
Braha et al. Journal of Inequalities and Applications         (2024) 2024:74 
https://doi.org/10.1186/s13660-024-03149-7

R E S E A R C H Open Access

Sequence spaces derived by qλ operators in
�p spaces and their geometric properties
Naim L. Braha1,2, Taja Yaying3 and Mohammad Mursaleen4,5,6*

*Correspondence:
mursaleenm@gmail.com
4Department of Medical Research,
China Medical University Hospital,
China Medical University (Taiwan),
Taichung, Taiwan
5Department of Mathematics,
Aligarh Muslim University, Aligarh
202002, India
Full list of author information is
available at the end of the article

Abstract
In this paper, we establish a novel category of sequence spaces �

qλ
p and �

qλ∞ by
utlizing q-analogue �q of �-matrix. Our investigation outlines several topological
characteristics and inclusion results of these newly introduced sequence spaces,
specifically identifying them as BK-spaces. Subsequently, we demonstrate that these
novel sequence spaces are of nonabsolute type and establish their isometric
isomorphism with �p and �∞. Moreover, we obtain the α-, β-, and γ -duals of these
sequence spaces. We further characterize the class (�qλp ,X) of matrices, where X is any
of the spaces �∞, c, or c0. Lastly, our study delves into the exploration of specific
geometric properties exhibited by the space �

qλ
p .
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1 Introduction and preliminaries
Let ω denote the standard representation of the set that contains all complex sequences
x = (xk)∞k=0. Given z ∈ ω and X ⊂ ω, the expression z–1 ∗ X denotes the set

{
a ∈ ω : a · z = (akzk)∞k=0 ∈ X

}
.

Consider A = (ank)∞n,k=0 as an infinite matrix composed of complex entries. Let x =
(xk)∞k=0 ∈ ω and An be the nth row of the matrix A. As customary, we denote

(Ax)n =
∞∑

k=0

ankxk

for all n ∈ N0 and Ax = {(Ax)n}∞n=0 provided that all the series (Ax)n converge. For X ⊂ ω,
the set

XA = {x ∈ ω : Ax ∈ X}
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is referred to as the matrix domain of A in X. An infinite matrix T = (tnk)∞n,k=0 is categorized
as a triangle if tnk = 0 for k > n and tnn �= 0 for n = 0, 1, . . . . The subsequent proposition
represents a widely acknowledged result.

Proposition 1.1 ([20, 1.4.8] or [6, Remark 22(a)]) Every triangle T has a unique inverse S,
which is also a triangle, and x = T(Sx) = S(Tx) for all x ∈ ω.

Throughout, we use the convention that every term with a negative subscript is equal
to 0.

Finally, we write 	 = (	nk)∞n,k=0 for the triangle with 	nk = 1 (0 ≤ k ≤ n; n = 0, 1, . . . ).
Throughout this study, consider (λk)∞k=0 as a strictly monotone increasing sequence of

real numbers tending to infinity, where λ0 ≥ 1.
We now turn to certain basic definitions in q-theory.

Definition 1.2 The q-analogue [v]q (q ∈ (0, 1)) of a real number v is defined by

[v]q =

⎧
⎨

⎩

1–qv

1–q , v ∈R,

0, v = 0.

Here, R denotes the set of real numbers. Also, we denote N = {1, 2, 3, . . .} and N0 = N ∪
{0}. Apparently, [v]q = v as q → 1–.

Definition 1.3 The notation
(n

v
)

q, for any two nonnegative integers n and v, defined by

(
n
v

)

q
=

⎧
⎨

⎩

[n]q !
[n–v]q ![v]q ! , n ≥ v,

0, n < v,

is the natural q-analog of the binomial coefficient
(n

v
)
. Here, [v]q! =

∏v
i=1[i]q is the natural

q-analog of v!.

