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Abstract
The aim of this paper is to introduce two new subclassesRm

sin(�) andRsin(�) of
analytic functions by making use of subordination involving the sine function and the
modified sigmoid activation function �(v) = 2

1+e–v , v ≥ 0 in the open unit disc E. Our
purpose is to obtain some initial coefficients, Fekete–Szego problems, and upper
bounds for the third- and fourth-order Hankel determinants for the functions
belonging to these two classes. All the bounds that we will find here are sharp. We
also highlight some known consequences of our main results.
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1 Introduction
Let A denote the class of functions satisfying the following series form:

χ (z) = z +
∞∑

n=2

dnzn, (1.1)

which are analytic in the open unit disc E = {z : z ∈C and |z| < 1}. The functions χ having
the series form (1.1) are called univalent in E and denoted by S , if it is one to one, that is,
for all z1, z2 ∈ E, if χ (z1) = χ (z2) implies z1 = z2.

In [1] the author defined the class Rα (α ≥ 0) having the functions that satisfy the con-
dition

Re
{
χ ′(z) + αzχ ′′(z)

}
> 0, (z ∈ E).

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-024-03150-0
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-024-03150-0&domain=pdf
mailto:m.bah@utg.edu.gm
http://creativecommons.org/licenses/by/4.0/


Srivastava et al. Journal of Inequalities and Applications         (2024) 2024:84 Page 2 of 18

They also proved that if χ ∈ Rα then χ is univalent in E. Singh and Singh [2] showed
that if χ ∈R (α = 1) then χ is starlike in E. Furthermore, they proved in [2] that the class
R is closed under convolution, that is, if χ , g ∈ R then (χ ∗ g) ∈ R, where ∗ stands for
convolution. Also in [3], Krzyz showed by an example that the class R is not a subset of
the convex functions class C. In 2015, Noor et al. [4] generalized the class R by using the
idea of multivalent functions and conic regions. Khan et al. [5] generalized it further in
2021.

An analytic function w under the condition w(0) = 0 and |w(z)| < 1 is known as a Schwarz
function. Consider the functions χ , g ∈ A, we say that χ is subordinate to g (indicated
by χ ≺ g) if χ (z) = g(w(z)). Further, if g is univalent in E, then χ ≺ g ⇔ χ (0) = g(0) and
χ (E) ⊂ g(E). The class P denotes the well-known class of Caratheodory functions [6],
which satisfy the conditions p(0) = 1 and Re(p(z) > 0, where z ∈ E. Every p ∈P , having the
series form

p(z) = 1 +
∞∑

n=1

cnzn. (1.2)

Since the nineteenth century, when the geometric function theory was established, coef-
ficient bounds have been continuously important. The Bieberbach conjecture [7], which
came to be in 1916, offered an innovative field of study for this field of research. He con-
jectured that for every χ ∈ S having the series form (1.1), |dn| ≤ n, n ≥ 4. This conjecture
was attempted to be proved for a long time by mathematicians until de-Branges [8] proved
it in 1985.

In 1992, the authors contributed in their article [9] by revealing the basic structure of
families of univalent functions S∗(ϕ), where ϕ is an analytic function satisfying ϕ(0) > 0
and Re(ϕ(z)) > 0 in E. When we fix ϕ(z) = 1+z

1–z , then S∗(ϕ) � S∗. Several subfamilies of
generalized analytic functions have been studied recently as a specific case of S∗(ϕ).

For example, Janowski [10] examined the class of Janowski starlike functions S∗[L, M]
(–1 ≤ M < L ≤ 1). Furthermore, by choosing L = (1 – 2α) and M = –1, we get S∗(α) (0 ≤
α < 1). Sokól and Stankiewicz [11] set ϕ(z) =

√
1 + z and defined the family of class S∗

L

S∗
L =

{
χ ∈A :

zχ ′(z)
χ (z)

≺ √
1 + z

}
.

Recently, the authors [12, 13] chose ϕ(z) = 1 + sin z and ϕ(z) = 1 + 4
3 z + 2

3 z2 and defined the
following classes of convex, starlike, and bounded turning functions:

Csin =
{
χ ∈ S : 1 +

zχ ′′ (z)
χ ′(z)

≺ 1 + sin z
}

,

S∗
sin =

{
χ ∈A :

zχ ′(z)
χ (z)

≺ 1 + sin z
}

,

Rsin =
{
χ ∈A : χ ′(z) + zχ ′′(z) ≺ 1 + sin z

}
,

Rcard =
{
χ ∈A : χ ′(z) + zχ ′′(z) ≺ 1 +

4
3

z +
2
3

z2
}

.

