ds.

The proof is complete. �

Following that, the well-known Banach fixed point theorem is then reviewed (see [31]).

Theorem 2.11 (Banach fixed point theorem). Assume that (X,D) denotes a full metric
space and f : X → X for 0 ≤ k < 1 and all x, x′ ∈ X such that D(f (x), f (x′)) ≤ kD(x, x′).
Then f has a unique fixed point in X.

3 Qualitative analysis
To investigates the qualitative analysis for (1.1), we suppose that:

H(1): f : J × X → X is a function that satisfies:
(i) For any x ∈ X, the function t 
→ f (t, x) satisfies the measurable condition;
(ii) For any t ∈ J , the function x 
→ f (t, x) satisfies the Lipschitz condition. It is claimed

that there are x1, x2 ∈ X and a constant Lf < ρα

M(bρ–aρ )α , ‖f (t, x1) – f (t, x2)‖C1,ρ ≤ Lf ‖x1 –
x2‖C1,ρ ;

(iii) For all t ∈ J and x ∈ C1,ρ[J ,�], there exist a function ψ(t) ∈ C1,ρ[J , I] and a constant
θ > 0 such that

∥
∥f (t, x)

∥
∥

C1,ρ
= sup

{‖f ‖C1,ρ

} ≤ ψ(t) + θ‖x‖C .

Theorem 3.1 Given the fulfillment of condition H(1), the fractional equation (1.1) is en-
sured to have a unique solution over the interval J .
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Proof By Theorem 2.10, for any x ∈ C1,ρ[J ,�], we consider the map � : C1,ρ[J ,�] →
C1,ρ[J ,�] as follows:

�(x) =
{

y ∈ C1,ρ(J ,�) :

y(t) = DG(t, a)α–1Eα

[
AG(t, a)α

]

+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
f
(
s, x(s)

)
ds

+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
Bu(s) ds

}

.

We shall show that the map � has a fixed point based on Theorem 2.11.
First, we show that � transfers bounded sets into bounded sets in C1,ρ[J ,�]. Suppose

that there exists r such that

0 <
M((bρ – aρ)α+1‖ψ‖C + αρbρα(‖D‖C + ‖Bu‖C))

αρα+1 – θM(bρ – aρ)α+1 ≤ r.

For any x ∈ Br = {x ∈ C1,ρ[J ,�] : ‖x‖C1,ρ ≤ r} and ϕ ∈�(x),

ϕ(t) = DG(t, a)α–1Eα

[
AG(t, a)α

]

+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
f
(
s, x(s)

)
ds

+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
Bu(s) ds.

By using H1(iii), we can calculate

∥
∥ϕ(t)

∥
∥

C1,ρ

=
∥
∥G(t, a)DG(t, a)α–1Eα

[
AG(t, a)α

]∥
∥

C

+
∥
∥
∥
∥G(t, a)

∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
f
(
s, x(s)

)
ds

∥
∥
∥
∥

C

+
∥
∥
∥
∥G(t, a)

∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
Bu(s) ds

∥
∥
∥
∥

C

≤ bραM‖D‖C

ρα
+

M
α
G(t, a)α+1(‖ψ‖C + θr

)
+

M
α
G(t, a)α+1‖Bu‖C

≤ r.

Therefore �(Br) is bounded in C1,ρ[J ,�].
Next, we prove that {�(x) : x ∈ Br} is contraction.
For any x, x∗ ∈ Br , we get

∥
∥�(x) – �

(
x∗)∥∥

C1,ρ

=
∥
∥
∥
∥

∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

](
f
(
s, x(s)

)
– f

(
s, x∗(s)

))
ds

∥
∥
∥
∥

C1,ρ
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=
∥
∥
∥
∥G(t, a)

∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

](
f
(
s, x(s)

)
– f

(
s, x∗(s)

))
ds

∥
∥
∥
∥

C

≤ MLf
∥
∥x – x∗∥∥

C1,ρ

∫ t

a
sρ–1G(t, s)α–1 ds

≤ MLf (bρ – aρ)α

ρα

∥
∥x – x∗∥∥

C1,ρ
,

which yields that {�(x) : x ∈ Br} is contraction. According to Theorem 2.11, the map � has
a unique fixed point, implying that equation (1.1) has a unique solution, which completes
the proof. �

4 Controllability
Definition 4.1 Suppose that the condition ρI1–α

a+ x(a) = D holds, system (1.1) is control-
lable, it is said that there exists a control u ∈ C1,ρ[J ,�] such that the solution of system is
x(tu) = 0, tu ∈ J .