Now we define the matrix �q = (λq
nk) as follows:

λ
q
nk =

⎧
⎨

⎩

qλk–1 [λk –λk–1]q
[λn]q

1 ≤ k ≤ n

0 k > n,

where λ–1 = 0.
This can also be elaborated as follows:

�q =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 0 0 0 0 · · ·
1

[λ1]q

qλ0 [λ1–λ0]q
[λ1]q

0 0 0 · · ·
1

[λ2]q

qλ0 [λ1–λ0]q
[λ2]q

qλ1 [λ2–λ1]q
[λ2]q

0 0 · · ·
1

[λ3]q

qλ0 [λ1–λ0]q
[λ3]q

qλ1 [λ2–λ1]q
[λ3]q

qλ2 [λ3–λ2]q
[λ3]q

0 · · ·
1

[λ4]q

qλ0 [λ1–λ0]q
[λ4]q

qλ1 [λ2–λ1]q
[λ4]q

qλ2 [λ3–λ2]q
[λ4]q

qλ3 [λ4–λ3]q
[λ4]q

· · ·
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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It is observed that

n∑

k=0

qλk–1 ([λk – λk–1]q)
[λn]q

=
1

[λn]q

n∑

k=0

(
[λk]q – [λk–1]q

)
=

[λn]q

[λn]q
= 1.

Clearly, the matrix �q is a triangle, and so it has a unique inverse (see Proposition 1.1)

q = {�q}–1 = (λnk)–q defined by

(λnk)–q =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[λn]q
qλk–1 [λk –λk–1]q

, k < n,
[λn]q

qλn–1 [λn–λn–1]q
, k = n,

0, k > n.

Based on the matrix above, we define �q-transform of a sequence x ∈ ω. The �q-
transform of the sequence x = (xn) is a sequence y = (yn) given by

yn =
(
�qx

)
n =

n∑

k=0

qλk–1 [λk – λk–1]q

[λn]q
xk , n ∈N0.

Also the terms with nonpositive subscripts like x–1, x0, etc. are considered to be naught.
Then

�
qλ
p =

{
x = (xn) ∈ ω :

(
�qx

)
n ∈ �p

}
, 1 ≤ p < ∞

�
qλ∞ =

{
x = (xn) ∈ ω :

(
�qx

)
n ∈ �∞

}
.

In other words, the above sequence spaces are as follows:

�
qλ
p :=

{

u ∈ ω :
∑∞

n=0

∣∣∣∣∣
∑n

k=0
qλk–1 [λk–λk–1]q

[λn]q
uk

∣∣∣∣∣

p

< ∞
}

,

�
qλ∞ :=

{

u ∈ ω : supn

∣∣∣∣∣
∑n

k=0
qλk–1 [λk –λk–1]q

[λn]q
uk

∣∣∣∣∣
< ∞

}

.

Equivalently, it can be easily seen that

�qλ
p := �p

(
�q) = (�p)�q and �qλ∞ := �∞

(
�q) = (�∞)�q . (1.1)

These newly defined spaces represent a generalization of numerous known sequence
spaces documented in the literature, as evidenced below.

Remark 1.4 The sequence spaces introduced using the aforementioned matrix generalize
numerous sequence spaces well-documented in the literature.

(1) When λn = n + 1 for all n ∈ N0, the sequence spaces �
qλ
p and �

qλ∞ are reduced to the
sequence spaces previously defined in [21].

(2) When q = 1, the sequence spaces �
qλ
p and �

qλ∞ are reduced to the sequence spaces
previously defined in [12].

(3) When q = 1 and λn = n + 1 for all n ∈N0, the sequence spaces �
qλ
p and �

qλ∞ are
reduced to the sequence spaces previously defined in [16].
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The q-calculus has several applications in different areas, e.g., summability theory
[13, 14], approximation theory [2, 15, 18], integral equations [10], etc. Most recently, the
Cesàro q-difference sequence spaces have been studied in [22]. For more results related to
this theory, readers are suggested to refer to the papers [1, 3–5, 7, 8]. While our primary
focus remains on the spaces �

qλ
p and �

qλ∞ , we introduce the spaces cqλ
0 and cqλ to substantiate

our findings.

cqλ
0 := (c0)�q =

{

u ∈ ω : lim
n

∣∣∣∣∣

n∑

k=0

qλk–1 [λk – λk–1]q

[λn]q
uk

∣∣∣∣∣

p

= 0

}

, (1.2)

cqλ := (c)�q = (c0 ⊕ e)�q =

{

u ∈ ω : lim
n

∣∣∣∣∣

n∑

k=0

qλk–1 [λk – λk–1]q

[λn]q
uk

∣∣∣∣∣

p

< ∞
}

. (1.3)

2 Topological results
Let us proceed to the primary findings of the paper.

Theorem 2.1 The sequence spaces �
qλ
p and �

qλ∞ are categorized as BK-spaces with the
norms

‖u‖
�

qλ
p

=
∥∥(�qu

)
n

∥∥
p =

( ∞∑

n=0

∣∣∣∣∣

n∑

k=0

qλk–1 [λk – λk–1]q

[λn]q
uk

∣∣∣∣∣

p)1/p

and

‖u‖
�

qλ∞ =
∥∥(�qu

)
n

∥∥∞ = sup
n

∣∣∣∣∣

n∑

k=0

qλk–1 [λk – λk–1]q

[λn]q
uk

∣∣∣∣∣
.