Authors investigated initial bounds, Fekete–Szego problems, and third Hankel determi-
nant for the above mentioned classes. In [13, 14] authors introduced the class of starlike
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functions whose image under an open unit has a cardioid form. In [15], Mendiratta et al.
studied the function classS∗

e ≡ S∗(ez) of starlike functions by using the idea of exponential
functions and subordination technique. This class was recently generalized by Srivastava
et al. [16], who also found an upper bound for the third-order Hankel determinant.

In 1966 Pommerenke [17] explored research on the Hankel determinants for univalent
functions, which were further investigated by Noonan and Thomas [18]. For χ ∈ A, the
jth Hankel determinant is defined by

Hj,n(χ ) =

∣∣∣∣∣∣∣∣∣∣

dn dn+1 · · · dn+j–1

dn+1 dn+2 · · · dn+j
...

...
. . .

...
dn+j–1 dn+j–2 . . . dn+2j–2

∣∣∣∣∣∣∣∣∣∣

, (1.3)

where n, j ∈ N and d1 = 1.
For different values of j and n, the jth Hankel determinant Hj,n(χ ) has a different form.

For example, Fekete–Szego functional that is

H2,1(χ ) =
∣∣d3 – d2

2
∣∣ for j = 2 and n = 1,

and its modified form is |d3 – μd2
2|, where μ ∈ R (or C) (see [19]). The second Hankel

determinant was similarly provided by Janteng [20] in the following form:

H2,2(χ ) =

∣∣∣∣∣
d2 d3

d3 d4

∣∣∣∣∣ =
(
d2d4 – d2

3
)
,

and a number of scholars then looked into it for a few other classes of analytic functions.
Further, the third Hankel determinant form is indicated below:

H3,1(χ ) = d3
(
d2d4 – d2

3
)

– d4(d4 – d2d3) + d5
(
d3 – d2

2
)

for j = 3 and n = 1. (1.4)

In 2021, for χ ∈ S , the authors in [21] found Hankel determinants of second and third
order

∣∣H2,2(χ )
∣∣ ≤ λ, 1 ≤ λ ≤ 11

3

and

∣∣H3,1(χ )
∣∣ ≤ λ,

4
9

≤ λ ≤ 32 +
√

285
15

.

Recently, different researchers are active to find the sharp bounds of Hj,n(χ ) for a different
family of functions. For instance, Cho et al. [22, 23] computed bounds of the second Han-
kel determinant of the classes of convex, starlike, and bounded turning. Compared to the
second and third Hankel determinants, the mathematical computation of the fourth Han-
kel determinant is significantly more difficult. For specific classes of univalent functions,
Babalola [24] calculated the third Hankel determinant in 2010. See the following articles
for more details [25–28].
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After that, a number of researchers examined the third Hankel determinant for different
subclasses of analytic and bi-univalent functions using the same methodology. Zaprawa
[29] in 2017 investigated third Hankel determinant for two basic subclasses of univalent
functions class as follows:

∣∣H3,1(χ )
∣∣ ≤

{
1 if χ ∈ S∗ (class of starlike functions)
49

540 if χ ∈K (class of convex functions)

}
.

But in [30] authors improved the above result in the year 2018 and proved that |H3,1(χ )| ≤
8
9 , (χ ∈ S∗). In 2021, Zaprawa et al. [31] again improved the result of [30] as follows:

∣∣H3,1(χ )
∣∣ ≤ 5

9
, χ ∈ S∗.

For the analysis of power series with integral coefficients and singularities, Hj,n(χ ) is very
helpful. Numerous technological studies have made use of Hankel determinants, particu-
larly those that depend mainly on mathematical approaches. Readers interested in under-
standing how the solutions to the above listed problems make use of Hankel determinants
ought to read [32–40].

Let A� denote the class of sigmoid functions having the form (see [41])

χ�(z) = z +
∞∑

n=2

�(v)dnzn, (1.5)

where

�(v) =
2

1 + e–v , v ≥ 0. (1.6)

From (1.6) we see that �(0) = 1 and A1 = A.

