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Abstract
We introduce a new unified extension of the integral form of Euler’s beta function
with a MacDonald function in the integrand and establish functional upper bounds
for it. We use this definition to extend as well the Gaussian and Kummer’s confluent
hypergeometric functions, for which we provide bounding inequalities. Moreover, we
use our extension of the beta function to define a new probability distribution, for
which we establish raw moments and moment inequalities and, as by-products,
Turán inequalities for the initially defined extended beta function.
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1 Introduction and preliminaries
In recent years, various extensions of the beta function (or Euler function of the first kind)

B(a, b) =
∫ 1

0
ta–1(1 – t)b–1 dt, min

{�(a),�(b)
}

> 0, (1)

have been considered. Connections to the definition of beta function, extensions of a num-
ber of well-known higher transcendental functions, such as Gauss hypergeometric, Kum-
mer confluent hypergeometric, Whittaker, Appell, Lauricella, Srivastava triple hyperge-
ometric, Bessel, Struve, Bessel–Struve kernel, τ -hypergeometric, etc., have been investi-
gated along with various potentially useful properties and certain connections with some
well-known special functions, including applications in many diverse areas of mathemat-
ical, physical, engineering, and statistical sciences investigated by several authors in a set
of publications; see, for instance, [1–8, 10, 12] and references therein.

We make the usual conventions: Z–, R+, and C denote the sets of negative integers,
positive real numbers, and complex numbers, respectively; also, Z–

0 = Z
– ∪ {0}.

In this note, we introduce the following unified approach to the class of generalized beta
functions. Firstly, we recall the MacDonald function (or modified Bessel function of the
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second kind) of order μ [15, p. 251, Eq. (10.27.4)]:

Kμ(z) =
π

2
I–μ(z) – Iμ(z)

sin(πμ)
, Iμ(z) =

∑
n≥0

( z
2 )2n+μ

�(μ + 1 + n)n!
,

where Iμ is the modified Bessel function of the first kind; see [15, p. 249, Eq. (10.25.2)]. We
point out that Iμ(x) is real when μ ∈R and arg(z) = 0.

Definition 1 The extended beta function built with the MacDonald function reads

Bλ
p,q,ν(a, b) =

√
2
π

∫ 1

0
ta–1(1 – t)b–1

√
hθ (t)Kν+ 1

2

(
hθ (t)

)
dt, (2)

where

hθ (t) =
p
tλ

+
q

(1 – t)λ
, θ = (p, q,λ).

Here λ > 0, min{�(p),�(q)} > 0, min{a, b} > λ
2 > 0, and ν ∈R.

Bearing in mind that for a fixed ν [15, p. 255, Eq. (10.40.2)],

Kν(z) =
√

π

2z
e–z

(
1 +

4ν2 – 1
8z

+ O
(
z–2)), z → ∞, (3)

because of the parity with respect to the real order ν + 1
2 , the asymptotic expansion is valid

for all real ν , we have

Kν+ 1
2

(z) =
√

π

2z
e–z

(
1 +

ν(ν + 1)
2z

+ O
(
z–2)) =

√
π

2z
e–z(1 + O

(
z–1)), z → ∞.

Specifying the values of parameters p, q, λ, and ν , we cover a whole spectrum of extended
beta functions, which confirms that the newly extended beta function Bλ

p,q,ν(a, b) is not
artificially constructed. In fact, (2) is the so-called beta function transform and maps a
suitable input function φ(t) into the multiparameter function [11]

∫ 1

0
ta–1(1 – t)b–1φ(t) dt.

In Definition 1, we have φ(t) =
√

hθ (t)Kν+ 1
2

(hθ (t)),
√

hθ (t) being the necessarily imple-
mented correcting factor function (up to the multiplicative constant

√
2/π ); compare with

relation (3). In turn, the constraint min{a, b} > λ
2 > 0 follows immediately by rewriting√

hθ (t) in (2) in a convenient form.
Setting the values of the parameters p, q, ν , λ in (2), we get several already known and

frequently studied members of the family of beta functions. So, when λ = 1 and q = p, we
arrive at the so-called (p,ν)-extended beta function introduced by Parmar et al. [16, p. 93,
Eq. (13)]:

Bp,ν(a, b) =
√

2p
π

∫ 1

0
ta– 3

2 (1 – t)b– 3
2 Kν+ 1

2

(
p

t(1 – t)

)
dt,
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where �(p) ≥ 0, min{�(a),�(b)} > 0, and √p takes its principal value. This beta function
is recently considered by Milovanović et al. [14] for establishing Gautschi–Pinelis-type
upper bounds for the MacDonald and (p,ν)-extended beta functions.