Proof We have established that relation (1.1) holds true, where �q is a triangle. Then, by
using Theorem 4.3.12 of Wilansky [20] and the fact that �p and �∞ are BK-spaces, the
result follows immediately. �

Proposition 2.2 The sequence spaces �
qλ
p and �

qλ∞ are of nonabsolute type, that is, ‖x‖
�

qλ
p

�=
|||x|||

�
qλ
p

and ‖x‖
�

qλ∞ �= |||x|||
�

qλ∞ , where |x| = (|xn|).

Proof Consider the sequence w = (1, –1, 0, . . .). Consequently,

(
�qw

)
n =

(
1,

1
[λ1]q

–
qλ0 [λ1 – λ0]

[λ1]q
, . . .

)

and

(
�q|w|)n =

(
1,

1
[λ1]q

+
qλ0 [λ1 – λ0]

[λ1]q
, . . .

)
.

This clearly indicates that ‖x‖
�

qλ
p

�= |||x|||
�

qλ
p

. �

Theorem 2.3 If 1 ≤ r < s < ∞, then �
qλ
r ⊂ �

qλ
s , and the inclusion is proper.
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Proof It is known that under the given condition �r ⊂ �s and by using relation (1.1), we
obtain that �

qλ
r ⊂ �

qλ
s . The properness of the inclusion follows from the following example.

Example 2.4 For 1 ≤ r < s, let us consider that x = (xn) ∈ �s \ �r and

yn =
xn[λn]q – xn–1[λn–1]q

qλn–1 [λn – λn–1]q
.

Then

(
�qy

)
n =

n∑

k=0

qλk–1 [λk – λk–1]q

[λn]q
yk =

n∑

k=0

qλk–1 [λk – λk–1]q

[λn]q

xk[λk]q – xk–1[λk–1]q

qλk–1 [λk – λk–1]q

=
1

[λn]q

n∑

k=0

(
xk[λk]q – xk–1[λk–1]q

)
= xn.

Hence, �qy = x ∈ �s \ �r . Equivalently, y ∈ �
qλ
s \ �

qλ
r . �

Theorem 2.5 �
qλ
p and �

qλ∞ are isometrically isomorphic to �p and �∞, respectively.

Proof The mapping K : �qλ
p → �p defined by the relation

w → v = K(w) = �qw

is clearly linear and injective. To demonstrate its surjectivity, we consider a sequence v =
(vn) ∈ �p. Then we have that

wk =
1

qλk–1 [λk – λk–1]q

k∑

j=k–1

(–1)k–j[λj]qvj.

For 1 ≤ p < ∞, we obtain that

‖w‖
�

qλ
p

=

( ∞∑

i=1

∣
∣∣∣∣

i∑

k=0

qλk–1 [λk – λk–1]q

[λi]q
wk

∣
∣∣∣∣

p) 1
p

=

( ∞∑

i=1

∣∣∣∣∣

i∑

k=0

qλk–1 [λk – λk–1]q

[λi]q

(
1

qλk–1 [λk – λk–1]q

k∑

j=k–1

(–1)k–j[λj]qvj

)∣∣∣∣∣

p) 1
p

=

( ∞∑

i=1

|vi|p
) 1

p

= ‖v‖lp < ∞.

For the case p = ∞, a similar approach enables us to establish the theorem. �

Theorem 2.6 The inclusion �
qλ
p ⊂ cqλ

0 ⊂ cqλ ⊂ �
qλ∞ is strict.