Definition 1.1 [42]. The Sălăgean type differential operator Sm : A� →A� is defined by

S0
qχ�(z) = χ�(z), S1χ (z) = zχ ′

�(z), . . . ,

Smχ�(z) = zS
(
Sm–1χ�(z)

)
, (1.7)

where χ�(z) ∈A�, m ∈N∪ {0}. It is easy to prove that if

χ�(z) = z +
∞∑

n=2

�(v)dnzn ∈A�,

then

Smχ�(z) = z +
∞∑

n=2

nm�(v)dnzn.

Remark 1.2 When �(v) = 1, we have the Sălăgean differential operator [43].



Srivastava et al. Journal of Inequalities and Applications         (2024) 2024:84 Page 5 of 18

Here we define a new class of bounded turning functions connected with modified sig-
moid function and sine functions as follows.

Definition 1.3 A function χ� ∈Rm
sin(�), where χ� is of the form (1.5), if

(
Smχ�(z)

)′ ≺ 1 + sin(z), (1.8)

or it can be defined as

Sm+1χ�(z)
z

≺ 1 + sin(z).

When v = 0 and m = 0 in Definition 1.3, we get a known class proved in [44].
When m = 0 in Definition 1.3, we get the following function class.

Definition 1.4 A function χ� ∈Rsin(�), where χ� is of the form (1.5), if

χ ′
�(z) ≺ 1 + sin(z). (1.9)

2 Set of lemmas
Lemma 2.1 Let the function p be of the form (1.2), then

|cn| ≤ 2, n ≥ 1, (2.1)

|cn+k – μcnck| < 2, for 0 ≤ μ ≤ 1 (2.2)

|cmcn – ckcl| ≤ 4 for n + m = k + l, (2.3)
∣∣cn+2k – μcnc2

k
∣∣ ≤ 2(1 + 2μ) for μ ∈R. (2.4)

∣∣∣∣c2 –
c2

l
2

∣∣∣∣ ≤ 2 –
|c2

l |
2

, (2.5)

for complex number μ, we have

∣∣c2 – μc2
2
∣∣ ≤ 2 max

{
1, |2μ – 1|}. (2.6)

For the results in (2.1), (2.5), (2.2), (2.4), (2.3), see [45]. Also, see [46] for inequality (2.6)

Lemma 2.2 [47]. Let the function p ∈P be given by (1.2)), then

∣∣c3 – 2Bc1c2 + Dc3
1
∣∣ ≤ 2,

if

0 ≤ B ≤ 1, and B(2B – 1) ≤ D ≤ B.

Lemma 2.3 [48, 49]. Let the function p ∈P be given by (1.2)), then

2c2 = c2
1 + x

(
4 – c2

1
)
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and

4c3 = c3
1 + 2

(
4 – c2

1
)
c1x –

(
4 – c2

1
)
c1x2 + 2

(
4 – c2

1
)(

1 –
∣∣x2∣∣)z,

where x, z ∈C with |z| ≤ 1 and |x| ≤ 1.

Lemma 2.4 [50]. Consider the function p ∈P of the form (1.2), 0 < γ < 1, 0 < α < 1, and

8γ (1 – γ )
{

(αβ – 2λ)2 +
(
α(γ + α) – β

)2}

+ α(1 – α)(β – 2γα)2

≤ 4α2γ (1 – α)2(1 – γ ). (2.7)

Then
∣∣∣∣λb4

1 + γ b2
2 + 2αb1b3 –

3
2
βb2

1b2 – b4

∣∣∣∣ ≤ 2. (2.8)

We divided our paper into four parts. In Sect. 1, we give some basic definitions includ-
ing some subclasses of analytic functions, such as starlike, bounded turning, and convex
functions, also we give the definitions of the Hankel determinant, the modified sigmoid
function, and the sine function. Inspired by the above mentioned work, we create new
classes of analytic functions related to modified sigmoid function and sine functions. Also
we consider the Salagean type of differential operator and define a new class of analytic
functions. In Sect. 2, we use known lemmas to prove our article’s main results. For func-
tions χ in the classes Rm

sin(�) and Rsin(�), we first calculate the initial coefficient bounds,
Fekete–Szego problem, and the second, third, and fourth Hankel determinants in Sect. 3
and highlight some known results.

3 Main results
Main findings for the function class Rm

sin(�).

Theorem 3.1 If χ� ∈Rm
sin(�) where χ� has the form (1.5), then

|d2| ≤ 1
2(2m�(v))

, (3.1)

|d3| ≤ 1
3(3m�(v))

, (3.2)

|d4| ≤ 1
4(4m�(v))

, (3.3)

|d5| ≤ 1
5(5m�(v))

, (3.4)

where �(v) is given by (1.6). The results are sharp.