For λ = 1 and ν = 0, we arrive at the so-called (p, q)-extended beta function

Bp,q(a, b) =
∫ 1

0
ta–1(1 – t)b–1e– p

t – q
1–t dt.

The case where min{�(a),�(b)} > 0 and min{�(p),�(q)} ≥ 0 was studied by Choi et al.
[8]. In turn, if we put q = p and ν = 0 in (2), it reduces to the generalized extended beta
function

Bλ

p,p, 1
2

(a, b) =
∫ 1

0
ta–1(1 – t)b–1e–p(t–λ+(1–t)–λ) dt, λ > 0,�(p) > 0,

which should be distinguished from the generalization of the beta function studied by Lee
et al. [12, p. 189, Eq. (1.13)]:

B(a, b; p; m) =
∫ 1

0
ta–1(1 – t)b–1e–pt–m(1–t)–m

dt, m > 0,�(p) > 0.

Another particular case occurs for λ = 1, q = p, and ν = 0, where we get the p-extended
beta function [1, p. 20, Eq. (1.7)]

Bp(a, b) =
∫ 1

0
ta–1(1 – t)b–1e– p

t(1–t) dt, �(p) ≥ 0; min
{�(a),�(b)

}
> 0.

Finally, if use (3) and set ν = 0 and p, q ↘ 0, then Bλ
p,q,ν(a, b) → B(a, b) gives Euler’s integral

(1).
In this paper, we investigate the extended beta function Bλ

p,q,ν(x, y) and define the associ-
ated hypergeometric and confluent (Kummer-type) hypergeometric functions. For each
of these, we obtain an integral representation and derive functional upper bounds. Finally,
we introduce a related probability distribution, which we exploit to present Turán-type in-
equalities for the newly defined extension of the already studied beta functions.

2 Novel extended hypergeometric functions
In this section, we extend the Gauss hypergeometric and confluent hypergeometric func-
tions by making use of Bλ

p,q,ν(x, y).

Definition 2 The power series of the extended hypergeometric function reads

Fλ
p,q,ν(a, b; c; z) =

∞∑
n=0

(a)n
Bλ

p,q,ν(b + n, c – b)
B(b, c – b)

zn

n!
, (4)

provided that p ≥ 0, a ∈C \Z–
0 , �(c) > �(b) > 0, |z| < 1.

For all p ≥ 0 and �(c) > �(b) > 0, the extended confluent hypergeometric function

	λ
p,q,ν(b; c; z) =

∞∑
n=0

Bλ
p,q,ν(b + n, c – b)

B(b, c – b)
zn

n!
. (5)
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To distinguish the previously defined functions, we call them Bλ
p,q,ν-extended hyperge-

ometric and Bλ
p,q,ν-extended confluent hypergeometric functions, respectively.

Firstly, we derive integral expressions for the extended Gauss hypergeometric and con-
fluent hypergeometric function.

Theorem 1 We have the following integral representations for the Bλ
p,q,ν–extended hyper-

geometric function:

Fλ
p,q,ν(a, b; c; z) =

√
2/π

B(b, c – b)

∫ 1

0

tb–1(1 – t)c–b–1

(1 – zt)a

√
hθ (t)Kν+ 1

2

(
hθ (t)

)
dt (6)

for all p > 0 and | arg(1 – z)| < π or for p = 0 and �(c) > �(b) > 0.
Moreover, for all p > 0 or for p = 0 and �(c) > �(b) > 0, we have

	λ
p,q,ν(b; c; z) =

√
2/π

B(b, c – b)

∫ 1

0
tb–1(1 – t)c–b–1ezt

√
hθ (t)Kν+ 1

2

(
hθ (t)

)
dt. (7)

Proof Substituting definition (2) of Bλ
p,q,ν(a, b) into (4), we have

Fλ
p,q,ν(a, b; c; z) =

√
2
π

1
B(b, c – b)

∫ 1

0
tb– λ

2 –1(1 – t)c–b– λ
2 –1

· √p(1 – t)λ + qtλKν+ 1
2

(
p
tλ

+
q

(1 – t)λ

) ∞∑
n=0

(a)n
(zt)n

n!
dt.

Employing the binomial expansion

(1 – zt)–a =
∞∑

n=0

(a)n
(zt)n

n!

in the integrand, which obviously holds since |zt| < |t| < 1, we obtain the stated integral in
(6).

A similar argument can be used to establish the integral representation of the extended
confluent hypergeometric function in (7). �

Setting z = 1 in (6) and using the definition (2), we readily obtain a related summation
result.