Proof In what follows, we prove that �
qλ
p ⊂ cqλ

0 and cqλ ⊂ �
qλ∞ . Let us suppose that w =

(wn) ∈ �
qλ
p . From relation (1.1), we have that (wn) ∈ �

qλ
p . It is known that �p ⊂ c0, and from

this it follows that �q(w) ∈ c0, respectively w ∈ cqλ
0 . To prove that inclusion is strict, we

consider the following example. �
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Example 2.7 Let w = (wk), where

wk =
1

qλk–1 [λk – λk–1]q

k∑

j=k–1

(–1)k–j [λj]q

(j + 1)
1
p

.

Then

(
�qw

)
n =

n∑

k=0

qλk–1 [λk – λk–1]
[λn]

wk =
1

(n + 1)
1
p

,

which implies that w ∈ cqλ
0 but not in �

qλ
p . This proves the first part. For the second inclu-

sion, we know that c ⊂ �∞, from which it yields that cqλ ⊂ �
qλ∞ . To prove the strict inclusion,

we consider the following sequence:

wk =
1

qλk–1 [λk – λk–1]q

k∑

j=k–1

(–1)k–j[λj]q(–1)j.

Then

(
�qw

)
n =

n∑

k=0

qλk–1 [λk – λk–1]
[λn]

wk = (–1)n,

and we obtain that w ∈ �
qλ∞ \ cqλ .

Theorem 2.8 The inclusion �∞ ⊂ �
qλ∞ holds true, the inclusion being strict.

Proof Let us consider that w = (wn) ∈ �∞. Then

‖w‖
�

qλ∞ =
∥∥(�qw

)
n

∥∥∞ = sup
n

∣∣∣∣∣

n∑

k=0

qλk–1 [λk – λk–1]q

[λn]q
wk

∣∣∣∣∣

≤ sup
n

‖w‖�∞ sup
n

∣∣∣∣∣

n∑

k=0

qλk–1 [λk – λk–1]q

[λn]q

∣∣∣∣∣
≤ ‖w‖�∞ .

To prove that inclusion is strict, we consider the following sequence. �

Example 2.9

uk =

⎧
⎪⎪⎨

⎪⎪⎩

1; 0 ≤ k ≤ n – 1
[λk–1]q

[λk ]q–[λk–1]q
; k = n

0; k > n.

Then

[λ1]q ≤ [λ2]q ≤ · · · ≤ [λn]q ≤ · · · ,

from which it follows that 0 < [λn–1]q
[λn]q

≤ 1 and limn
[λn–1]q

[λn]q
= 1, respectively, supn

[λn–1]q
[λn]q

= 1.
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Under these conditions we have that (uk) ∈ �
qλ∞ since

sup
n

∣∣∣∣∣

n∑

k=0

qλk–1 [λk – λk–1]q

[λn]q
uk

∣∣∣∣∣
= sup

n

2[λn–1]q

[λn]q
= 2.

On the other side,

sup
n

[λn–1]q

[λn]q – [λn–1]q
= ∞,

so (uk) /∈ �∞.

3 α-, β- and γ -duals
In this section, we formulate the α-, β-, and γ -duals associated with the spaces �

qλ
p and �

qλ∞ .
The following lemmas are essential for substantiating the findings that we wish to achieve.

Throughout our discussion, N represents the family comprising all finite subsets of the
set N0.

It is presumed that U = (unk) represents an infinite matrix over the set of complex num-
bers.

Lemma 3.1 [9, 19] Each of the subsequent assertions holds true:
(i) U ∈ (�∞,�1) iff

sup
K∈N

∞∑

n=0

∣∣∣∣
∑

k∈K

unk

∣∣∣∣ < ∞. (3.1)

(ii) U ∈ (�∞, c) iff

∃αk ∈C � lim
n→∞ unk = αk for each k ∈N, (3.2)

lim
n→∞

∞∑

k=0

|unk| =
∞∑

k=0

∣∣∣ lim
n→∞ unk

∣∣∣. (3.3)

(iii) U ∈ (�∞,�∞) iff

sup
n∈N

∞∑

k=0

|unk| < ∞.