Proof Let χ� ∈Rm
sin(�), then from relation (1.8) we have

(
Smχ�(z)

)′ = 1 + sin
(
w(z)

)
, (3.5)

where w is a Schwarz function.
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Now consider a function p such that

p(z) =
1 + w(z)
1 – w(z)

= 1 + c1z + c2z2 + c3z3 + · · · , (3.6)

then p ∈P . From (3.6), a simple computation yields

w(z) =
c1z + c2z2 + c3z3 + · · ·

2 + c1z + c2z2 + c3z3 + · · · .

From (1.8), we can write

(
Smχ�(z)

)′ = 1 + 2
(
2m�(v)

)
d2z + 3

(
3m�(v)

)
d3z2

+ 4
(
4m�(v)

)
d4z3 + 5

(
5m�(v)

)
d5z4 + · · · . (3.7)

By using the above values and after simplification, we get

1 + sin
(
w(z)

)
= 1 +

1
2

c1z +
(

c2

2
–

c2
1

4

)
z2 +

(
5c3

1
48

–
c1c2

2
+

c3

2

)
z3

+
(

–
c4

1
32

+
5c2

1c2

16
–

c1c3

2
–

c2
2

2
+

c4

2

)
z4 + · · · . (3.8)

From (3.5), (3.7), and (3.8), it follows that

d2 =
c1

4(2m�(v))
, (3.9)

d3 =
1

3(3m�(v))

(
c2

2
–

c2
1

4

)
, (3.10)

d4 =
1

4(4m�(v))

(
5c3

1
48

–
c1c2

2
+

c3

2

)
, (3.11)

and

d5 =
1

5(5m�(v))

(
–1
32

c4
1 –

c2
2

4
–

c1c3

2
+

5c2
1c2

16
+

c4

2

)
. (3.12)

Applying relation (2.1) in (3.9), we obtain

|d2| ≤ 1
2(2m�(v))

.

Using relations (2.1) and (2.5) on (3.10), we obtain

|d3| =
1

6(3m�(v))

∣∣∣∣c2 –
c2

1
2

∣∣∣∣

≤ 1
6(3m�(v))

(
2 –

|c1|2
2

)

=
1

3(3m�(v))
.
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Rearranging (3.11) gives

|d4| =
1

4(4m�(v))

∣∣∣∣
c3

2
–

c1c2

2
+

5
24

c3
1

∣∣∣∣.

=
1

8(4m�(v))
∣∣c3 – 2Bc1c2 + Dc3

1
∣∣.

Let

B =
1
2

and D =
5

24
.

We can observe that 0 < B and B(2B – 1) < D < B. Therefore, using Lemma 2.2 leads us to

|d4| ≤ 1
4(4m�(v))

.

From (3.12) it follows that

|d5| =
1

5(5m�(v))

∣∣∣∣
–1
32

c4
1 –

c2
2

4
–

c1c3

2
+

5c2
1c2

16
+

c4

2

∣∣∣∣

or

|d5| =
1

10(5m�(v))

∣∣∣∣
1

16
c4

1 +
c2

2
2

+ 2
(

c1c3

2

)
–

3
2

(
5c2

1c2

24

)
– c4

∣∣∣∣

=
1

10(5m�(v))

∣∣∣∣λc4
1 + γ c2

2 + 2αc1c3 –
3
2
βc2

1c2 – c4

∣∣∣∣,

where

λ =
1

16
, γ =

1
2

, α =
1
2

, β =
5

24
.

We see that 0 < γ < 1 and 0 < α < 1. Now we calculate inequality (3.1), we see that

8γ (1 – γ )
{

(αβ – 2λ)2 +
(
α(γ + α) – β

)2} + α(1 – α)(β – 2γα)2

≤ 4α2γ (1 – α)2(1 – γ ),

where

8γ (1 – γ ) = 2, (αβ – 2λ)2 =
1

2304
,

(
α(γ + α) – β

)2 =
49

576
,

α(1 – α)(β – 2γα)2 =
49

2304
, 4α2γ (1 – α)2(1 – γ ) =

1
16

.

