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Abstract
This research aims to scrutinize specific parametrized integral inequalities linked to 1,
2, 3, and 4-point Newton-Cotes rules applicable to local fractional differentiable
generalized (s,P)-convex functions. To accomplish this objective, we introduce a novel
integral identity and deduce multiple integral inequalities tailored to mappings
within the aforementioned function class. Furthermore, we present an illustrative
example featuring graphical representations and potential practical applications.
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1 Introduction
Convexity is a fundamental mathematical concept with many applications in various
fields, including optimization, analysis, and geometry [24].

Definition 1.1 If the subsequent inequality is satisfied, then the function ξ defined on
I ⊆ R is said to be convex on I .

ξ
(
κt1 + (1 – κ)t2

) ≤ κξ (t1) + (1 – κ)ξ (t2),

for all t1, t2 ∈ I and κ ∈ [0, 1].

The most well-known and significant inequality related to the notion of convexity is the
Hermite-Hadamard inequality, which states that for any convex function ξ defined on the
interval [a, b], we have the following inequality [24].

ξ

(
a + b

2

)
≤ 1

b – a

∫ b

a
ξ (t) dt ≤ ξ (a) + ξ (b)

2
. (1)

Convexity has been generalized in multiple ways to include a broader class of mathe-
matical objects beyond traditional convex sets or functions. For instance, one can define
h-convex functions [23], which relax the condition of convexity and allow for certain types
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of nonconvex behavior. Other generalizations include log-convexity [28], which is the class
of functions whose natural logarithm is convex, among others. These extensions of con-
vexity have been widely applied in optimization, geometry, and other areas of mathematics
[2, 15, 21].

One of the most important generalizations is the class of s-convexity, introduced in [3]
as follows:

Definition 1.2 For some fixed s ∈ (0, 1], a function ξ : I ⊂ [0,∞) → R is said to be s-
convex in the second sense if

ξ
(
κt1 + (1 – κ)t2

) ≤ κ sξ (t1) + (1 – κ)sξ (t2)

holds for all t1, t2 ∈ I and κ ∈ [0, 1].

Moreover, in [5], the authors introduced the class of P-convex functions as follows:

Definition 1.3 A nonnegative function ξ : I ⊆ R → R is said to be P-convex on I if the
inequality

ξ
(
κt1 + (1 – κ)t2

) ≤ ξ (t1) + ξ (t2)

is satisfied for all t1, t2 ∈ I and κ ∈ [0, 1].

The combination of the two previous classes leads to another class of functions known
as (s, P)-convex functions, which were introduced by Numan et al. in [22] as follows:

Definition 1.4 The function ξ : I ⊂ R → R is said to be (s, P)-convex if the subsequent
inequality

ξ
(
κt1 + (1 – κ)t2

) ≤ (
κ s + (1 – κ)s)(ξ (t1) + ξ (t2)

)

is fulfilled for all t1, t2 ∈ I and κ ∈ [0, 1] together with certain fixed s ∈ (0, 1].

Proposition 1.5 [22] Every nonnegative s-convex function is (s, P)-convex.

Fractal sets have a wide range of applications in modeling natural and artificial phenom-
ena such as coastlines, snowflakes, lightning, and ferns. They are also utilized in image and
signal processing, computer graphics, and modeling complex systems. These sets are typ-
ically generated using recursive procedures that involve the repeated application of simple
rules. The Mandelbrot set [17], Koch snowflake [9], and Sierpinski triangle [29] are some
of the well-known examples of fractals. Recently, local fractional calculus has emerged as
a new tool for studying fractal sets, providing insights into the intricate behavior of these
complex systems exhibiting multiscale behavior [10, 31].

Yang proposed the idea of generalized convexity on fractal sets in 2012 [32]. This concept
was introduced as a way to extend the classical notion of convexity to fractal geometry.
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Definition 1.6 (Generalized convex function) Let ξ : I ⊆ R → R
ς with 0 < ς ≤ 1. For all

t1, t2 ∈ I and κ ∈ [0, 1], if

ξ
(
κt1 + (1 – κ)t2

) ≤ κςξ (t1) + (1 – κ)ς ξ (t2)

holds, then ξ is a generalized convex function on I .

Various researchers have attempted to expand the notion of generalized convexity to
encompass a wider range of functions since its inception. Among these extensions, one can
cite generalized s-convexity and generalized (s, P)-convexity which are defined as follows:

Definition 1.7 (Generalized s-convex function [20]) Let ξ : I ⊆ R → R
ς with 0 < ς ≤ 1.

For all t1, t2 ∈ I and κ ∈ [0, 1], if

ξ
(
κt1 + (1 – κ)t2

) ≤ κ sς ξ (t1) + (1 – κ)sς ξ (t2)

holds, then ξ is a generalized s-convex function in the second sense on I .

Definition 1.8 (Generalized (s, P)-convex function [34]) Let ξ : I ⊆ R → R
ς . For any

t1, t2 ∈ I and κ ∈ [0, 1], if

ξ
(
κt1 + (1 – κ)t2

) ≤ (
κ sς + (1 – κ)sς)(

ξ (t1) + ξ (t2)
)

holds, then ξ is a generalized (s, P)-convex function on I .

Proposition 1.9 [34] If a function ξ : I ⊆ R → R
ς is nonnegative and generalized s-

convex, then it is a generalized (s, P)-convex function.

Since the introduction of the notion of generalized convexity and its various variants,
many researchers have been engaged in establishing error estimates for different quadra-
ture formulas, see [1, 6, 8, 11, 12, 14, 16, 18, 19, 25–27, 30, 35]. These works are of great
importance in the development of integral inequalities in the framework of local fractional
calculus, but the two landmark works in this context are those of Yu et al. [36] and Du et
al. [7], in which the authors conducted a comprehensive analysis of integral inequalities
on fractal sets by respectively studying a parametrized three-point Newton-Cotes formula
and a biparametrized five-point formula, which allowed them to derive interesting results
related to several famous rules.

Motivated by the works of [36] and [7], and with the aim of further expanding the study
of Newton-Cotes formulas, this paper introduces a new identity pertaining to a 4-point
biparametrized formula, encompassing a broader family of well-known formulas with 1,
2, 3, and 4 points. By utilizing this identity, we establish a wide range of inequalities for
functions with generalized (s, P)-convex local fractional derivatives, including both new
and previously established results. The study concludes with an example that incorporates
2D and 3D graphical representations, demonstrating the accuracy of the obtained results
and providing some practical applications.
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Table 1 Derived formulas

x ρ Q(a, x,b;ρ) Formula

[a, a+b2 ) 0 ξ (x)+ξ (a+b–x)
2ς

Companion Ostrowski

a ρ ∈ [0, 1] ξ (a)+ξ (b)
2ς

Trapezium

a+b
2 0 ξ ( a+b2 ) Midpoint

1
2

ξ (a)+ξ (b)
2ς

Trapezium
1
4 ( 14 )

ς (ξ (a) + 2ς ξ ( a+b2 ) + ξ (b)) Bullen
1
3 ( 16 )

ς (ξ (a) + 4ς ξ ( a+b2 ) + ξ (b)) Simpson
7
15 ( 1

30 )
ς (7ς ξ (a) + 16ς ξ ( a+b2 ) + 7ς ξ (b)) Corrected Simpson

2a+b
3

3
8 ( 18 )

ς (ξ (a) + ξ (b) + 3ς [ξ ( 2a+b3 ) + ξ ( a+2b3 )]) Simpson 3/8
39
80 ( 1

80 )
ς (13ς [ξ (a) + ξ (b)] + 27ς [ξ ( 2a+b3 ) + ξ ( a+2b3 )]) Corrected Simpson 3/8

For ξ : [a, b] ⊂ R → R
ς , let us consider the following biparametrized four-point

Newton-Cotes formula:

Q(a, x, b;ρ) =
ρς (x – a)ς

(b – a)ς
ξ (a) +

2ς (1 – ρ)ς (x – a)ς + (a + b – 2x)ς

2ς (b – a)ς
ξ (x)

+
2ς (1 – ρ)ς (x – a)ς + (a + b – 2x)ς

2ς (b – a)ς
ξ (a + b – x) +

ρς (x – a)ς

(b – a)ς
ξ (b), (2)

with x ∈ [a, a+b
2 ] and ρ ∈ [0, 1].