(iv) Let 1 < p < ∞. Then U ∈ (�p,�∞) iff

sup
n∈N

∞∑

k=0

|unk|p′
< ∞. (3.4)

(v) Let 1 < p < ∞. Then U ∈ (�p, c) iff (3.2) and (3.4) hold.
(vi) Let 1 < p < ∞. Then U ∈ (�p,�1) iff

sup
N∈N

∞∑

k=0

∣∣∣∣
∑

n∈N

unk

∣∣∣∣

p′

< ∞, (1 < p < ∞). (3.5)
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Theorem 3.2 Define the sets S1 and S2 by

S1 :=

{

s = (sk) ∈ ω : sup
N∈N

∞∑

k=0

∣∣∣∣
∑

n∈K

bnk

∣∣∣∣

p′

< ∞
}

,

S2 :=

{

s = (sk) ∈ ω : sup
K∈N

∞∑

n=0

∣∣∣∣
∑

k∈K

bnk

∣∣∣∣ < ∞
}

,

where the matrix B = (bnk) is defined by

bnk =

⎧
⎨

⎩

1
qλn–1 [λn – λn–1]q

∑n
k=n–1(–1)n–k[λk]qvksn, 0 ≤ k ≤ n,

0, k > n.
(3.6)

Then
1. [�qλ

p ]α = S1.
2. [�qλ∞]α = S2.

Proof For s = (sk) ∈ ω, consider the following equality:

skwk =
1

qλk–1
[λk – λk–1]q

k∑

j=k–1

(–1)k–j[λj]qvjsk = (Bv)k

for each k ∈ N. Note that v = (vk) represents the �q-transform of the sequence w = (wk),
and the matrix B = (bnk) is defined analogously to (3.6). It is evident that sw = (skwk) ∈ �1

whenever w ∈ �
qλ
p iff Bv ∈ �1 whenever v ∈ �p. This implies that s = (sk) ∈ [�qλ

p ]α iff B ∈
(�p,�1). By utilizing Lemma 3.1 (vi), we can conclude that

[
�qλ

p
]α = S1.

The determination of the α-dual of the space �
qλ∞ is established similarly by employing

Lemma 3.1 (i). To avoid redundancy in the statements, the proof is omitted. �

Theorem 3.3 Define the matrix B′ = (b′
nk) by

b′
nk = [λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

sj

for all n, k ∈N. Then each of the subsequent statements holds true:
(i) s = (sk) ∈ [�qλ

p ]β iff B′ = (b′
nk) ∈ (�p, c) and

{
[λm]qsm

qλm–1 [λm – λm–1]q

}
∈ �∞. (3.7)

(ii) s = (sk) ∈ [�qλ∞]β iff B′ = (b′
nk) ∈ (�∞, c) and

{
[λm]qsm

qλm–1 [λm – λm–1]q

}
∈ c0. (3.8)
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Proof (i) Suppose that s = (sk) ∈ [�qλ
p ]β . This implies that the series

∑∞
k=0 skwk ∈ c for all

w = (wk) ∈ �
qλ
p . Employing Abel’s mth partial sum of the series

∑∞
k=0 skwk , we derive the

following equality:

m∑

k=0

skwk =
m∑

k=0

sk

[
1

qλk–1
[λk – λk–1]q

k∑

j=k–1

(–1)k–j[λj]qvj

]

(3.9)

=
m–1∑

k=0

[λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

sjvk +
[λm]q

qλm–1 [λm – λm–1]q
smvm

∀m ∈ N. Given the fact that �
qλ
p ∼= �p, we take the limit as m → ∞ in (3.9). As per the

assumption, the series
∑∞

k=0 skwk ∈ c. This directly leads to the fact that

∞∑

k=0

[λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

sjvk ∈ c,

and the term [λm]qsm/qλm–1 [λm – λm–1]q in the right-hand side of (3.9) is expected to
tend to zero as m → ∞. Furthermore, given that �p ⊂ c0, which is established with
{[λm]qsm/qλm–1 [λm – λm–1]q} ∈ �∞, we consequently deduce that

∞∑

k=0

skwk =
∞∑

k=0

[λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

sjvk =
(
B′v

)
k . (3.10)

Thus, B′ = (b′
nk) ∈ (�p, c). Alternatively, the matrix B′ satisfies part (v) of Lemma 3.1, hence

establishing the necessity of these conditions.
Conversely, assume that B′ = (b′

nk) ∈ (�p, c) and condition (3.7) remains valid. By em-
ploying (3.9), we derive once again relation (3.10). Consequently, as B′ = (b′

nk) ∈ (�p, c), it
follows that the series

∑∞
k=0 skwk ∈ c for all w = (wk) ∈ �

qλ
p . Thus, s = (sk) ∈ [�qλ

p ]β , affirming
that the conditions are sufficient.