By using Lemma 2.4, we get

|d5| ≤ 1
5(5m�(v))

.
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For n = 2, 3, 4, 5, we take the function χn(z) = z + · · · , such that

(
Smχn,�(z)

)′ = 1 + sin
(
zn–1), z ∈ E,

then

(
Smχ�(z)

)′ ≺ 1 + sin(z)

and χn,� ∈Rm
sin(�), where

χ2,�(z) = z +
1

2(2m�(v))
z2 + · · · , z ∈ E, (3.13)

χ3,�(z) = z +
1

3(3m�(v))
z3 + · · · , z ∈ E, (3.14)

χ4,�(z) = z +
1

4(4m�(v))
z4 + · · · , z ∈ E, (3.15)

χ5,�(z) = z +
1

5(5m�(v))
z5 + · · · , z ∈ E, (3.16)

which shows that the bounds are sharp. �

For m = 0 and v = 0, we get the known sharp result proved in [44].

Conjecture 3.2 If a function χ� ∈Rm
sin(�) is of the form (1.8), then

|dn| ≤ 1
n(nm�(v))

for n ≥ 6, (3.17)

where �(v) is given by (1.6).

Theorem 3.3 If a function χ� given in (1.5) belongs to the class Rsin(�), then

|d2| ≤ 1
2�(v)

, |d3| ≤ 1
3�(v)

, |d4| ≤ 1
4�(v)

, |d5| ≤ 1
5�(v)

,

where �(v) is given by (1.6). The results are sharp for functions (3.13) to (3.16).

Proof Using the same procedure as we adopted in Theorem 3.2, we obtain the required
result of Theorem 3.3. �

Conjecture 3.4 If a function χ� ∈Rsin(�) is of the form (1.9), then

|dn| ≤ 1
n�(v)

, n ≥ 6,

where �(v) is given by (1.6).

Theorem 3.5 Let χ� ∈Rm
sin(�). Then, for a complex number ρ ,

∣∣d3 – ρd2
2
∣∣ ≤ 1

3(3m�(v))
max

{
1,

∣∣∣∣
3ρ(3m�(v))
4(2m�(v))2

∣∣∣∣

}
, (3.18)

where �(v) is given by (1.6). The result is sharp.
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Proof Using (3.9) and (3.10), one may write

∣∣d3 – ρd2
2
∣∣ =

1
6(3m�(v))

∣∣∣∣c2 –
(

4(2m�(v))2 + 3ρ(3m�(v))
8(2m�(v))2

)
c2

1

∣∣∣∣.

Application of relation (2.6) gives

∣∣d3 – ρd2
2
∣∣ ≤ 1

3(3m�(v))
max

{
1,

∣∣∣∣
3ρ(3m�(v))
4(2m�(v))2

∣∣∣∣

}
.

For the sharpness of (3.18), we consider (3.13) with n = 2

χ2,�(z) = z +
1

2(2m�(v))
z2 + · · · , z ∈ E,

which gives equality in (3.18) when |ρ| ≥ 4(2m�(v))2

3(3m�(v)) , namely

∣∣d3 – ρd2
2
∣∣ =

∣∣ρd2
2
∣∣ =

|ρ|
4(2m�(v))2 .

For |ρ| ≤ 4(2m�(v))2

3(3m�(v)) , consider

χ3(z) = z +
1

3(3m�(v))
z3 + · · · , z ∈ E,

which gives

∣∣d3 – ρd2
2
∣∣ = |d3| =

1
3(3m�(v))

=
1

3(3m�(v))
max

{
1,

∣∣∣∣
3ρ(3m�(v))
4(2m�(v))2

∣∣∣∣

}
. �

Corollary 3.6 If χ� ∈Rm
sin(�), then for a complex number |ρ| ≤ 4(2m�(v))2

3(3m�(v)) , we have

∣∣d3 – ρd2
2
∣∣ ≤ 1

3(3m�(v))
, (3.19)

where �(v) is given by (1.6). This inequality is sharp.

Corollary 3.7 [44]. Let χ ∈Rsin. Then, for a complex number ρ ,

∣∣d3 – ρd2
2
∣∣ ≤ 1

3
max

{
1,

∣∣∣∣
3ρ

4

∣∣∣∣

}
.

Theorem 3.8 Let χ� ∈Rsin(�). Then, for a complex number ρ ,

∣∣d3 – ρd2
2
∣∣ ≤ 1

3�(v)
max

{
1,

ρ(3�(v))
(2�(v))2

}
,

where �(v) is given by (1.6). The result is sharp.

Proof Using the same procedure as we adopted in Theorem 3.5, we get the required re-
sult. �
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Theorem 3.9 Let χ� ∈Rm
sin(�). Then

∣∣d3 – d2
2
∣∣ ≤ 1

3(3m�(v))
, (3.20)

where �(v) is given by (1.6). This inequality is sharp for the function

χ3(z) = z +
1

3(3m�(v))
z3 + · · · , z ∈ E.