Corollary 1.1 For all p > 0 or for p = 0 and �(c – a – b) > 0, we have

Fλ
p,q,ν(a, b; c; 1) =

Bλ
p,q,ν(b, c – a – b)

B(b, c – b)
.

3 Bound for extended beta and consequences
In this section, we expose our first main result on a functional upper bound for Bλ

p,q,ν with
some related consequences.
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Theorem 2 Let p, q > 0, λ ∈ (0, 1) ∪ (1,∞), and ν ∈ R. Then for all 2 min{a, b} > λ > 0, we
have

Bλ
p,q,ν(a, b) ≤

√
2pqKν+ 1

2
((p

1
λ+1 + q

1
λ+1 )λ+1)

√
π (p

1
λ–1 + q

1
λ–1 ) λ–1

2
B
(

a –
λ

2
, b –

λ

2

)
=: Rλ

p,q,ν(a, b). (8)

Moreover, for λ = 1, p �= q, and 2 min{a, b} > 1,

R1
p,q,ν(a, b) =

⎧⎨
⎩

limλ↗1 Rλ
p,q,ν(a, b) =

√
2pq√

π min{p,q} Kν+ 1
2

((√p + √q)2)B(a – 1
2 , b – 1

2 ),

limλ↘1 Rλ
p,q,ν(a, b) =

√
2 max{p,q}√

π
Kν+ 1

2
((√p + √q)2)B(a – 1

2 , b – 1
2 ),

(9)

whilst

R1
p,p,ν(a, b) =

√
2p
π

Kν+ 1
2

(4p)B
(

a –
1
2

, b –
1
2

)
. (10)

Proof We start with the defining integral (2) for p �= q. Obviously,

Bλ
p,q,ν(a, b) ≤

√
2
π

max
0≤t≤1

√
p(1 – t)λ + qtλ sup

0<t<1
Kν+ 1

2

(
p
tλ

+
q

(1 – t)λ

)

·
∫ 1

0
ta– λ

2 –1(1 – t)b– λ
2 –1 dt

≤
√

2
π

√
max
0≤t≤1

{
p(1 – t)λ + qtλ

}
Kν+ 1

2

(
inf

0<t<1

{
p
tλ

+
q

(1 – t)λ

})

· B
(

a –
λ

2
, b –

λ

2

)
, (11)

where both estimated functions in the integrand are positive in the declared range of pa-
rameters, and the MacDonald function Kμ(z) is decreasing and continuous for z > 0. For

h1(t) = p(1 – t)λ + qtλ,

we have h′
1(t) = λ[–p(1 – t)λ–1 + qtλ–1], and the stationary point becomes

t0 =
1

1 + ( q
p )

1
λ–1

∈ (0, 1).

Furthermore,

h′′
1(t) = λ(λ – 1)

[
p(1 – t)λ–2 + qtλ–2] < 0, λ ∈ (0, 1),

and therefore t0 is the abscissa of maximum for h1(t). Routine calculations lead to

√
h1(t0) =

√pq

(p
1

λ–1 + q
1

λ–1 ) λ–1
2

, (12)
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which ensures (8), and we infer R1
p,q,ν(a, b) by the limit asn λ ↗ 1. However, letting p < q,

say, the denominator in (12) behaves as

[
1 +

(
p
q

) 1
1–λ

] λ–1
2 −→

λ↗1
1,

which confirms the first part of the upper bound formula in (9).
In turn, for λ > 1, h′′

1(t) > 0 for all t ∈ [0, 1], i.e., this function is convex, and, consequently,

max
0≤t≤1

h1(t) = max
{

h1(0), h1(1)
}

= max{p, q},

which, together with (11), completes the proof for different p and q. In the case p = q, we
straightforwardly get the behavior of h1(t).

Now denote the argument function of the MacDonald function by

hθ (t) = pt–λ + q(1 – t)–λ.

The stationary point t1 is the solution of h′
θ (t) = –λ[pt–λ–1 – q(1 – t)–λ–1] = 0 with respect

to t, that is,

t1 =
1

1 + ( q
p )

1
λ+1

∈ (0, 1).

Since h′′
θ (t) = λ(λ + 1)[pt–λ–2 + q(1 – t)–λ–2] > 0 for all t ∈ (0, 1), the value hθ (t1) is the global

minimum of the considered function, where

hθ (t1) = min
0<t<1

hθ (t) =
(
p

1
λ+1 + p

1
λ+1

)λ+1 −→
λ→1

(
√

p +
√

q)2,

which proves (9) and also the claim (10) by taking p = q in the previous relation. �

At the remaining part of this section, we derive functional bounds for the real-argument
Bλ

p,q,ν-extended hypergeometric function Fλ
p,q,ν and the Bλ

p,q,ν-extended confluent hyperge-
ometric 	λ

p,q,ν in terms of Euler’s beta function. To obtain these bounds, we apply the
results of Theorems 1 and 2.