It should be noted that by utilizing formula (2) and selecting specific values for the pa-
rameters x and ρ , we can obtain many well-known formulas, see Table 1.

2 Preliminaries
The present section takes another look at the manipulation of real numbers in a fractal set
and makes use of the definition of the local fractional derivative and integral put forth by
Yang in [32].

If tς
1 , tς

2 , and tς
3 are contained in the setRς , where 0 < ς ≤ 1, then the following assertions

hold true:
(1) Both tς

1 + tς
2 and tς

1 tς
2 are elements of the set Rς ,

(2) tς
1 + tς

2 = tς
2 + tς

1 = (t1 + t2)ς = (t2 + t1)ς ,
(3) tς

1 + (tς
2 + tς

3 ) = (t1 + t2)ς + tς
3 ,

(4) tς
1 tς

2 = tς
2 tς

1 = (t1t2)ς = (t2t1)ς ,
(5) tς

1 (tς
2 tς

3 ) = (tς
1 tς

2 )tς
3 ,

(6) tς
1 (tς

2 + tς
3 ) = tς

1 tς
2 + tς

1 tς
3 ,

(7) tς
1 + 0ς = 0ς + tς

1 = tς
1 and tς

1 1ς = 1ς tς
1 = tς

1 .
Gao-Yang-Kang were the original proponents of the concept of local fractional deriva-

tive and local fractional integral, as described in [32, 33].

Definition 2.1 ([32]) We define a function ξ : [a, b] → R
ς to be local fractional continu-

ous at t = t0, if for any ε > 0, the inequality

∣∣ξ (t) – ξ (t0)
∣∣ < ες

holds true for |t – t0| < η, with η > 0.



Li et al. Journal of Inequalities and Applications         (2024) 2024:78 Page 5 of 22

We denote the set of all functions that are local fractional continuous on [a, b] by
Cς [a, b].

Definition 2.2 ([32]) The local fractional derivative of ξ (t) of order ς at t = t0 is defined
by

ξ (ς )(t0) =
dς ξ (t)

dκς

∣
∣∣
t=t0

= lim
t→t0

�ς (ξ (t) – ξ (t0))
(t – t0)ς

,

where �ς (ξ (t) – ξ (t0)) ∼= 	(ς + 1)(ξ (t) – ξ (t0)).
We denote the set of all local fractional differentiable functions on [a, b] by Dς [a, b].

Definition 2.3 ([32]) The local fractional integral of ξ (t) ∈ Cς [a, b], is defined by

aIς

b ξ (t) =
1

	(ς + 1)

∫ b

a
ξ (z)(dz)ς =

1
	(ς + 1)

lim
�z→0

M–1∑

i=0

ξ (zi)(�zi)ς

with �zi = zi+1 – zi and �z = max{�z1,�z2, . . . ,�zM–1}, where [zi, zi+1], i = 0, 1, . . . , M – 1
and a = z0 < z1 < · · · < zM = b is partition of interval [a, b].

It can be inferred that aIς

b ξ (t) = 0 for a = b and aIς

b ξ (t) = –bIς
a ξ (t) for a < b. If for any

t ∈ [a, b], aIς

b ξ (t) exists, then we denoted by ξ (t) ∈ Iς
t [a, b].

Lemma 2.4 ([32])
(1) Suppose that ξ (t) = ψ (ς )(t) ∈ Cς [a, b], then we have

aIς

b ξ (t) = ψ(b) – ψ(a).

(2) Suppose that ξ ,ψ ∈ Dς [a, b] and ξ (ς )(t),ψ (ς )(t) ∈ Cς [a, b], then we have

aIς

b ξ (t)ψ (ς )(t) = ξ (t)ψ(t)|ba – aIς

b ξ (ς )(t)ψ(t).

Lemma 2.5 ([32]) For ξ (t) = tmς , we have following equations:

dς tmς

dtς
=

	(1 + mς )
	(1 + (m – 1)ς )

t(m–1)ς ,

1
	(1 + ς )

∫ b

a
tmς (dt)ς =

	(1 + mς )
	(1 + (m + 1)ς )

(
b(m+1)ς – a(m+1)ς)

, m ∈R.

Lemma 2.6 (Generalized Hölder’s inequality [4]) Let ξ ,ψ ∈ Cς [a, b], p, q > 1 with 1
p + 1

q =
1, then

1
	(1 + ς )

∫ b

a

∣
∣ξ (t)ψ(t)

∣
∣(dt)ς

≤
(

1
	(1 + ς )

∫ b

a

∣
∣ξ (t)

∣
∣p(dt)ς

) 1
p
(

1
	(1 + ς )

∫ b

a

∣
∣ψ(t)

∣
∣q(dt)ς

) 1
q

.
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3 Main results
Lemma 3.1 Let ξ : I → R

ς be a differentiable function on [a, b], and ξ (ς ) ∈ Cς [a, b], then
the following equality holds for all x ∈ [a, a+b

2 ] and ρ ∈ [0, 1]:

Q(a, x, b;ρ) –
	(ς + 1)
(b – a)ς aIς

b ξ (t)

=
(x – a)2ς

(b – a)ς
1

	(ς + 1)

∫ 1

0
(κ – ρ)ς ξ (ς )((1 – κ)a + κx

)
(dκ)ς

+
(a + b – 2x)2ς

22ς (b – a)ς
1

	(ς + 1)

∫ 1

0
(κ – 1)ς ξ (ς )

(
(1 – κ)x + κ

a + b
2

)
(dκ)ς

+
(a + b – 2x)2ς

22ς (b – a)ς
1

	(ς + 1)

∫ 1

0
κςξ (ς )

(
(1 – κ)

a + b
2

+ κ(a + b – x)
)

(dκ)ς

+
(x – a)2ς

(b – a)ς
1

	(ς + 1)

∫ 1

0

(
κ – (1 – ρ)

)ς
ξ (ς )((1 – κ)(a + b – x) + κb

)
(dκ)ς ,

where Q is defined as in (2).

Proof Let

I =
(x – a)2ς

(b – a)ς
I1 +

(a + b – 2x)2ς

22ς (b – a)ς
I2 +

(a + b – 2x)2ς

22ς (b – a)ς
I3 +

(x – a)2ς

(b – a)ς
I4, (3)

where

I1 =
1

	(ς + 1)

∫ 1

0
(κ – ρ)ς ξ (ς )((1 – κ)a + κx

)
(dκ)ς ,

I2 =
1

	(ς + 1)

∫ 1

0
(κ – 1)ς ξ (ς )

(
(1 – κ)x + κ

a + b
2

)
(dκ)ς ,

I3 =
1

	(ς + 1)

∫ 1

0
κςξ (ς )

(
(1 – κ)

a + b
2

+ κ(a + b – x)
)

(dκ)ς

and

I4 =
1

	(ς + 1)

∫ 1

0

(
κ – (1 – ρ)

)ς
ξ (ς )((1 – κ)(a + b – x) + κb

)
(dκ)ς .