Proof From (3.9) and (3.10), we have

∣∣d3 – d2
2
∣∣ =

1
6(3m�(v))

∣∣∣∣c2 –
1
2

(
1 +

3(3m�(v))
(2m�(v))2

)
c2

1

∣∣∣∣,

=
1

6(3m�(v))
∣∣c2 – φc2

1
∣∣,

where φ = 1
2 (1 + 3(3m�(v))

(2m�(v))2 ) since v ≥ 0 and 0 < φ < 1. Now, by using (2.2) for n = 2 and k = 1,
we obtain (3.20). �

Theorem 3.10 Let χ� ∈Rsin(�). Then

∣∣d3 – d2
2
∣∣ ≤ 1

3�(v)
,

where �(v) is given by (1.6). This inequality is sharp for

χ3(z) = z +
1

3�(v)
z3 + · · · , z ∈ E.

Proof Using the same procedure as we adopted in Theorem 3.9, we obtain the required
result of Theorem 3.10. �

Theorem 3.11 Let χ� ∈Rm
sin(�). Then

|d2d3 – d4| ≤ 1
4(4m�(v))

. (3.21)

This inequality is sharp for

χ4,�(z) = z +
1

4(4m�(v))
z4 + · · · , z ∈ E,

where �(v) is given by (1.6).

Proof From (3.9), (3.10), and (3.11), we have

|d2d3 – d4| =

∣∣∣∣∣∣∣∣∣

(
4(4m�(v)) + 5(2m�(v))(3m�(v))
192(2m�(v))(3m�(v))(4m�(v))

)
c3

1

–
(

(4m�(v)) + 3(2m�(v))(3m�(v))
24(2m�(v))(3m�(v))(4m�(v))

)
c1c2 +

(
1

8(4m4m�(v))

)
c3

∣∣∣∣∣∣∣∣∣

.
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By using the applications of Lemma 2.3, and after some simple calculations, we get

|d2d3 – d4| ≤ 1
4(4m�(v))

.

This completes the proof. �

Corollary 3.12 [44]. Let χ ∈Rsin (m = 0 and v = 0). Then

|d2d3 – d4| ≤ 1
4

.

This inequality is sharp for

χ4(z) = z +
1
4

z4 + · · · .

Theorem 3.13 Let χ� ∈Rsin(�). Then

|d2d3 – d4| ≤ 1
4�(v)

,

where �(v) is given by (1.6). This inequality is sharp for

χ4,�(z) = z +
1

4�(v)
z4 + · · · , z ∈ E.

Proof Using the same procedure of Theorem 3.11, we obtain the result of Theorem 3.13.�

Remark 3.14 For v = 0, in Theorem 3.13, we get known result proved in [44].

Theorem 3.15 Let χ� ∈Rm
sin(�). Then

∣∣d2d4 – d2
3
∣∣ ≤ 1

9(3m�(v))2 . (3.22)

This inequality is sharp for

χ3,�(z) = z +
1

3(3m�(v))
z3 + · · · , z ∈ E,

where �(v) is given by (1.6).

Proof From (3.9), (3.10), and (3.11), we have

∣∣d2d4 – d2
3
∣∣ =

∣∣C(m, v)c1c3 – B(m, v)c2
1c2 – D(m, v)c2

2 – A(m, v)c4
1
∣∣,

where

A(m, v) =
5

(2m�(v))(4m�(v))
, D(m, v) =

1
32(3m�(v))2

C(m, v) =
1

32(2m�(v))(4m�(v))
,
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B(m, v) =
9(3m�(v))2 – 8(2m�(v))(4m�(v))
288(2m�(v))(4m�(v))(3m�(v))2 .

Using Lemma 2.3, we obtain

∣∣d2d4 – d2
3
∣∣ =

∣∣∣∣∣∣∣

T1(m, v)c4
1 + T2(m, v)c2

1
(
4 – c2

1
)
x –

(
3m�(v)

)
T3(m, v)c2

1x

–
(4 – c2

1)c2
1x2

128(2m�(v))(4m�(v))
–

(4 – c2
1)2x2

144(3m�(v))2 +
c(4 – c2

1)(1 – |x|2)
144(2m�(v))(4m�(v))

z

∣∣∣∣∣∣∣
,

where

T1(m, v) =
1

128(2m�(v))(4m�(v))
– T3(q)

+
(

15(3m�(v))2 – 16(2m�(v))(4m�(v))
2304(2m�(v))(4m�(v))(3m�(v))2

)
–

1
144(3m�(v))2 ,

T2(m, v) =
((

3m�(v)
)2 –

(
2m�(v)

)(
4m�(v)

))
,

T3(m, v) =
(9(3m�(v))2 – 8(2m�(v))(4m�(v)))

576(2m�(v))(4m�(v))(3m�(v))2 .