Theorem 3 For all p, q > 0, λ ∈ (0, 1) ∪ (1,∞), and ν ∈ R or for p = 0 and �(c) > �(b) > 0,
we have

∣∣Fλ
p,q,ν(a, b; c; z)

∣∣ ≤ g(z)
B(b, c – b)

Rλ
p,q,ν(b, c – b), (13)

provided that 2 min{b, c – b} > λ, �(z) > 0. Here

g(z) =

⎧⎪⎪⎨
⎪⎪⎩

(1 – |z|)–a, a > 0,

1, a = 0,

2–a, a < 0.
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Moreover,

∣∣	λ
p,q,ν(b; c; z)

∣∣ ≤ e|z|

B(b, c – b)
Rλ

p,q,ν(b, c – b), �(z) > 0. (14)

In both upper bounds, we have

Rλ
p,q,ν(b, c – b) =

√
2pqKν+ 1

2
((p

1
λ+1 + q

1
λ+1 )λ+1)

√
π (p

1
λ–1 + q

1
λ–1 ) λ–1

2
B
(

b –
λ

2
, c – b –

λ

2

)
,

whilst for λ = 1, p �= q, and 2 min{b, c – b} > λ,

R1
p,q,ν(b, c – b) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

limλ↗1 Rλ
p,q,ν(b, c – b) =

√
2pq√

π min{p,q} Kν+ 1
2

((√p + √q)2)

· B(b – 1
2 , c – b – 1

2 ),

limλ↘1 Rλ
p,q,ν(b, c – b) =

√
2 max{p,q}√

π
Kν+ 1

2
((√p + √q)2)

· B(b – 1
2 , c – b – 1

2 ).

Finally,

R1
p,p,ν(b, c – b) =

√
2p
π

Kν+ 1
2

(4p)B
(

b –
1
2

, c – b –
1
2

)
.

Proof Consider the bound upon the function g(z) = |1 – zt|–a, which occurs in the inte-
grand of the integral representation (6) of the extended hypergeometric function:

|1 – zt|–a ≤ g(z) =

⎧⎪⎪⎨
⎪⎪⎩

(1 – |z|)–a, a > 0,

1, a = 0,

2–a, a < 0.

The bounds are an immediate consequence of the triangle inequality and the fact that we
integrate with respect to t ∈ (0, 1). Hence, again by the triangle inequality, by Theorems 1
and 2 we have the estimate

∣∣Fλ
p,q,ν(a, b; c; z)

∣∣ ≤
√

2
π

g(z)
B(b, c – b)

∫ 1

0
tb– λ

2 –1(1 – t)c–b– λ
2 –1

· √p(1 – t)λ + qtλKν+ 1
2

(
p
tλ

+
q

(1 – t)λ

)
dt.

By arguments similar to those in [14, p. 1436, Proposition 2] we see that for p, q > 0 and
t ∈ (0, 1), the MacDonald function of the second kind Kν+ 1

2
is positive, which means that

∣∣Fλ
p,q,ν(a, b; c; z)

∣∣ ≤ g(z)
B(b, c – b)

Bλ
p,q,ν(b, c – b) ≤ g(z)

B(b, c – b)
Rλ

p,q,ν(b, c – b),

where the derivation of Rλ
p,q,ν(b, c – b) is described in the proof of Theorem 2; compare also

relations (8)–(10). The bound (13) is proved.
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Mimicking this prooof, we easily establish the functional upper bound (14) upon the
Kummer-type confluent hypergeometric function 	λ

p,q,ν for the quoted range of parame-
ters. �

Remark 1 Having in mind that

∫ 1

0

dt
(1 – zt)a =

1 – (1 – z)1–a

(1 – a)z
;

∫ 1

0
ezt dt =

ez – 1
z

,

following the proof of Theorem 3, we could refine the functional upper bounds in the
previous theorem.