Using Lemma 2.4, I1 gives

I1 =
1

	(ς + 1)

∫ 1

0
(κ – ρ)ς ξ (ς )((1 – κ)a + κx

)
(dκ)ς (4)

=
1

(x – a)ς
(κ – ρ)ςξ

(
(1 – κ)a + κx

)|10

–
1

(x – a)ς	(ς + 1)

∫ 1

0
	(ς + 1)ξ

(
(1 – κ)a + κx

)
(dκ)ς

=
(1 – ρ)ς

(x – a)ς
ξ (x) +

ρς

(x – a)ς
ξ (a) –

1
(x – a)2ς

∫ x

a
ξ (u)(du)ς .
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Similarly, we get

I2 =
1

	(ς + 1)

∫ 1

0
(κ – 1)ς ξ (ς )

(
(1 – κ)x + κ

a + b
2

)
(dκ)ς (5)

=
2ς

(a + b – 2x)ς
(κ – 1)ς ξ

(
(1 – κ)x + κ

a + b
2

)
|10

–
2ς

(a + b – 2x)ς	(ς + 1)

∫ 1

0
	(ς + 1)ξ

(
(1 – κ)x + κ

a + b
2

)
(dκ)ς

=
2ς

(a + b – 2x)ς
ξ (x) –

22ς

(a + b – 2x)2ς

∫ a+b
2

x
ξ (u)(du)ς ,

I3 =
1

	(ς + 1)

∫ 1

0
κςξ (ς )

(
(1 – κ)

a + b
2

+ κ(a + b – x)
)

(dκ)ς (6)

=
2ς

(a + b – 2x)ς
κςξ

(
(1 – κ)

a + b
2

+ κ(a + b – x)
)

|10

–
2ς

(a + b – 2x)ς	(ς + 1)

∫ 1

0
	(ς + 1)ξ

(
(1 – κ)

a + b
2

+ κ(a + b – x)
)

(dκ)ς

=
2ς

(a + b – 2x)ς
ξ (a + b – x) –

22ς

(a + b – 2x)2ς

∫ a+b–x

a+b
2

ξ (u)(du)ς

and

I4 =
1

	(ς + 1)

∫ 1

0

(
κ – (1 – ρ)

)ς
ξ (ς )((1 – κ)(a + b – x) + κb

)
(dκ)ς (7)

=
1

(x – a)ς
(
κ – (1 – ρ)

)ς
ξ
(
(1 – κ)(a + b – x) + κb

)|10

–
1

(x – a)ς	(ς + 1)

∫ 1

0
	(ς + 1)ξ

(
(1 – κ)(a + b – x) + κb

)
(dκ)ς

=
ρς

(x – a)ς
ξ (b) +

(1 – ρ)ς

(x – a)ς
ξ (a + b – x) –

1
(x – a)2ς

∫ b

a+b–x
ξ (u)(du)ς .

Substituting (4)–(7) in (3) and using (2), we get

Q(a, x, b;ρ) –
1

(b – a)ς

∫ b

a
ξ (u)(du)ς

= Q(a, x, b;ρ) –
	(ς + 1)
(b – a)ς

(
1

	(ς + 1)

∫ b

a
ξ (u)(du)ς

)

= Q(a, x, b;ρ) –
	(ς + 1)
(b – a)ς aIς

b ξ (t),

which is the desired result. �

Theorem 3.2 Let ξ : [a, b] → R
ς be a differentiable function on (a, b) such that ξ ∈

Dς [a, b] and ξ (ς ) ∈ Cς [a, b] with 0 ≤ a < b. If |ξ (ς )| is generalized (s, P)-convex on [a, b],
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then for all ρ ∈ [0, 1], we have

∣∣
∣∣Q(a, x, b;ρ) –

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣∣
∣∣

≤ (x – a)2ς

(b – a)ς

(
2ς

(
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

)

× (
ρs+2 + (1 – ρ)s+2 – 1

)ς +
	(1 + sς )

	(1 + (s + 1)ς )

)

× (∣∣ξ (ς )(a)
∣∣ +

∣∣ξ (ς )(x)
∣∣ +

∣∣ξ (ς )(a + b – x)
∣∣ +

∣∣ξ (ς )(b)
∣∣)

+
(a + b – 2x)2ς

22ς (b – a)ς

(∣
∣ξ (ς )(x)

∣
∣ + 2ς

∣∣
∣∣ξ

(ς )
(

a + b
2

)∣∣
∣∣ +

∣
∣ξ (ς )(a + b – x)

∣
∣
)

	(1 + sς )
	(1 + (s + 1)ς )

,

where Q(a, x, b;ρ) is defined as in (2).

Proof From Lemma 3.1, properties of modulus, and the generalized (s, P)-convexity of
|ξ (ς )|, we have

∣∣
∣∣Q(a, x, b;ρ) –

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣∣
∣∣

≤ (x – a)2ς

(b – a)ς
1

	(ς + 1)

∫ 1

0
|κ – ρ|ς ∣∣ξ (ς )((1 – κ)a + κx

)∣∣(dκ)ς

+
(a + b – 2x)2ς

22ς (b – a)ς
1

	(ς + 1)

∫ 1

0
(1 – κ)ς

∣∣
∣∣ξ

(ς )
(

(1 – κ)x + κ
a + b

2

)∣∣
∣∣(dκ)ς

+
(a + b – 2x)2ς

22ς (b – a)ς
1

	(ς + 1)

∫ 1

0
κς

∣
∣∣
∣ξ

(ς )
(

(1 – κ)
a + b

2
+ κ(a + b – x)

)∣
∣∣
∣(dκ)ς

+
(x – a)2ς

(b – a)ς
1

	(ς + 1)

∫ 1

0

∣
∣κ – (1 – ρ)

∣
∣ς

∣
∣ξ (ς )((1 – κ)(a + b – x) + κb

)∣∣(dκ)ς

≤ (x – a)2ς

(b – a)ς
1

	(ς + 1)

∫ 1

0
|κ – ρ|ς(

κ sς + (1 – κ)sς)(∣∣ξ (ς )(a)
∣∣ +

∣∣ξ (ς )(x)
∣∣)(dκ)ς

+
(a + b – 2x)2ς

22ς (b – a)ς
1

	(ς + 1)

×
∫ 1

0
(1 – κ)ς

(
κ sς + (1 – κ)sς)

(∣∣ξ (ς )(x)
∣∣ +

∣
∣∣∣ξ

(ς )
(

a + b
2

)∣
∣∣∣

)
(dκ)ς

+
(a + b – 2x)2ς

22ς (b – a)ς
1

	(ς + 1)

×
∫ 1

0
κς

(
κ sς + (1 – κ)sς )(

∣∣
∣∣ξ

(ς )
(

a + b
2

)∣∣
∣∣ +

∣
∣ξ (ς )(a + b – x)

∣
∣
)

(dκ)ς

+
(x – a)2ς

(b – a)ς
1

	(ς + 1)

×
∫ 1

0

∣
∣κ – (1 – ρ)

∣
∣ς (

κ sς + (1 – κ)sς)(∣∣ξ (ς )(a + b – x)
∣
∣ +

∣
∣ξ (ς )(b)

∣
∣)(dκ)ς

=
(x – a)2ς

(b – a)ς

(
2ς

(
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

)
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× (
ρs+2 + (1 – ρ)s+2 – 1

)ς +
	(1 + sς )

	(1 + (s + 1)ς )

)

× (∣∣ξ (ς )(a)
∣
∣ +

∣
∣ξ (ς )(x)

∣
∣ +

∣
∣ξ (ς )(a + b – x)

