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1 Introduction and preliminaries

The theory of inequalities and convex functions have a strong connection. Convex func-
tions are important to a number of fields of mathematics and play an essential part in the
research of optimization problems and modern analysis. Numerous physicists and math-
ematicians have used higher-order convexity to exploit inequalities and solve problems
requiring greater dimensions.

The divided difference is given in the following definition:

Divided Difference ([1, p.14]) For a function /: [211, cAiz] — R, the nth order divided dif-

ference, at mutually exclusive points u,...,u, € [211, 212], is recursively defined by

ltg; h) = H(uy), o©=0,...,n,

yeees n;h - AR n—;h
(g oty ] = LAt P ittt ], )
Uy, — U

It is known that (1) is equivalent to

(uo, ..., up k] = Z ?EZ”;, where /(1) = l_[(u — U,).
=0 o e=0
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In the following formulation (see [1, p. 15]), nth-order divided difference is used to define

an n-convex function.

n-Convex function For (n + 1) different points uy,...,u, € [211,;12], a function f :
[2[1,212] — R is said n-convex (n > 0) if and only if

[uo, ..., un;f1>0
holds.
If [uo,...,u,f] <0, thenf is n-concave.

The following criteria for an n-convex function is provided in [1, p. 16].
Theorem I f is n-convex if and only if f™ > 0, given that ) exists.

Levinson [2] extended Ky Fan’s inequality for 3-convex functions as given:

Theorem A Counsider f : Iy = (0,2y) — R with ;—;f(z) > 0. Consider p, > 0 with
Y Po=Qandx, €(0,y). Then

% > pof (%) —f(é Zm%) < é Y pof 2y —x,)
" o=1 " " o=1

o=1
—f<é S po(2y —xg>). @

o=1

Popoviciu [3] noted that Levinson’s inequality (2) has a significant role on (0,2y), while
in [4], Bullen provided distinctive conformation of Popoviciu’s results also gave converse of

(2).

Theorem B (i) Assume thatf : T = [cAil, 2{2] — R is a convex function of the third order and
%5,Ys €T foro =1,2,...,m, ps >0 such that

min{y; ...y} > max{x; ...x;}, YIHXL = =Y+ Xy (3)

then
1 & 1 & 1 & 1 &
. Zpaf(a) _f(a Zpaxo) = a Zpaf(ya) _f<a Zl%}’a)« (4')
m 5=1 m 51 m 5=1 m 5-1

(ii) For p, > 0, f is 3-convex if f is continuous and (3) and (4) hold.
From (4), we have the following functional:

D(f()) = é Zpaf(ya) _f<% Zpaya) - é Zpaf(xa)

o=1
1 m
+f<a Zpaxo)' (5)
m 51

In the next result, Pecaric¢ (5] used weakening condition (3) to derive inequality (4).
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Theorem C Let f : T — R be such that f3(t) > 0 and 0 < p,. Let x,,y, € T also be such
that X5 + Y, = 26, for 0 = 1,..., 11, X + Xjy_g41 < 2C and P20 PizenBizesl < ¢ Thep (4) is

PotPpi-6+1
valid.

In [6], Mercer stated that (4) is true for the symmetric distribution of the points, given

in following theorem.

Theorem D Let f be a 3-convex function, defined on T, and p, is such that Z:;”:l P =1

Choose x5, Y, such that min{y; ...y;} > max{x; ...x;} and

i i 2 W 2
Zpa (xa - Zpaxa) = ch (y(r - ZPJ%) . (6)
o=1 o=1 o=1 o=1

Then (4) holds.

Let T = [cAil, 622] CR,d; < tAiz. In [7], Pecari¢ et al. proved Abel-Gontscharof-type identi-

ties by applying new type of Green functions:

100 =) + = @) - [ G2y @ %
100 =)~ o= i0f ) + [ Ealn 2 @ ®)
100 =)+ = ) - @ - ) @)+ [ Gl 2 ) ©)
£ =) + o= ) ) - G = 0 o) - [ Gt 26 (10)

wheref: T— Randforo =1,...,4, Go:TXT— R are given as:
Gi(i,2) =

(11)

Gz =1 . A (12)

Ga(i2) = . R (13)
2—(/{1, u E%Sdz

o Nz-ady, ai<z<i,

Ga(tr,2) = . (14)

I:i—dg, ﬁf%fdz

In [8], the Hermite interpolating polynomial is defined as follows:
Let dy,d, € R with dy < d», and d; =1 <@< <Gy = d, (2 < a) be the points. If f €
c" [211, 212] and )?,E,i) (s) exist, then the following Hermite conditions hold:
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Hermite Conditions

a
A;I)@ f‘)(g 0§i§l<e,1§e§a,2ke+a=n.

e=1

Theorem H ([8]) Let—oo<211 <212<ooz/md211 <& <§2<---<§a§£12 (@a>2)andf €
C"([dy,d»)). Then

S@) = @) + Ru(f, V), (15)

where

ZZH@ D(g.)

e=1 i=0

is the Hermite interpolating polynomial, and H;, are the polynomials for the Hermite basis
defined as

ke—i

v k /(Y _ 5 Vket
PR M SER e

AN 16
it (¥ — go)ker1-i K dvk T) v-g) (16)

V=

with
T(V) = 2, (7 - g)",
and

Ry(f,v) = /T F)C (¥, 5) ds

is remainder, where Gy , (v, s) is given by

nil

ZethO (Vlll (‘v/) 551\;;
k —s)"= i-1 o
Ze r+l1 Z ‘ (gen Sl 1)! H (V)r s$=V,

Grn(V,s) = (17)

forallg, <s<g1;r=0,1,...,a, with g, = gll and g,,1 = 212.