4 The extended beta distribution
As a probabilistic application of Bλ

p,q,ν(a, b), let ξ be a random variable (r.v.) on a standard
probability space (�,F, P) distributed according to the so-called Bλ

p,q,ν-extended beta dis-
tribution, which we introduce by employing Bλ

p,q,ν(a, b). The defining probability density
function (PDF) reads

f�(x) =

⎧⎨
⎩

√
2
π

xa–1(1–t)b–1

Bλ
p,q,ν (a,b)

√
hθ (x)Kν+ 1

2
(hθ (x)), 0 < t < 1,

0 otherwise.
(15)

The range of the parameter vector � = (a, b, p, q,λ) ∈ R
5
+ is min{a, b} > λ

2 > 0 and ν ∈ R,
as it originates from the MacDonald function Kν+ 1

2
in (2), and we recall that it is even in

parameter.
The related cumulative distribution function associated with the PDF (15) can be ex-

pressed as

F�(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ 0,
Bλ

p,q,ν (a,b;x)
Bλ

p,q,ν (a,b)
, 0 < x ≤ 1,

1, x > 1,

where for all � > 0 and ν ∈R,

Bλ
p,q,ν(a, b; x) =

√
2
π

∫ x

0
ta–1(1 – t)b–1

√
hθ (t)Kν+ 1

2

(
hθ (t)

)
dt,

which turns out to be the extended incomplete extended beta function. Finally, we write
ξ ∼ Bλ

p,q,ν or ξ ∼ f�(t), where � stands for the parameter vector (a, b, p, q,λ). Our first
result concerns the rth raw moment of ξ ∼ Bλ

p,q,ν :

mr = Eξ r =
Bλ

p,q,ν(a + r, b)
Bλ

p,q,ν(a, b)
, a + r >

λ

2
> 0.
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Particular frequently used cases are the mean and variance:

m1 = Eξ =
Bλ

p,q,ν(a + 1, b)
Bλ

p,q,ν(a, b)
,

Var ξ = Eξ 2 – (Eξ )2 =
Bλ

p,q,ν(a, b)Bλ
p,q,ν(a + 2, b) – [Bλ

p,q,ν(a + 1, b)]2

{Bλ
p,q,ν(a, b)}2 .

Theorem 4 For all � = (a, b, p, q,λ) ∈ R
5
+ with min{a, b} > λ

2 > 0, we have the Turán in-
equality

Bλ
p,q,ν(a + s, b)Bλ

p,q,ν(a + s + 2r, b) ≥ [
Bλ

p,q,ν(a + s + r, b)
]2, s, r > 0. (16)

Moreover,

Bλ
p,q,ν(a + 2s, b)Bλ

p,q,ν(a + 2r, b) ≥ [
Bλ

p,q,ν(a + s + r, b)
]2, s ≥ r ≥ 0.

Proof The inequality for the raw moments mr , r > 0, of nonnegative random variables [13,
p. 28, Eqs. (1.4.6)],

m2
s+r ≤ msms+2r , s, r > 0,

proves the first stated inequality.
Next, following again Lukacs [13, p. 393, a)], for all 0 ≤ r ≤ s, the slightly different mo-

ment inequality m2
s+r ≤ m2s · m2r is implied by the familiar CBS inequality with a simple

rescaling of the integrand in ms+r . The rest is obvious. �

Remark 2 The immediate consequence of the nonnegativity of the variance is the follow-
ing contiguous Turán inequality:

[
Bλ

p,q,ν(a + 1, b)
]2 ≤ Bλ

p,q,ν(a, b)Bλ
p,q,ν(a + 2, b)

with respect to the variable a of the extended beta function. Obviously, for r = 1 and s = 0,
relation (16) implies the same result.

To establish a bound of other kind, we use the integral moment inequality [9, p. 143,
Theorem 192]

Mr(h, p) < Ms(h, p), 0 < r < s, (17)

where

Mr(h, p) =
∫ β

α

hr(t)p(t) dt

for a suitable integrable nonnegative input function h. The integration interval (α,β) is
either finite or infinite, and the nonnegative weight function p satisfies

∫ β

α
p(t) dt = 1. In

our case the abbreviation Ms(xs, f�) = (ms)1/s is used for the r.v. ξ with distribution Bλ
a,b,ν
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and (α,β) = (0, 1). Inserting ms into the moment inequality (17), we obtain the following
Lyapunov-type inequality for the integral mean of the Bλ

p,q,ν distribution.

Theorem 5 Let a r.v. ξ be Bλ
p,q,ν-distributed. Then, for all � = (a, b, p, q,λ) ∈ R

5
+, ν ∈R, and

min{a, b} + r > λ
2 > 0, we have

[Bλ
p,q,ν(a + s, b)] 1

s

[Bλ
p,q,ν(a + r, b)] 1

r
>

[
Bλ

p,q,ν(a, b)
] 1

s – 1
r , s > r > 0.

Finally, we point out that the Bλ
p,q,ν distribution and the properties of the here defined

incomplete extended beta function deserve a precise study to be addressed in the future
research.
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