∣
∣ +

∣
∣ξ (ς )(b)

∣
∣)

+
(a + b – 2x)2ς

22ς (b – a)ς

(∣∣ξ (ς )(x)
∣∣ + 2ς

∣
∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣ +

∣∣ξ (ς )(a + b – x)
∣∣
)

	(1 + sς )
	(1 + (s + 1)ς )

,

where we have used the facts that

1
	(ς + 1)

∫ 1

0
|κ – ρ|ς(

κ sς + (1 – κ)sς )
(dκ)ς

=
1

	(ς + 1)

∫ 1

0

∣
∣κ – (1 – ρ)

∣
∣ς (

κ sς + (1 – κ)sς)
(dκ)ς

=
1

	(ς + 1)

∫ ρ

0
(ρ – κ)ςκ sς (dκ)ς +

1
	(ς + 1)

∫ ρ

0
(ρ – κ)ς (1 – κ)sς (dκ)ς

+
1

	(ς + 1)

∫ 1

ρ

(κ – ρ)ςκ sς (dκ)ς +
1

	(ς + 1)

∫ 1

ρ

(κ – ρ)ς (1 – κ)sς (dκ)ς

=
1

	(ς + 1)

∫ ρ

0

(
ρςκ sς – κ (s+1)ς)

(dκ)ς +
1

	(ς + 1)

∫ 1

1–ρ

(
κ (s+1)ς – (1 – ρ)ςκ sς )

(dκ)ς

+
1

	(ς + 1)

∫ 1

ρ

(
κ (s+1)ς – ρςκ sς )

(dκ)ς

+
1

	(ς + 1)

∫ 1–ρ

0

(
(1 – ρ)ςκ sς – κ (s+1)ς)

(dκ)ς

= 2ς
(
ρs+2 + (1 – ρ)s+2 – 1

)ς

[
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

]

+
	(1 + sς )

	(1 + (s + 1)ς )
(8)

and

1
	(ς + 1)

∫ 1

0
(1 – κ)ς

(
κ sς + (1 – κ)sς)

(dκ)ς

=
1

	(ς + 1)

∫ 1

0
κς

(
κ sς + (1 – κ)sς )

(dκ)ς

=
1

	(ς + 1)

∫ 1

0
κ (s+1)ς (dκ)ς +

1
	(ς + 1)

∫ 1

0
κς (1 – κ)sς (dκ)ς

=
1

	(ς + 1)

∫ 1

0
κ (s+1)ς (dκ)ς +

1
	(ς + 1)

∫ 1

0
(1 – κ)ςκ sς (dκ)ς

=
1

	(ς + 1)

∫ 1

0
κ (s+1)ς (dκ)ς +

1
	(ς + 1)

∫ 1

0

(
κ sς – κ (s+1)ς)

(dκ)ς

=
	(1 + sς )

	(1 + (s + 1)ς )
. (9)

The proof is completed. �
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Corollary 3.3 In Theorem 3.2, if we take x = 2a+b
3 , we obtain the following inequality:

∣
∣∣∣
ρς

3ς
ξ (a) +

(3 – 2ρ)ς

6ς
ξ

(
2a + b

3

)
+

(3 – 2ρ)ς

6ς
ξ

(
a + 2b

3

)
+

ρς

3ς
ξ (b) –

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣
∣∣∣

≤ (b – a)ς

36ς

{(
8ς

(
ρs+2 + (1 – ρ)s+2 – 1

)ς

[
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

]

+ 4ς 	(1 + sς )
	(1 + (s + 1)ς )

)

×
(∣

∣ξ (ς )(a)
∣
∣ +

∣∣
∣∣ξ

(ς )
(

2a + b
3

)∣∣
∣∣ +

∣∣
∣∣ξ

(ς )
(

a + 2b
3

)∣∣
∣∣ +

∣
∣ξ (ς )(b)

∣
∣
)

+
	(1 + sς )

	(1 + (s + 1)ς )

(∣∣
∣∣ξ

(ς )
(

2a + b
3

)∣∣
∣∣ + 2ς

∣∣
∣∣ξ

(ς )
(

a + b
2

)∣∣
∣∣ +

∣∣
∣∣ξ

(ς )
(

a + 2b
3

)∣∣
∣∣

)}
.

Corollary 3.4 In Corollary 3.3, if we take ρ = 3
8 , then we obtain the following inequality

related to Simpson’s second formula:

∣
∣∣
∣
1ς

8ς

(
ξ (a) + 3ς ξ

(
2a + b

3

)
+ 3ς ξ

(
a + 2b

3

)
+ ξ (b)

)
–

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣
∣∣
∣

≤ (b – a)ς

(36)ς

((
8ς

(
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

)(
3s+2 + 5s+2

8s+2 – 1
)ς

+ 4ς 	(1 + sς )
	(1 + (s + 1)ς )

)

×
(∣

∣ξ (ς )(a)
∣
∣ +

∣∣
∣∣ξ

(ς )
(

2a + b
3

)∣∣
∣∣ +

∣∣
∣∣ξ

(ς )
(

a + 2b
3

)∣∣
∣∣ +

∣
∣ξ (ς )(b)

∣
∣
)

+
	(1 + sς )

	(1 + (s + 1)ς )

(∣∣
∣∣ξ

(ς )
(

2a + b
3

)∣∣
∣∣ + 2ς

∣∣
∣∣ξ

(ς )
(

a + b
2

)∣∣
∣∣ +

∣∣
∣∣ξ

(ς )
(

a + 2b
3

)∣∣
∣∣

))
.

Remark 3.5 Based on our primary finding, we may identify specific cases that correspond
to previously established results. This not only showcases the generality of Theorem 3.2
but also consolidates the foundation laid by earlier studies:

• By setting ρ = 39
80 , Corollary 3.3 will be reduced to Theorem 3 from [13].

• If we set x = a+b
2 and ρ = 1

4 in Theorem 3.2, the outcomes align with Corollary 2.8 by
Du et al. in [7], which pertains to the Bullen inequality.

Remark 3.6 Theorem 3.2 leads to a wealth of new discoveries since it allows for the de-
duction of many outcomes for generalized (s, P)-convex functions. Indeed, if we fix:

1/ ρ = 0, then we obtain the companion Ostrowski inequality.
2/ x = a, we then obtain the trapezium inequality.
3/ x = a+b

2 , then we obtain the Simpson-like-type inequality. Moreover, we get
• Midpoint inequality, for ρ = 0,
• Trapezium inequality, for ρ = 1

2 ,
• Simpson inequality, for ρ = 1

3 ,
• Corrected Simpson inequality, for ρ = 7

15 .
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Theorem 3.7 Assume that all the assumptions of Theorem 3.2 are satisfied. If |ξ (ς )|q is
generalized (s, P)-convex, then for all ρ ∈ [0, 1], the following inequality holds

∣
∣∣
∣Q(a, x, b;ρ) –

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣
∣∣
∣

≤ (x – a)2ς

(b – a)ς
((

(1 – ρ)p+1 + ρp+1) 1
p
)ς

(
	(1 + pς )

	(1 + (p + 1)ς )

) 1
p
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

× ((∣∣ξ (ς )(a)
∣
∣q +

∣
∣ξ (ς )(x)

∣
∣q) 1

q +
(∣∣ξ (ς )(a + b – x)

∣
∣q +

∣
∣ξ (ς )(b)

∣
∣q) 1

q
)

+
(a + b – 2x)2ς

22ς (b – a)ς

(
	(1 + pς )

	(1 + (p + 1)ς )

) 1
p
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣∣ξ (ς )(x)

∣∣q +
∣
∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q) 1
q

+
(∣

∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q

+
∣∣ξ (ς )(a + b – x)

∣∣q
) 1

q
)

,

where Q(a, x, b;ρ) is defined as (2), and q > 1 with 1
p + 1

q = 1.