Let |z| = 1, |x| = t, t ∈ [0; 1], |c1| = c ∈ [0; 2]. Then, using the triangle inequality, we get

∣∣d2d4 – d2
3
∣∣

≤ ∣∣T1(m, v)
∣∣c4 +

∣∣T2(m, v)
∣∣c2(4 – c2)t +

(
3m�(v)

)
T3(m, v)c2

1t

+
(4 – c2

1)c2
1t2

128(2m�(v))(4m�(v))
+

(4 – c2
1)2t2

144(3m�(v))2 +
c(4 – c2)(1 – |t|2)

144(2m�(v))(4m�(v))

= H(c, t).

Taking the derivative of H(c, t) w.r.t., t we get

∂H(c, t)
∂t

=
∣∣T2(m, v)

∣∣c2(4 – c2) +
(
3m�(v)

)∣∣T3(m, v)
∣∣c2

1

+
(4 – c2

1)2t
72(3m�(v))2

> 0,

which shows that H(c, t) increases on [0, 1] with respect to t. That is, H(c, t) has a maxi-
mum value at t = 1, which is

max H(c, t) = H(c, 1)

=
∣∣T1(m, v)

∣∣c4 +
∣∣T2(m, v)

∣∣c2(4 – c2) +
(
3m�(v)

)
T3(m, v)c2

+
(4 – c2)c2

128(2m�(v))(4m�(v))
+

(4 – c2)2

144(3m�(v))2

= G(c).

Differentiation gives

G′(c) = 4
∣∣T1(m, v)

∣∣c3 +
∣∣T2(m, v)

∣∣8c + 2
(
3m�(v)

)∣∣T3(m, v)
∣∣c
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+
8c – 2c3 – 2c3

128(2m�(v))(4m�(v))
–

4c(4 – c2)
144(3m�(v))2

=
(∣∣T2(m, v)

∣∣8 + 2
(
3m�(v)

)∣∣T3(m, v)
∣∣

–
16

144(3m�(v))2 +
8

128(2m�(v))(4m�(v))

)
c

+
(∣∣T1(m, v)

∣∣ –
1

128(2m�(v))(4m�(v))
+

1
144(3m�(v))2

)
c3.

If G′(c) = 0, then the root is c = 0 and

c2 =
–(|T2(m, v)|8 + 2(3m�(v))|T3(m, v)| – 16

144(3m�(v))2 + 8
128(2m�(v))(4m�(v)) )

4(|T1(m, v)| – 1
128(2m�(v))(4m�(v)) + 1

144(3m�(v))2 )
.

Again, taking the derivative of G′(c), we have

G′′(0) =
∣∣T2(m, v)

∣∣8 + 2
(
3m�(v)

)∣∣T3(m, v)
∣∣

–
16

144(3m�(v))2 +
8

128(2m�(v))(4m�(v))

+ 3
(∣∣T1(m, v)

∣∣ –
1

128(2m�(v))(4m�(v))
+

1
144(3m�(v))2

)
c2.

We see that

G′′(0) < 0,

so the function G(c) can attain the maximum value at c = 0; which is

∣∣d2d4 – d2
3
∣∣ ≤ 1

9(3m�(v))2 .

This completes the result. �

Theorem 3.16 Let χ� ∈Rsin(�). Then

∣∣d2d4 – d2
3
∣∣ ≤ 1

9(�(v))2 ,

where �(v) is given by (1.6). This inequality is sharp for

χ3,�(z) = z +
1

3�(v)
z3 + · · · , z ∈ E.

Proof Using the same procedure as we adopted in Theorem 3.15, we obtain the result of
Theorem 3.16. �

Theorem 3.17 Let χ� ∈Rm
sin(�). Then

∣∣H3,1(χ )
∣∣ ≤ 1

27(3m�(v))(3m�(v))2 +
1

16(4m�(v))(4m�(v))
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+
1

15(5m�(v))(3m�(v))
,

where �(v) is given by (1.6).