Theorem 4.2 System (1.1) is controllable on (a, tu] if and only if the Gramian matrix

WC1,ρ (a, tu] =
∫ tu

a
(tu – s)α–1Eα

[
AG(tu, s)α

]
BBTEα

[
ATG(tu, s)α

]
ds

is nonsingular, where BT denotes the matrix transpose of B.

Proof Sufficiency. Assume that the matrix WC1,ρ (a, tu] is nonsingular, then W –1
C1,ρ

(a, tu] ex-
ists. Set the control u(t) as

u(t) = BTEα

[
ATG(tu, s)α

]
W –1

C1,ρ (a, tu]
(

–DG(t, a)α–1Eα

[
AG(tu, a)α

]

–
∫ t

a
sρ–1G(tu, s)α–1Eα

[
AG(tu, s)α

]
f
(
s, x(s)

)
ds

)

.

By Theorem 2.10, one can get x(tu) = 0, system (1.1) is controllable on (a, tu].
Necessity. Assuming system (1.1) is controlled on (a, tu], we shall demonstrate that

the Gramian matrix WC1,ρ (a, tu] is nonsingular. In fact, if WC1,ρ (a, tu] is singular, then a
nonzero vector y0 exists, such that

yT
0 WC1,ρ y0 = 0.

That is,

∫ tu

a
yT

0 (tu – s)α–1Eα

[
AG(tu, s)α

]
BBTEα

[
ATG(tu, s)αy0

]
ds = 0,

which yields

yT
0 Eα

[
AG(tu, s)α

]
B = 0.
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Suppose that system (1.1) is controllable on (a, tu], and we choose control functions
u1(t), u2(t) such that

x(tu) = DG(t, a)α–1Eα

[
AG(tu, a)α

]
(4.1)

+
∫ tu

a
sρ–1G(tu, s)α–1Eα

[
AG(tu, s)α

](
f
(
s, x(s)

)
+ Bu1(s)

)
ds

= 0,

y0 = DG(tu, a)α–1Eα

[
AG(tu, a)α

]
(4.2)

+
∫ tu

a
sρ–1G(tu, s)α–1Eα

[
AG(tu, s)α

](
f
(
s, x(s)

)
+ Bu2(s)

)
ds �= 0.

Inserting (4.1) into (4.2), one can get

y0 =
∫ t

a
sρ–1G(tu, s)α–1Eα

[
AG(tu, s)α

]
B
((

u2(s) – u1(s)
))

ds

and

yT
0 y0 =

∫ t

a
sρ–1G(tu, s)α–1yT

0 Eα

[
AG(tu, s)α

]
B
((

u2(s) – u1(s)
))

ds,

therefore, yT
0 y0 = 0, which leads to y0 = 0, this result contradicts y0 �= 0. The proof is fin-

ished. �

5 Optimal control results
The set N is a separable, reflexive Banach space. For u ∈ N , C(N ) represents a class of
nonempty, closed, and convex subsets of N . Given that V is a bounded set within N and
the multifunction 2N : [0,∞] → C(N ) is continuous with 2N ∈N , the admissible control
set Uad = u ∈ C(C)|u(t) ∈ 2N ensures the nonempty nature of Uad.