Proof From Lemma 3.1, properties of modulus, the generalized Hölder inequality, and
generalized (s, P)-convexity of |ξ (ς )|q, we have

∣∣
∣∣Q(a, x, b;ρ) –

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣∣
∣∣

≤ (x – a)2ς

(b – a)ς

(
1

	(ς + 1)

∫ 1

0
|κ – ρ|pς (dκ)ς

) 1
p

×
(

1
	(ς + 1)

∫ 1

0

∣
∣ξ (ς )((1 – κ)a + κx

)∣∣q(dκ)ς
) 1

q

+
(a + b – 2x)2ς

22ς (b – a)ς

(
1

	(ς + 1)

∫ 1

0
(1 – κ)pς (dκ)ς

) 1
p

×
(

1
	(ς + 1)

∫ 1

0

∣∣
∣∣ξ

(ς )
(

(1 – κ)x + κ
a + b

2

)∣∣
∣∣

q

(dκ)ς
) 1

q

+
(a + b – 2x)2ς

22ς (b – a)ς

(
1

	(ς + 1)

∫ 1

0
κpς (dκ)ς

) 1
p

×
(

1
	(ς + 1)

∫ 1

0

∣∣
∣∣ξ

(ς )
(

(1 – κ)
a + b

2
+ κ(a + b – x)

)∣∣
∣∣

q

(dκ)ς
) 1

q

+
(x – a)2ς

(b – a)ς

(
1

	(ς + 1)

∫ 1

0

∣∣κ – (1 – ρ)
∣∣pς (dκ)ς

) 1
p

×
(

1
	(ς + 1)

∫ 1

0

∣
∣ξ (ς )((1 – κ)(a + b – x) + κb

)∣∣q(dκ)ς
) 1

q

≤ (x – a)2ς

(b – a)ς

(
1

	(ς + 1)

∫ 1

0
|κ – ρ|pς (dκ)ς

) 1
p

×
(

1
	(ς + 1)

∫ 1

0

(
κ sς + (1 – κ)sς)

(dκ)ς
) 1

q
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× ((∣∣ξ (ς )(a)
∣∣q +

∣∣ξ (ς )(x)
∣∣q) 1

q +
(∣∣ξ (ς )(a + b – x)

∣∣q +
∣∣ξ (ς )(b)

∣∣q) 1
q
)

+
(a + b – 2x)2ς

22ς (b – a)ς

(
1

	(ς + 1)

∫ 1

0
κpς (dκ)ς

) 1
p

×
(

1
	(ς + 1)

∫ 1

0

(
κ sς + (1 – κ)sς)

(dκ)ς
) 1

q

×
((∣∣ξ (ς )(x)

∣∣q +
∣
∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q) 1
q

+
(∣

∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q

+
∣∣ξ (ς )(a + b – x)

∣∣q
) 1

q
)

=
(x – a)2ς

(b – a)ς
((

(1 – ρ)p+1 + ρp+1) 1
p
)ς

(
	(1 + pς )

	(1 + (p + 1)ς )

) 1
p
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

× ((∣∣ξ (ς )(a)
∣
∣q +

∣
∣ξ (ς )(x)

∣
∣q) 1

q +
(∣∣ξ (ς )(a + b – x)

∣
∣q +

∣
∣ξ (ς )(b)

∣
∣q) 1

q
)

+
(a + b – 2x)2ς

22ς (b – a)ς

(
	(1 + pς )

	(1 + (p + 1)ς )

) 1
p
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣∣ξ (ς )(x)

∣∣q +
∣
∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q) 1
q

+
(∣

∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q

+
∣∣ξ (ς )(a + b – x)

∣∣q
) 1

q
)

,

where we have used the facts that

1
	(ς + 1)

∫ 1

0

(
κ sς + (1 – κ)sς)

(dκ)ς = 2ς 	(1 + sς )
	(1 + (s + 1)ς )

, (10)

1
	(ς + 1)

∫ 1

0
κpς (dκ)ς =

	(1 + pς )
	(1 + (p + 1)ς )

(11)

and

1
	(ς + 1)

∫ 1

0
|κ – ρ|pς (dκ)ς =

(
(1 – ρ)p+1 + ρp+1)ς 	(1 + pς )

	(1 + (p + 1)ς )
. (12)

The proof is completed. �

Corollary 3.8 In Theorem 3.7, if we take x = 2a+b
3 , then we obtain the following inequality:

∣
∣∣
∣
ρς

3ς
ξ (a) +

(3 – 2ρ)ς

6ς
ξ

(
2a + b

3

)
+

(3 – 2ρ)ς

6ς
ξ

(
a + 2b

3

)
+

ρς

3ς
ξ (b) –

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣
∣∣
∣

≤ (b – a)ς

9ς

((
(1 – ρ)p+1 + ρp+1) 1

p
)ς

(
	(1 + pς )

	(1 + (p + 1)ς )

) 1
p
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣∣ξ (ς )(a)

∣∣q +
∣
∣∣
∣ξ

(ς )
(

2a + b
3

)∣
∣∣
∣

q) 1
q

+
(∣

∣∣
∣ξ

(ς )
(

a + 2b
3

)∣
∣∣
∣

q

+
∣∣ξ (ς )(b)

∣∣q
) 1

q
)

+
(b – a)ς

(36)ς

(
	(1 + pς )

	(1 + (p + 1)ς )

) 1
p
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣

∣∣
∣ξ

(ς )
(

2a + b
3

)∣
∣∣
∣

q

+
∣
∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q) 1
q

+
(∣∣

∣∣ξ
(ς )

(
a + b

2

)∣∣
∣∣

q

+
∣∣
∣∣ξ

(ς )
(

a + 2b
3

)∣∣
∣∣

q) 1
q
)

.
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Corollary 3.9 In Corollary 3.8, if we take ρ = 3
8 , then we obtain the following inequality

related to Simpson’s second formula:

∣∣
∣∣
1ς

8ς

(
ξ (a) + 3ς ξ

(
2a + b

3

)
+ 3ς ξ

(
2a + b

3

)
+ ξ (b)

)
–

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣∣
∣∣

≤ (b – a)ς

9ς

(
5p+1 + 3p+1

8p+1

) 1
p ς(

	(1 + pς )
	(1 + (p + 1)ς )

) 1
p
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣

∣ξ (ς )(a)
∣
∣q +

∣∣
∣∣ξ

(ς )
(

2a + b
3

)∣∣
∣∣

q) 1
q

+
(∣∣

∣∣ξ
(ς )

(
a + 2b

3

)∣∣
∣∣

q

+
∣
∣ξ (ς )(b)

∣
∣q

) 1
q
)

+
(b – a)ς

(36)ς

(
	(1 + pς )

	(1 + (p + 1)ς )

) 1
p
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣∣

∣∣ξ
(ς )

(
2a + b

3

)∣∣
∣∣

q

+
∣∣
∣∣ξ

(ς )
(

a + b
2

)∣∣
∣∣

q) 1
q

+
(∣

∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q

+
∣
∣∣
∣ξ

(ς )
(

a + 2b
3

)∣
∣∣
∣

q) 1
q
)

.

Remark 3.10 By setting ρ = 39
80 , Corollary 3.8 will be reduced to Theorem 4 from [13].