We observe that 0 < Gy ,,_3(V,s), and Gp,,_3 represents derivative of order three with
respect to the first variable.

The positivity of Gp,,(7,s) is described in [9] and [10], as follows:

Lemma 1 The following statements are true for the Green function Gy ,(v,s) as given in
(17).
(1) GHn(VS)

Oglf Sé} g ga;
T

(ii) GHn(v,S)< L (V)I
)

(iii) fT Gyn(V,s)ds ==
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In 2023, Rasheed et al. [11] defined a novel class of 3-convex Green functions and uti-

lized them to state the following fruitful lemma.

Lemma 2 Let f be defined on T such that f exists and G, (« = 1,...,4) are the two-point
right focal problem-type Green functions given by (22)—(25). Then

FU@) = F@) + (- a)f @) + (= ) — d)f ) — =L

. / G 2)f" () d5, (18)

T
N ~ ~ AN 1S 7 (6}2_1”\!)2 ~ ~ A . 17075

£@) = () ~ (@ 0 ) @) P+ - )i D))

. /T ol 2)f"(2) d2, 19)
F@) = f(ds) + (i1 — dr)f () = (dy — dr)f (ds)

— A _ A 2 . R . —
| EEA -y - )
A B g _— g 2 A A
f () Mua—dlxﬁ—@) f Gali2)f" () 2, (20)

F@) = fl@h) + (da =) (@) ~ (@~ ) (@)
e
+f" ()| (= o)t - dy) + M

A A A 1 _ d 2 A
- [(ﬁ—dz)(dz —dy)+ < de) }f”(dz) + /f”(w)@;(ﬁ,%) dz, (21)
T

where G, : T x T — R, @ € {1,2,3,4} given as:

—d d)ii—dy), d <2<,
Gy(i,2) = ( 1) (H V(e —ds) 1=%2 _AM (22)
(i1 —dh)(3 - dy) + =) dl h<i<d,.
d d 1 )2, dy <3< i,
Golin2) = (ud 2)(z —dh) + 5t —dy)°, Al _Az _Au (23)
€ 2 + (i —d) (i — dy), U<z<d.
A A ( M al S 2 S l:tr
Gs(it,2) = ¥ ) . (24)
1% 1) (i — dl)(u dy), B1<2<d,.
Z‘dz d d d <3<,
Galin2) = + (- z)(u 1) 152 _Au (25)
~dy)(2 E(u_d2)2¢ #<z<d.

Remark 1 If integration by parts is applied to integral part of (7)—(10) by selecting f”(2)
as the first function and Ga(l}, Z)(a = 1,2,3,4) as the second function, then (18)—(21) are
derived. Graphical depection of @a(ﬁ, Z)(a =1,2,3,4) is given in figure (1).

Page 5 of 19
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(c) Gs

Figure 1 Graphof Gyl =1,..., 4) for different ranges of i and 2

In [12], Adeel et al. established the Levinson inequality for the class of three convex
functions using two Green’s functions. They also provided valuable findings in infor-
mation theory. For the class of higher-order convex functions, Adeel et al. [13] gener-
alized Levinson-type inequalities using the Abel-Gontscharoff interpolation. Using Lid-
stone polynomials and Green functions in combination with Levinson-type inequalities,
Adeel et al. [14] computed the Shannon entropy and calculated f-divergence.

In recent decades, several scholars have used the Hermite interpolation to modify the
inequalities for higher-order convex functions. Butt et al. [15] generalized the Popovi-
ciu inequality for higher-order convex functions using Hermite interpolation and also
constructed some results relating to the Griiss- and Ostrowski-type inequalities. In an-
other analysis, generalizations of Levinson-type inequalities are stated by Adeel et al. [16]
via Hermite interpolating polynomial for n-convex functions and estimated bounds for
the Shannon entropy and f-divergence. For n-convex functions, Adeel et al. [17] proved
Levinson-type inequalities by applying Hermite interpolating polynomial and Green func-
tions and also derived inequalities for the Shannon entropy and f-divergence. In [18],
Mehmood et al. explored discrete and continuous cyclic refinements of Jensen’s inequal-
ity and extended them from convex function to higher-order convex function through
the use of various new Green functions by employing Hermite interpolating polynomial
whose error term is approximated using Peano’s kernel. In 2021, Ansari et al. [19] utilized
Hermite’s interpolation to derive a new generalization of an inequality for higher-order
convex functions containing Csiszér divergence on time scales.