Next, we consider the Lagrange problem (P):
Find a control pair (x0, u0) ∈ C1,ρ[J ,�] × Uad such that

J
(
x0, u0) ≤ J

(
xu, u

)
for all (x, u) ∈ C1,ρ[J ,�] × Uad,

where

J
(
xu, u

)
:=

∫ b

0
L

(
t, xu(t), u(t)

)
dt,

where xu denotes the mild solution of system (1.1) associated with the control u ∈ Uad. We
will introduce the following assumption concerning the existence of a solution to problem
(P):

H(2): The function L : J × C1,ρ[J ,�] ×N → R ∪ {∞} satisfies the following conditions:
(i) The function L : J × C1,ρ[J ,�] ×N → R ∪ {∞} is Borel measurable;
(ii) L(t, ·, ·) is sequentially lower semicontinuous on C1,ρ[J ,�] ×N for almost all t ∈ J ;
(iii) L(t, x, ·) is convex on N for each x ∈ C1,ρ[J ,�] and almost all t ∈ J ;
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(iv) There exist constants c ≥ 0, d > 0, ϕ is nonnegative, and ϕ ∈ C1,ρ[J ,�] such that

L(t, x, u) ≥ ϕ(t) + c‖x‖C1,ρ + d‖u‖N .

Following that, we may state the following conclusion on the existence of optimum con-
trols for problem (P).

Theorem 5.1 If the assumptions of Theorem 4.2 and H(2) are hold, then the Lagrange
problem (P) allows at least one optimum pair, implying that there exists an acceptable
control pair (x0, u0) ∈ C1,ρ[J ,�] × Uad such that

J
(
x0, u0) =

∫ b

0
L

(
t, x0(t), u0(t)

)
dt ≤ J

(
xu, u

)
,

(
xu, u

) ∈ C1,ρ[J ,�] × Uad.

Proof If inf{J (xu, u) : (xu, u) ∈ C1,ρ[J ,�] × Uad} = +∞, then the conclusion holds.
In our general context, we assume infJ (xu, u) : (xu, u) ∈ C1,ρ[J ,�] × Uad = κ < +∞. By

virtue of condition H(2), we establish κ > –∞. Following the definition of infimum, there
exists a viable minimizing sequence pair {(xn, un)} ⊂ Pad ≡ {(x, u) : x is a mild solution of
system (1.1) corresponding to u ∈ Uad}, such that J (xn, un) → κ as n → +∞. Given that
{un} ⊆ Uad for n = 1, 2, . . . , the separable reflexive Banach spaceN encompasses a bounded
subset {un}. Consequently, there exists a subsequence denoted as un, and u0 ∈N such that

un w−→ u0 in N .

Given the closed and convex nature of Uad, according to Marzur’s lemma, it follows that
u0 is an element of Uad. Consider the sequence of solutions xn for system (1.1) correspond-
ing to the input sequence un, with x0 denoting the solution of system (1.1) corresponding
to u0. The integral equations below characterize the relationships between xn and x0.

xn(t) = DG(t, a)α–1Eα

[
AG(t, a)α

]

+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
f
(
s, xn(s)

)
ds

+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
Bun(s) ds,

x0(t) = DG(t, a)α–1Eα

[
AG(t, a)α

]

+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
f
(
s, x0(s)

)
ds

+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]
Bu0(s) ds.

It follows from the boundedness of {un}, {u0} and Theorem 4.2 that there exists a positive
number λ such that ‖xn‖ ≤ λ, ‖x0‖ ≤ λ.

For t ∈ J , we obtain

∥
∥xn – x0∥∥

C1,ρ
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≤
∥
∥
∥
∥

∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

][
f
(
s, xn(s)

)
– f

(
s, x0(s)

)]
ds

∥
∥
∥
∥

C1,ρ

+
∥
∥
∥
∥

∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

][
Bun(s) – Bu0(s)

]
ds

∥
∥
∥
∥

C1,ρ

≤
∥
∥
∥
∥G(t, a)

∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

][
f
(
s, xn(s)

)
– f

(
s, x0(s)

)]
ds

∥
∥
∥
∥

C

+
∥
∥
∥
∥

(
g(t) – g(a)

)
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

][
Bun(s) – Bu0(s)

]
ds

∥
∥
∥
∥

C

≤ Lf M
∫ t

a
sρ–1G(t, s)α–1∥∥xn – x0∥∥

C1,ρ
ds

+
∫ t

a
sρ–1G(t, s)α–1Eα

[
AG(t, s)α

]∥
∥Bun(s) – Bu0(s)

∥
∥

C1,ρ
ds.