Proof From (1.4), it is easy to see that

H3,1(χ ) = d3
(
d2d4 – d2

3
)

+ d4(d2d3 – d4) + d5
(
d3 – d2

2
)
,

where d1 = 1. This implies that

∣∣H3,1(χ )
∣∣ ≤ |d3|

∣∣d2d4 – d2
3
∣∣ + |d4||d2d3 – d4| + |d5|

∣∣d3 – d2
2
∣∣.

By using (3.1), (3.2), (3.3), (3.4), (3.19), (3.21), and (3.22), we have

∣∣H3,1(χ )
∣∣ ≤ 1

27(3m�(v))(3m�(v))2 +
1

16(4m�(v))(4m�(v))

+
1

15(5m�(v))(3m�(v))
,

which is our required result. �

Theorem 3.18 Let χ� ∈Rsin(�). Then

∣∣H3,1(χ )
∣∣ ≤ 1

27(�(v))3 +
1

16(�(v))2

+
1

15(�(v))2 ,

where �(v) is given by (1.6).

Proof Using the same procedure as we adopted in Theorem 3.17, we obtain the result of
Theorem 3.18. �

Remark 3.19 For m = 1, v = 0, in Theorem 3.18, we get known result proved in [44].

4 Bound of |H4,1(χ )| for the functions class Rm
sin(�) and Rsin(�)

First of all we can deduce the form of H4,1(χ ) from (1.3) in the following way:

H4,1(χ ) = d7
(
H3,1(χ )

)
– 2d5d6(d2d3 – d4) – 2d4d6

(
d2d4 – d2

3
)

– d2
6
(
d3 – d2

2
)

+ d2
5
(
d2d4 + 2d2

3
)

+ d2
5
(
d2d4 – d2

3
)

– d3
5 + d4

4 – 3d3d2
4d5. (4.1)

We need the following simple result for the function class Rm
sin(�), that is, if χ ∈ Rm

sin(�)
of the form (1.8), then

∣∣d2d4 + 2d2
3
∣∣ ≤ ∣∣d2d4 – d2

3
∣∣ + 3|d3|2

≤ 4
9(3m�(v))2 . (4.2)
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Now we move towards the forth-order Hankel determinant.

Theorem 4.1 Let χϕ ∈Rm
sin(�). Then

∣∣H4,1(χ )
∣∣ ≤ 1

7(7m�(v))

(
1

27(3m�(v))(3m�(v))2

+
1

16(4m�(v))(4m�(v))
+

1
15(5m�(v))(3m�(v))

)

+
1

108(4m�(v))(6m�(v))(3m�(v))2

+
1

120(5m�(v))(6m�(v))(4m�(v))

+
1

108(3m�(v))(6m�(v))2 +
1

225(3m�(v))2(5m�(v))2

+
1

54(3m�(v))2(5m�(v))2

–
1

125(5m�(v))3 +
1

256(4m�(v))4

–
1

80(3m�(v))(4m�(v))2(5m�(v))
.

where �(v) is given by (1.6).

Proof Taking modulus on both sides of (4.1) and then applying the triangle inequality, we
obtain

∣∣H4,1(χ )
∣∣ ≤ |d7|

∣∣H3,1(χ )
∣∣ + 2|d4||d6|

∣∣d2d4 – d2
3
∣∣ + 2|d5||d6||d2d3 – d4|

+ |d6|2
∣∣d3 – d2

2
∣∣ + |d5|2

∣∣d2d4 – d2
3
∣∣ + |d5|2

∣∣d2d4 + 2d2
3
∣∣

+ |d5|3 + |d4|4 + 3|d3||d4|2|d5|.

Now, by using (3.1), (3.2),(3.3),(3.4),(3.17), (3.20), (3.21), (3.22), and (4.2), we get the re-
quired result. �

Theorem 4.2 Let χϕ ∈Rsin(�). Then

∣∣H4,1(χ )
∣∣ ≤ 1

7�(v)

(
1

27(�(v))3 +
1

16(�(v))2 +
1

15(�(v))2

)

+
1

108(�(v))4 +
1

120(�(v))3

+
1

108(�(v))3 +
1

225(�(v))4 +
1

54(�(v))4

–
1

125(�(v))3 +
1

256(�(v))4 –
1

80(�(v))4 ,

where �(v) is given by (1.6).
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Proof By using a similar method as we adopted in the above theorem, we get the required
result. �
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