Theorem 3.11 Assume that all the assumptions of Theorem 3.2 are satisfied. If |ξ (ς )|q
is generalized (s, P)-convex, then for all ρ ∈ [0, 1] and q > 1, the following inequality

holds:

∣∣∣
∣Q(a, x, b;ρ) –

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣∣∣
∣

≤ (x – a)2ς

(b – a)ς

((
(1 – ρ)2 + ρ2)ς 	(1 + ς )

	(1 + 2ς )

)1– 1
q

×
((

2ς

(
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

)
(
ρs+2 + (1 – ρ)s+2 – 1

)ς

+
(

	(1 + sς )
	(1 + (s + 1)ς )

)) 1
q

× ((∣∣ξ (ς )(a)
∣
∣q +

∣
∣ξ (ς )(x)

∣
∣q) 1

q +
(∣∣ξ (ς )(a + b – x)

∣
∣q +

∣
∣ξ (ς )(b)

∣
∣q) 1

q
)

+
(a + b – 2x)2ς

22ς (b – a)ς

(
	(1 + ς )
	(1 + 2ς )

)1– 1
q
(

	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣∣ξ (ς )(x)

∣∣q +
∣
∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q) 1
q
(∣

∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q

+
∣∣ξ (ς )(a + b – x)

∣∣q
) 1

q
))

,

where Q(a, x, b;ρ) is defined as in (2).
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Proof From Lemma 3.1, properties of modulus generalized power mean inequality and
generalized (s, P)-convexity of |ξ (ς )|q, we have

∣
∣∣
∣Q(a, x, b;ρ) –

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣
∣∣
∣

≤ (x – a)2ς

(b – a)ς

(
1

	(ς + 1)

∫ 1

0
|κ – ρ|ς (dκ)ς

)1– 1
q

×
(

1
	(ς + 1)

∫ 1

0
|κ – ρ|ς ∣∣ξ (ς )((1 – κ)a + κx

)∣∣q(dκ)ς
) 1

q

+
(a + b – 2x)2ς

22ς (b – a)ς

(
1

	(ς + 1)

∫ 1

0
(1 – κ)ς (dκ)ς

)1– 1
q

×
(

1
	(ς + 1)

∫ 1

0
(1 – κ)ς

∣
∣∣
∣ξ

(ς )
(

(1 – κ)x + κ
a + b

2

)∣
∣∣
∣

q

(dκ)ς
) 1

q

+
(a + b – 2x)2ς

22ς (b – a)ς

(
1

	(ς + 1)

∫ 1

0
κς (dκ)ς

)1– 1
q

×
(

1
	(ς + 1)

∫ 1

0
κς

∣
∣∣
∣ξ

(ς )
(

(1 – κ)
a + b

2
+ κ(a + b – x)

)∣
∣∣
∣

q

(dκ)ς
) 1

q

+
(x – a)2ς

(b – a)ς

(
1

	(ς + 1)

∫ 1

0

∣
∣κ – (1 – ρ)

∣
∣ς (dκ)ς

)1– 1
q

×
(

1
	(ς + 1)

∫ 1

0

∣∣κ – (1 – ρ)
∣∣ς ∣∣ξ (ς )((1 – κ)(a + b – x) + κb

)∣∣q(dκ)ς
) 1

q

≤ (x – a)2ς

(b – a)ς

(
1

	(ς + 1)

∫ 1

0
|κ – ρ|ς (dκ)ς

)1– 1
q

×
((

1
	(ς + 1)

∫ 1

0
|κ – ρ|ς(

κ sς + (1 – κ)sς)(∣∣ξ (ς )(a)
∣∣q +

∣∣ξ (ς )(x)
∣∣q)(dκ)ς

) 1
q

+
(

1
	(ς + 1)

×
∫ 1

0

∣
∣κ – (1 – ρ)

∣
∣ς (

κ sς + (1 – κ)sς)(∣∣ξ (ς )(a + b – x)
∣
∣q +

∣
∣ξ (ς )(b)

∣
∣q)(dκ)ς

) 1
q
)

+
(a + b – 2x)2ς

22ς (b – a)ς

(
1

	(ς + 1)

∫ 1

0
κς (dκ)ς

)1– 1
q

×
((

1
	(ς + 1)

∫ 1

0
(1 – κ)ς

(
κ sς + (1 – κ)sς)

×
(∣

∣ξ (ς )(x)
∣
∣q +

∣∣
∣∣ξ

(ς )
(

a + b
2

)∣∣
∣∣

q)
(dκ)ς

) 1
q

+
(

1
	(ς + 1)

∫ 1

0
κς

(
κ sς + (1 – κ)sς)

×
(∣∣

∣∣ξ
(ς )

(
a + b

2

)∣∣
∣∣

q

+
∣
∣ξ (ς )(a + b – x)

∣
∣q

)
(dκ)ς

) 1
q
)
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=
(x – a)2ς

(b – a)ς

((
(1 – ρ)2 + ρ2)ς 	(1 + ς )

	(1 + 2ς )

)1– 1
q

×
((

2ς

(
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

)
(
ρs+2 + (1 – ρ)s+2 – 1

)ς

+
(

	(1 + sς )
	(1 + (s + 1)ς )

)) 1
q

× ((∣∣ξ (ς )(a)
∣
∣q +

∣
∣ξ (ς )(x)

∣
∣q) 1

q +
(∣∣ξ (ς )(a + b – x)

∣
∣q +

∣
∣ξ (ς )(b)

∣
∣q) 1

q
)

+
(a + b – 2x)2ς

22ς (b – a)ς

(
	(1 + ς )
	(1 + 2ς )

)1– 1
q
(

	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣∣ξ (ς )(x)

∣∣q +
∣
∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q) 1
q
(∣

∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q

+
∣∣ξ (ς )(a + b – x)

∣∣q
) 1

q
))

,

where we have used (8), (9), and the facts that

1
	(ς + 1)

∫ 1

0
κς (dκ)ς =

	(1 + ς )
	(1 + 2ς )

and

1
	(ς + 1)

∫ 1

0
|κ – ρ|ς (dκ)ς =

(
(1 – ρ)2 + ρ2)ς 	(1 + ς )

	(1 + 2ς )
.

The proof is completed. �

Corollary 3.12 In Theorem 3.11, if we take x = 2a+b
3 , we obtain the following inequality:

∣∣∣
∣
ρς

3ς
ξ (a) +

(3 – 2ρ)ς

6ς
ξ

(
2a + b

3

)
+

(3 – 2ρ)ς

6ς
ξ

(
a + 2b

3

)
+

ρς

3ς
ξ (b) –

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣∣∣
∣

≤ (b – a)ς

9ς

((
(1 – ρ)2 + ρ2)ς 	(1 + ς )

	(1 + 2ς )

)1– 1
q

×
((

2ς

(
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

)
(
ρs+2 + (1 – ρ)s+2 – 1

)ς

+
	(1 + sς )

	(1 + (s + 1)ς )

) 1
q

×
((∣∣ξ (ς )(a)

∣∣q +
∣
∣∣
∣ξ

(ς )
(

3a + b
4

)∣
∣∣
∣

q) 1
q

+
(∣

∣∣
∣ξ

(ς )
(

a + 3b
4

)∣
∣∣
∣

q

+
∣∣ξ (ς )(b)

∣∣q
) 1

q
)

+
(b – a)ς

36ς

(
	(1 + ς )
	(1 + 2ς )

)1– 1
q
(

	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣∣ξ (ς )(x)

∣∣q +
∣
∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q) 1
q
(∣

∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q

+
∣∣ξ (ς )(a + b – x)

∣∣q
) 1

q
))

.
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Corollary 3.13 In Corollary 3.12, if we take ρ = 3
8 , then we obtain the following inequality

related to Simpson’s second formula.