(ii) This can be readily derived following a similar method employed in proving part (i)
by utilizing {[λm]qsm/qm–1[λm – λm–1]q} ∈ c0 in place of �∞. �

Theorem 3.4 Each of the following assertions holds true:
(i) s = (sk) ∈ [�qλ

p ]γ iff B′ = (b′
nk) ∈ (�p,�∞) and condition (3.7) holds.

(ii) s = (sk) ∈ [�qλ∞]γ iff B′ = (b′
nk) ∈ (�∞,�∞) and condition (3.8) holds.

Proof This is derived by employing a similar methodology as used in proving parts (i) and
(ii) of Theorem 3.3. The distinction lies in utilizing part (iv) of Lemma 3.1 in place of part
(v) of Lemma 3.1 to establish the first result, and employing part (iii) of Lemma 3.1 in place
of part (v) of Lemma 3.1 to establish the second result. The details of the proof are omitted
to avoid redundancy in the statements. �

4 Matrix transformations
Here, some class (�qλ

p , X) of matrix transformations is characterized, where X represents
any of the spaces �∞, c, or c0. Define the matrix Ã(q) = (ãq

nk)n,k∈N0 via an infinite matrix



Braha et al. Journal of Inequalities and Applications         (2024) 2024:74 Page 10 of 15

A = (ank)n,k∈N0 by

ãq
nk = [λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

anj.

Theorem 4.1 A ∈ (�qλ
p ,�∞) iff

sup
n∈N0

∣∣∣∣∣

∞∑

k=0

[λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

anjyk

∣∣∣∣∣

p′

< ∞, (4.1)

(
[λm]q

qλm–1 [λm – λm–1]q
anm

)

m∈N0

∈ �∞. (4.2)

Proof We consider the established fact that �
qλ
p is linearly norm-isomorphic to �p.

Suppose A ∈ (�qλ
p ,�∞). Consequently, Ax exists and is contained in the space �∞ for all

x ∈ �
qλ
p . This implies that An ∈ {�qλ

p }β for each n ∈N0. Therefore, conditions (4.1) and (4.2)
are necessary.

Conversely, assume that conditions (4.1) and (4.2) hold and take any x ∈ �
qλ
p . Then An ∈

{�qλ
p }β , confirming the existence of Ax. Consequently, we deduce that

m∑

k=0

ankxk =
m∑

k=0

ank

[
1

qλk–1
[λk – λk–1]q

k∑

j=k–1

(–1)k–j[λj]qyj

]

=
m–1∑

k=0

[λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

anjyk +
[λm]q

qλm–1 [λm – λm–1]q
anmym (4.3)

∀m ∈N. Taking the limit as m → ∞ in (4.3) and applying condition (4.2), we derive that

∞∑

k=0

ankxk =
∞∑

k=0

[λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

anjyk =
(
Ã(q)y

)
n (4.4)

for all n ∈N0. Employing (4.1) and applying Holder’s inequality, we observe that

‖Ax‖�∞
‖y‖�p

= sup
n∈N0

1
‖y‖�p

∣∣∣∣∣

∞∑

k=0

[λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

anjyk

∣∣∣∣∣

≤ sup
n∈N0

1
‖y‖�p

{∣∣∣∣∣

∞∑

k=0

[λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

anjyk

∣∣∣∣∣

p′}1/p′( ∞∑

k=0

|yk|p
)1/p

= sup
n∈N0

{∣∣∣∣∣

∞∑

k=0

[λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

anjyk

∣∣∣∣∣

p′}1/p′

< ∞.

Consequently, we conclude that A ∈ (�qλ
p ,�∞). Hence, conditions (4.1) and (4.2) are suffi-

cient. �
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Theorem 4.2 A ∈ (�qλ
p , c) iff each of assertions (4.1) and (4.2) holds true and

∃αk ∈C such that lim
n→∞[λk]q

k+1∑

j=k

(–1)j–k 1
qλj–1 [λj – λj–1]q

anj = αk . (4.5)

Proof Let A ∈ (�qλ
p , c). Hence, Ax exists and is in the space c for all x ∈ �

qλ
p . As c ⊂ �∞, it

follows from Theorem 4.1 that conditions (4.1) and (4.2) are necessary.
Consider e(k) as a sequence with 1 in the kth position and 0 elsewhere. Observing (4.4)

with x = 
qe(k), we notice that

Ax = A
(

qe(k)) = Ã(q)

(
�q(
qe(v))) = Ã(q)e(k) =

(
Ã(q)

)
n.