= Q1(t) + Q2(t). (5.1)

By

un w−→ u0 in C1,ρ ,

we have

∥
∥Bun(s) – Bu0(s)

∥
∥

C1,ρ
→ 0, as n → ∞,

it is said Q2(t) → 0. Then we can get

∥
∥xn – x0∥∥

C1,ρ
≤ Q2(t) + Lf M

∫ t

a
sρ–1G(t, s)α–1∥∥xn – x0∥∥

C1,ρ
ds.

By employing the generalized form of Gronwall’s inequality with singular kernels (refer to
Lemma 2.8), we infer that

∥
∥xn – x0∥∥

C1,ρ
≤ Q2(t)Eα

(
MLf �(α)G(t, s)α

)
.

This yields that

xn s−→ x0 in C1,ρ[J ,�] as n → ∞.

Note that H(2) indicates that all of the assumptions of the Balder theorem are true. We
can conclude that (x, u) → ∫ b

0 L(t, x(t), u(t)) dt is sequentially lower semicontinuous in the
strong topology of C1,ρ[J ,�]. Since C1,ρ[J ,�] ⊂ L1(J , Y ),J is weakly lower semicontinuous
on C1,ρ[J ,�], and since by H(2)(iv), J > –∞, J reaches its infimum at u0 ∈ Uad, that is,

κ = limn→∞
∫ b

0
L

(
t, xn(t), um(t)

)
dt ≥

∫ b

0
L

(
t, x0(t), u0(t)

)
dt = J

(
x0, u0) ≥ κ .

The proof is completed. �
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6 An example
In this section, we illustrate our results through an example involving linear Katugampola
fractional systems. Consider the following fractional system (6.1):

⎧
⎨

⎩

1D
1
2
1+ x(t) = Ax(t) + f (t, x(t)) + Bu(t), t ∈ J ′ = (0, 1],

1I
1
2

1+ x(1) = D,
(6.1)

where A =
( 0 1 0

0 0 1
0 0 0

)
, B =

( 1 0 0
0 1 0
0 0 1

)
, we choose a = 0, tu = 1, one can get A2 =

( 0 0 1
0 0 0
0 0 0

)
, A3 =

( 0 0 0
0 0 0
0 0 0

)
,

BBT =
( 1 0 0

0 1 0
0 0 1

)
.

By Theorem 4.2, we will prove that the following Gramian matrix is nonsingular:

WC1,ρ (0, 1] =
∫ 1

0
(1 – s)

1
2 E 1

2

[
AG(1, s)

1
2
]
BBTE 1

2

[
ATG(1, s)

1
2
]

ds.

The Mittag-Leffler function is

E 1
2

[
AG(1, s)

1
2
]

= E 1
2

[
A(1 – s)

1
2
]

= I +
A(1 – s) 1

2

�( 3
2 )

+
A2(1 – s)

�(2)
,

and by computation, we can obtain

WC1,ρ (0, 1] =

⎛

⎜
⎝

0.6667 1.1289 1.2093
0 0.6667 0
0 0 0.6667

⎞

⎟
⎠ .

Therefore the matrix WC1,ρ (0, 1] is nonsingular, then system (6.1) is controllable.

7 Conclusions
This study employs the fixed point theorem and the generalized Laplace transform to
establish crucial conditions for both the existence and uniqueness of solutions within a
class of K-type fractional-order systems. This investigation extends and advances our un-
derstanding of the subject matter. Furthermore, the study presents both sufficient and
necessary conditions for the existence of optimal controllability by extending Gronwall’s
inequality with singular kernels, laying a robust foundation for future research in this field.
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