∣
∣∣
∣
1ς

8ς

(
ξ (a) + 3ς ξ

(
2a + b

3

)
+ 3ς ξ

(
a + 2b

3

)
+ ξ (b)

)
–

	(ς + 1)
(b – a)ς aIς

b ξ (t)
∣
∣∣
∣

≤ (b – a)ς

9ς

((
17
32

)ς
	(1 + ς )
	(1 + 2ς )

)1– 1
q

×
[

2ς

(
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

)(
3(s+2) + 5(s+2)

8(s+2) – 1
)ς

+
	(1 + sς )

	(1 + (s + 1)ς )

] 1
q

×
((∣

∣ξ (ς )(a)
∣
∣q +

∣∣
∣∣ξ

(ς )
(

2a + b
3

)∣∣
∣∣

q) 1
q

+
(∣∣

∣∣ξ
(ς )

(
a + 2b

3

)∣∣
∣∣

q

+
∣
∣ξ (ς )(b)

∣
∣q

) 1
q
)

+
(b – a)ς

(36)ς

(
	(1 + ς )
	(1 + 2ς )

)1– 1
q
(

	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣∣

∣∣ξ
(ς )

(
2a + b

3

)∣∣
∣∣

q

+
∣∣
∣∣ξ

(ς )
(

a + b
2

)∣∣
∣∣

q) 1
q

+
(∣

∣∣
∣ξ

(ς )
(

a + b
2

)∣
∣∣
∣

q

+
∣
∣∣
∣ξ

(ς )
(

a + 2b
3

)∣
∣∣
∣

q) 1
q
))

.

Remark 3.14
• By setting ρ = 39

80 , Corollary 3.12 will be reduced to Theorem 5 from [13].
• Similar to Theorem 3.2, the outcomes related to Theorems 3.7 and 3.11 concerning

the quadrature rules in Table 1 can be easily derived.

4 Example and applications
The purpose of this section is to confirm the precision and efficiency of the obtained re-
sults. To achieve this, we first present an example with a visual representation that sup-
ports the accuracy of our findings. Following that, we provide some practical uses for esti-
mating the error of a specific quadrature formula and some inequalities that involve special
means.

4.1 Example supporting study results
To further support and validate the results obtained in this study, we present an illustra-
tive example consisting of multiple cases with 2D and 3D graphical representations that
demonstrate the effectiveness and accuracy of our findings.

It should be pointed out that the figures that follow were generated using MATLAB,
with the color green representing the Right Hand Side and the color blue representing the
Left Hand Side of their corresponding inequalities.

Example 4.1 Let ξ : [0, 1] → R
ς be a function defined for a fixed value s ∈ (0, 1] by

ξ (t) = 	(1+sς )
	(1+(s+1)ς ) t(s+1)ς . Therefore, the derivative |ξ (ς )(t)| = tsς is a nonnegative generalized

s-convex function and hence a generalized (s, P)-convex function according to Proposi-
tion 1.9, which satisfies the fundamental condition underlying this study.
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From Theorem 3.2, we obtain the following multiparametrized four-point Newton-
Cotes-type inequalities related to the function under consideration.

∣∣Q(0, x, 1;ρ) – 	(ς + 1) 0Iς
1 ξ (t)

∣∣

≤ x2ς

(
2ς

(
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

)
(
ρs+2 + (1 – ρ)s+2 – 1

)ς

+
	(1 + sς )

	(1 + (s + 1)ς )

)
(
xsς + (1 – x)sς + 1ς

)

+
(1 – 2x)2ς

22ς

(
xsς + 2(1–s)ς + (1 – x)sς) 	(1 + sς )

	(1 + (s + 1)ς )
, (13)

where

Q(0, x, 1;ρ)

=
	(1 + sς )

	(1 + (s + 1)ς )

[
2ς (1 – ρ)ς xς + (1 – 2x)ς

2ς

(
x(s+1)ς + (1 – x)(s+1)ς)

+ ρς xς

]
.

If we set ς = 1, it becomes apparent that the outcome is reliant on three parameters. Our
subsequent step is to fix one parameter at a time and graph the output as a function of the
remaining two parameters.

If we fix x = 2a+b
3 = 1

3 . Consequently, from (13), we obtain

∣∣
∣∣

1
s + 1

(
2(1 – ρ) + 1

6

(
1 + 2s+1

3s+1

)
+

ρ

3
–

1
s + 2

)∣∣
∣∣

≤ 1
9(s + 1)

[(
2ς (ρs+2 + (1 – ρ)s+2 – 1)ς

s + 2
+ 1

)(
1 + 2s + 3s

3s

)

+
1
4

(
1 + 2s

3s + 21–s
)]

. (14)

The outcome described by Inequality (14) is illustrated in Fig. 1. Conversely, Fig. 2 de-
picts the special cases of Inequality (14), when s = 1

2 , ρ ∈ [0, 1] and s ∈ (0, 1], ρ = 3
8 , respec-

tively.

Figure 1 x = 1
3 , ρ ∈ [0, 1] and s ∈ (0, 1]
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Figure 2 Special cases

4.2 Application to quadrature formula
Let � be the partition of the points a = t0 < t1 < · · · < tk = b of the interval [a, b], and
consider the quadrature formula

1
	(1 + ς )

∫ b

a
ξ (u)(du)ς = �(ξ ,�) + R(ξ ,�),

where

�(ξ ,�) =
n–1∑

i=0

(tj+1 – tj)ς

	(ς + 1)

(
ρς

3ς
ξ (tj) +

(3 – 2ρ)ς

6ς
ξ

(
2tj + tj+1

3

)

+
(3 – 2ρ)ς

6ς
ξ

(
tj + 2tj+1

3

)
+

ρς

3ς
ξ (tj+1)

)
,

and R(ξ ,�) denotes the associated approximation error.

Proposition 4.2 Let n ∈ N, ρ ∈ [0, 1] and ξ : [a, b] → R
ς be a differentiable function on

(a, b) with 0 ≤ a < b and ξ (ς ) ∈ Cς [a, b]. If |ξ (ς )| is generalized (s, P)-convex function, we
have

∣∣R(ξ ,�)
∣∣

≤
k–1∑

j=0

(tj+1 – tj)2ς

9ς	(1 + ς )

{(
8ς

(
ρs+2 + (1 – ρ)s+2 – 1

)ς

[
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

]

+ 4ς 	(1 + sς )
	(1 + (s + 1)ς )

)

×
(∣

∣ξ (ς )(tj)
∣
∣ +

∣∣
∣∣ξ

(ς )
(

2tj + tj+1

3

)∣∣
∣∣ +

∣∣
∣∣ξ

(ς )
(

tj + 2tj+1

3

)∣∣
∣∣ +

∣
∣ξ (ς )(tj+1)

∣
∣
)

+
	(1 + sς )

	(1 + (s + 1)ς )

×
(∣∣

∣∣ξ
(ς )

(
2tj + tj+1

3

)∣∣
∣∣ + 2ς

∣∣
∣∣ξ

(ς )
(

tj + tj+1

2

)∣∣
∣∣ +

∣∣
∣∣ξ

(ς )
(

tj + 2tj+1

3

)∣∣
∣∣

)}
.
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Proof Applying Corollary 3.3 on the subintervals [tj, tj+1] (j = 0, 1, . . . , k – 1) of the partition
�, we get

∣
∣∣
∣
ρς

3ς

(
ξ (tj) + ξ (tj+1)

)
+

(3 – 2ρ)ς

6ς

(
ξ

(
2tj + tj+1

3

)
+ ξ

(
tj + 2tj+1

3

))
–

	(ς + 1)
(b – tj)ς

tj I
ς
tj+1ξ (t)

∣
∣∣
∣

≤ (tj+1 – tj)ς

9ς

{(
8ς

(
ρs+2 + (1 – ρ)s+2 – 1

)ς

[
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

]

+ 4ς 	(1 + sς )
	(1 + (s + 1)ς )

)

×
(∣∣ξ (ς )(tj)

∣∣ +
∣
∣∣
∣ξ

(ς )
(

2tj + tj+1

3

)∣
∣∣
∣ +

∣
∣∣
∣ξ

(ς )
(

tj + 2tj+1

3

)∣
∣∣
∣ +

∣∣ξ (ς )(tj+1)
∣∣
)

+
	(1 + sς )

	(1 + (s + 1)ς )

×
(∣

∣∣
∣ξ

(ς )
(

2tj + tj+1

3

)∣
∣∣
∣ + 2ς

∣
∣∣
∣ξ

(ς )
(

tj + tj+1

2

)∣
∣∣
∣ +

∣
∣∣
∣ξ

(ς )
(

tj + 2tj+1

3

)∣
∣∣
∣

)}
.