By assumption, (Ã(q))n ∈ c. This validates the necessity of condition (4.5).
Conversely, assuming that each of conditions (4.1), (4.2), and (4.5) is satisfied and con-

sidering x ∈ �
qλ
p , it follows that An ∈ {�qλ

p }β for all n ∈ N0. Consequently, Ax exists for all
x ∈ �

qλ
p . This leads to the derivation of equality (4.4). Considering conditions (4.1) and

(4.5), we ascertain that the matrix Ã(q) fulfills conditions (3.2) and (3.4). This implies that
Ax = Ãy ∈ c in view of (4.4). Therefore, we conclude that A ∈ (�qλ

p , c). �

The following result is presented without proof by substituting the space c with the space
c0 in the preceding theorem.

Theorem 4.3 Let A = (ank) be an infinite matrix over the complex field C. Then A ∈
(�qλ

p , c0) iff each of conditions (4.1) and (4.2) holds true, and condition (4.5) also holds true
with αk = 0 for all k ∈N0.

5 Some geometric properties of the spaces �
qλ
p and �

qλ∞
In this section, we illustrate geometric structures, namely the approximation property,
Dunford–Pettis property, Hahn–Banach extension property, and rotundity, of the spaces
�

qλ
p (1 ≤ p < ∞) and �

qλ∞ . At this juncture, it is anticipated that readers familiarize them-
selves with the fundamental concepts and definitions encompassing the approximation
property [11, Definition 3.4.26], weak compactness of a linear operator [11, Defini-
tion 3.5.1], complete continuous or Dunford–Pettis property [11, Definition 3.5.15], and
Hahn–Banch extension theorem [11, Art 1.9.6, p. 75]. Given that these definitions are ac-
cessible in Megginson’s work [11] or other standard literature pertaining to the geometry
of Banach spaces, detailed exposition is omitted herein.

.

Theorem 5.1 [11, Theorem 3.4.27] The space �p (1 ≤ p < ∞) possesses the approximation
property.

Lemma 5.2 [11, Exercise 3.50, p. 339] Suppose that X and Y are two normed spaces and
C : X → Y is continuous. Then, if Q is weakly compact in X, then C(Q) is weakly compact
in Y .

We add that the space �∞ exhibits Hahn–Banach extension property. This can be evi-
denced from the following theorem.
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Theorem 5.3 [17] Let C0 : A → �∞ be a bounded linear operator, where A is a linear
subspace of a Banach space X. Then the operator C0 can be extended to a bounded linear
operator C : X → �∞ such that ‖C0‖ = ‖C‖.

Let

Sλ =
{

s ∈ λ : ‖s‖ = 1
}

.

Definition 5.4 [11, Definition 5.1.1] A normed space λ is called rotund (or strictly convex)
if given any s1, s2 ∈ Sλ (s1 �= s2) and 0 < α < 1,

∥∥αs1 + (1 – α)s2
∥∥ < 1.

Proposition 5.5 [11, Proposition 5.1.2] A normed space λ is rotund iff for any s1, s2 ∈ Sλ

(s1 �= s2)

∥∥∥∥
s1 + s2

2

∥∥∥∥ < 1.

Proposition 5.6 [11, Proposition 5.1.9] Any normed space that is isometrically isomorphic
to a rotund space is also rotund.

The primary result of this section is presented as follows.

Theorem 5.7 Let 1 ≤ p < ∞. Then the space �
qλ
p has approximation property.

Proof For any Banach space X, consider a compact linear operator C : X → �
qλ
p . Conse-

quently, given a bounded sequence s = (sn) ∈ X, the sequence (Csn) contains a convergent
subsequence (Csnk ) in �

qλ
p . This implies that

‖Csnu – Csnv‖p
�

qλ
p

=
∥∥C(snu – snv )

∥∥p
�

qλ
p

=
∥∥(�qC

)
(snu – snv )

∥∥p
�p

→ 0

as u, v → ∞. Hence, the operator �qC : X → �p is both well-defined and compact. Conse-
quently, our focus shifts to the space �p, known for possessing the approximation property.
As a consequence, ∃ a sequence {Tn} consisting of finite rank bounded linear operators
from X to �p such that