Multiplying both sides of above inequality by 1
	(1+ς ) (tj+1 – tj)ς , then summing the obtained

inequalities for all j = 0, 1, . . . , k – 1, and using the triangular inequality, we get the desired
result. �

Proposition 4.3 Let n ∈ N, ρ ∈ [0, 1] and ξ : [a, b] → R
ς be a differentiable function on

(a, b) with 0 ≤ a < b and ξ (ς ) ∈ Cς [a, b]. If |℘(ς )|q is generalized (s, P)-convex function, we
have

∣
∣R(ξ ,�)

∣
∣

≤
k–1∑

j=0

(tj+1 – tj)2ς

9ς	(1 + ς )
((

(1 – ρ)p+1 + ρp+1) 1
p
)ς

(
	(1 + pς )

	(1 + (p + 1)ς )

) 1
p

×
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q
((∣∣ξ (ς )(tj)

∣∣q +
∣
∣∣
∣ξ

(ς )
(

2tj + tj+1

3

)∣
∣∣
∣

q) 1
q

+
(∣∣

∣∣ξ
(ς )

(
tj + 2tj+1

3

)∣∣
∣∣

q

+
∣
∣ξ (ς )(tj+1)

∣
∣q

) 1
q
)

+
(tj+1 – tj)2ς

(36)ς	(1 + ς )

(
	(1 + pς )

	(1 + (p + 1)ς )

) 1
p
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣∣

∣∣ξ
(ς )

(
2tj + tj+1

3

)∣∣
∣∣

q

+
∣∣
∣∣ξ

(ς )
(

tj + tj+1

2

)∣∣
∣∣

q) 1
q

+
(∣

∣∣
∣ξ

(ς )
(

tj + tj+1

2

)∣
∣∣
∣

q

+
∣
∣∣
∣ξ

(ς )
(

tj + 2tj+1

3

)∣
∣∣
∣

q) 1
q
)

,

where q > 1 with 1
p + 1

q = 1.



Li et al. Journal of Inequalities and Applications         (2024) 2024:78 Page 20 of 22

Proof Applying Corollary 3.8 on the subintervals [tj, tj+1] (j = 0, 1, . . . , k – 1) of the partition
�, we get

∣
∣∣
∣
ρς

3ς

(
ξ (tj) + ξ (tj+1)

)
+

(3 – 2ρ)ς

6ς

(
ξ

(
2tj + tj+1

3

)
+ ξ

(
tj + 2tj+1

3

))
–

	(ς + 1)
(b – tj)ς

tj I
ς
tj+1ξ (t)

∣
∣∣
∣

≤ (tj+1 – tj)ς

9ς

((
(1 – ρ)p+1 + ρp+1) 1

p
)ς

(
	(1 + pς )

	(1 + (p + 1)ς )

) 1
p
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣∣ξ (ς )(tj)

∣∣q +
∣
∣∣
∣ξ

(ς )
(

2tj + tj+1

3

)∣
∣∣
∣

q) 1
q

+
(∣

∣∣
∣ξ

(ς )
(

tj + 2tj+1

3

)∣
∣∣
∣

q

+
∣∣ξ (ς )(tj+1)

∣∣q
) 1

q
)

+
(tj+1 – tj)ς

(36)ς

(
	(1 + pς )

	(1 + (p + 1)ς )

) 1
p
(

2ς 	(1 + sς )
	(1 + (s + 1)ς )

) 1
q

×
((∣

∣∣
∣ξ

(ς )
(

2tj + tj+1

3

)∣
∣∣
∣

q

+
∣
∣∣
∣ξ

(ς )
(

tj + tj+1

2

)∣
∣∣
∣

q) 1
q

+
(∣∣

∣∣ξ
(ς )

(
tj + tj+1

2

)∣∣
∣∣

q

+
∣∣
∣∣ξ

(ς )
(

tj + 2tj+1

3

)∣∣
∣∣

q) 1
q
)

.

Multiplying both sides of above inequality by 1
	(1+ς ) (tj+1 – tj)ς , then summing the obtained

inequalities for all j = 0, 1, . . . , k – 1, and using the triangular inequality, we get the desired
result. �

4.3 Application to special means
For arbitrary real numbers a, b we have:

The generalized Arithmetic mean: A(a, b) = aς +bς

2ς .
The generalized p-Logarithmic mean: Lp(a, b) = [ 	(1+pς )

	(1+(p+1)ς ) ( b(p+1)ς –a(p+1)ς

(b–a)ς )]
1
p , a, b ∈R, a 	=

b and p ∈ Z�{–1, 0}.

Proposition 4.4 Let a, b ∈R with 0 < a < b and n ≥ 2, then we have

∣
∣A(s+1)ς (a, b) + 3ς A

(
A(s+1)ς (a, a, b), A(s+1)ς (a, b, b)

)
– 4ς	(ς + 1)Ls+1

s+1(a, b)
∣
∣

≤ (b – a)ς

9ς

(
	(1 + sς )

	(1 + (s + 1)ς )

)

×
((

8ς

(
	(1 + sς )

	(1 + (s + 1)ς )
–

	(1 + (s + 1)ς )
	(1 + (s + 2)ς )

)(
3(s+2) + 5(s+2)

8(s+2) – 1
)ς

+ 4ς 	(1 + sς )
	(1 + (s + 1)ς )

)(
asς +

(
2a + b

3

)sς

+
(

a + 2b
3

)sς

+ bsς
)

+
(∣∣

∣∣

(
2a + b

3

)sς ∣∣
∣∣ + 2ς

(
a + b

2

)sς

+
(

a + 2b
3

)sς)
	(1 + sς )

	(1 + (s + 1)ς )

)
.

Proof This follows from Corollary 3.3 with ρ = 39
80 applied to the function ξ (t) = t(s+1)ς ,

where ξ : (0, +∞) →R
ς . �

5 Conclusion
In conclusion, this study makes significant contributions to the field of integral inequali-
ties in local fractional calculus by examining particular parametrized integral inequalities
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for local fractional differentiable generalized (s, P)-convex functions. The introduction of
a novel integral identity has allowed for the derivation of multiple integral inequalities for
a broader family of well-known Newton-Cotes formulas with 1, 2, 3, and 4 points. These
inequalities build upon previous works and include both new and previously established
results, further enriching this area of research. The illustrative example, along with 2D
and 3D graphical representations, provides strong evidence for the accuracy of the ob-
tained results and highlights potential practical applications. Overall, this study expands
the scope of understanding and paves the way for future research in the development of
integral inequalities in the context of local fractional calculus.
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