∥∥�qC – Tn
∥∥→ 0

as n → ∞. In light of this observation, we come to understand that the sequence (�qTn)
comprising bounded linear operators from X to �

qλ
p fulfills the criteria for a sequence of

finite rank. Furthermore,

∥∥C – 
qTn
∥∥ = sup

‖s‖=1

∥∥(C – 
qTn
)
s
∥∥p

�
qλ
p

= sup
‖s‖=1

∥∥Cs –
(

qTn

)
s
∥∥p

�
qλ
p
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= sup
‖s‖=1

∥∥�qCs – Tns
∥∥p

�p

= sup
‖s‖=1

∥∥(�qC – Tn
)
s
∥∥p

�p

→ 0 as n → ∞.

Hence, the proof is completed. �

Theorem 5.8 The space �
qλ
1 possesses the D-P property.

Proof Let C be a weakly compact operator from the Banach space �1(�q) to a space X.
Consequently, C
q denotes a bounded linear operator from �1 to X. We wish to demon-
strate the complete continuity of C.

Consider B, a bounded set in �1. Thus, 
qB is a bounded set in �
qλ
1 . Given the weak

compactness of C, it therefore follows that the set

C
(

qB

)
=
(

q)B

is relatively weakly compact in X. Hence, we ascertain that the operator C
q is a weakly
compact operator from �1 to X. As the space �1 possesses the D-P property, it implies the
complete continuity of the operator C
q.

Consider Q as a weakly compact subset of �
qλ
1 . By Lemma 5.2, it follows that �qQ consti-

tutes a weakly compact subset of �1. Given the complete continuity of C
q, it follows that
C
q(�qQ) = C(Q) represents a compact set in Y . This confirms the desired conclusion
that C is completely continuous. �

Next, we wish to demonstrate that the space �
qλ∞ possesses the Hahn–Banach extension

property.

Theorem 5.9 Suppose that ν represents a linear subspace of a Banach space X, and let
C0 ∈ B(ν,�qλ∞). Then the operator C0 can be extended to a bounded linear operator C ∈
B(X,�qλ∞), while preserving the norm, i.e., ‖C0‖ = ‖C‖.

Proof Suppose C0 ∈ B(ν,�qλ∞). Consequently, �qC0 ∈ B(ν,�∞). As per Theorem 5.3, given
that �∞ possesses the Hahn–Banach extension property, we can extend the operator �qC0

to an operator T ∈ B(X,�∞) while preserving the norm ‖�qC0‖ = ‖T‖. Choose the oper-
ator C = 
qT . It is evident that C ∈ B(X,�qλ∞). Furthermore, for any s ∈ ν , we observe that

Cs =
(

qT

)
s = 
q(Ts) = 
q((�qC0

)
s
)

= C0s.

Furthermore

‖C‖ =
∥∥
qT

∥∥ =
∥∥
q(�qC0

)∥∥ = ‖C0‖,

as desired. �

Theorem 5.10 Let 1 < p < ∞. Then the space �
qλ
p is rotund.
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Proof This immediately follows from Proposition 5.6 and the fact that �p is a rotund space
for 1 < p < ∞. �

Theorem 5.11 The spaces �
qλ
1 and �

qλ∞ are not rotund.

Proof Choose any two sequences s1, s2 ∈ �
qλ
1 given by

s1 =
(

1, –
1
q

, 0, 0, . . .
)

and s2 =
(

0,
1 + q

q
, –

1
q2 , 0, . . .

)
.

Then �qs1 = (1, 0, 0, 0, . . .) and �qs2 = (0, 1, 0, 0, . . .). It follows that ‖s1‖�
qλ
1

= 1 and ‖s2‖�
qλ
1

=
1. That is, s1, s2 ∈ S

�
qλ
1

.
Let s = s1+s2

2 = 1
2 (1, 1, – 1

q2 , 0, 0, . . .). Then �qs = (1, 1, 0, 0, . . .). Thus,

‖s‖
�

qλ
1

=
∥∥�qs

∥∥
�1

= 1.

Hence, we see that

‖s‖
�

qλ
1
≮ 1.

Therefore, the space �
qλ
1 is not rotund. In the similar way, nonrotundness of the space �

qλ∞
can be established. �
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