In [20], Adeel et al. employed Fink’s identity to obtain new generalizations of Levinson-
type inequalities for n-convex functions. Furthermore, they applied their results to evalu-
ate different entropies. In [21], authors applied the Lidstone interpolating polynomial for
2n-convex functions to derive different generalizations of Levinson-type inequalities. In

[22], Bilal et al. generalized Shannon-type inequalities via diamond integrals. In [23], Bi-
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lal et al. defined Csiszér’s f-divergence for diamond integrals and proved inequalities for

different divergences.

2 Mian results

This section is divided in two subsections. First, we present results associated with Bullen-
type inequalities associated with Green functions (22)—(25). Second, 3-convex Green
functions (22)—(25) are used to generalize the Levinson-type inequalities for higher-order

convex functions via Hermite interpolation.

2.1 Generalization of Bullen-type inequalities for higher-order convex function
We begin by defining the subsequent functional:

F: Suppose a function f : T = [511,212] — R.Let (py,...,ps) € R™and (q1,...,45) € R® be
such that Zj’:lpa =1, Zil qe =1 and x5, ¥, Zf;":lpgxa, Zf’zl qeye € T. Then

D(f() =Y adf 0e) —f(Z qeye) =Y of (%5) +f<2paxo)- (26)

B: Let H;,, G3;,, be defined in (16) and (17) and G,(-,2) for a = 1,...,4 be defined in
(22)—(25).

Impelled from identity (5), the following results are constructed:

Theorem 1 Assume that F and B hold. Consider the points dy =81 < @y < -+ < 8a = ds
(a>2) and f € C"[dy,dy). Then, for o = 1,4,

) ) 2 i 2
D(f()) = %[Zl qeyz - (Zl qé)’é) - levxg + (leaxa> :|
a ke

X (@) -£2@) + 3 Y 1@ [ DG ), @2

e=1 i=0

.5 5 (n) 5
+/T/TD((G0,(,2))GH,,,_3(z,s)f (s)dsdz (27)

and fora = 2,3,

& & 2 W 2
D(f(-)) = %[Z_; qey? - (Z_; qeye) - Z_;poxi + <X_;pax5) }

a ke
< (@) -£@) - 331 @) [ D@6 G2

e=1 i=0

- / / D(Gu(+2))Grus(2,)f " (s) ds dz (28)
TJT
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where

D(Ga(’é)) = quGa(ysx‘%) - Ga (ZQG)’@%) - ZpaGa(xarz)
e=1 e=1

o=1
+ Gy (Zpgxa, 2). (29)
o=1

Proof Let o = 1,4, then applying (26) to the identities (18) and (21) and using linearity of
D(f(-)), we have

) 2 m i 2
D(f() |:Z que (Z %}’s) - Zpaxf;‘ + (Zpaxa) :|
e=1 o=1 o=1
x (2f () - fPdn)) + / D(Ga(,2))fP () dz. (30)
T

From Theorem H, f*®(2) becomes

OG-S HL GO | St (31)

e=1 i=0

Using (31) in (30), we get (27).
Following the same steps, we get (28) for « = 2,3. d

Under the condition defined by (6), the generalized form of the Bullen-type inequality

(for positive weights) is presented.

Corollary 1 Assume B. Let (p,...,p;) € R7 be such that Zf;”:lpg =1 and x5, y; satisfy
(6) and max{x; ...x;} <min{y; ...y} and d, =g1<@<- <G, = dy (a > 2) be the points.
Iff € C"[dy,d»), then (27) and (28) hold.

For n-convex functions, the following form of identities (27) and (28) are given.

Theorem 2 Assume all the suppositions of Theorem 1 for the n-convex function f.

¥
f D(Go(2))Gpns(2,8)dz>0, seT, (32)
T

then for a = 1,4,
1 ) ) 2 i 2
D(f() = 5 [quyﬁ - (quye) = poxl+ (Zm%) }
e=1 e=1 o=1 o=1

x (2fPd) - V() ZZf 9 / Gu(~2))H;, (2) d2 (33)

e=1 i=0
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and for o = 2,3,

) ) 2 i 2
D(f()) < E{quyf - (quye) = pexi+ (Zpgxa> }
e=1 e=1 o=1 o=1

a ke

< (2f Do) - ) - > @) fT D(G, (- 2))H,, (3) dz.

e=1 =0

Proof As f is n-convex (n > 3), then by Theorem I, we have

Thus, using (32) in (27) and (28), we get (33) and (34), respectively.

Remark 2

(34)

(i) According to Theorem 2, if the inequality in (32) is reversed, then inequalities in

(33) and (34) hold conversely.

(i) If f is n-concave, then inequalities (33) and (34) hold in the opposite direction.

Remark 3 D(-) is reduced in D(-) if ® = /1, py; = q; and weights are positive. Then for

o =1,4,(27), (32) and (33) become

a ke
D) = oY@ [ DG )G dz

e=1 i=0

+ fT /T D(Gu(+2)) Gy n-3(2 5) " (s) ds dz,

/ D(Ga(~,2))GH,n_3(2,s) dz>0, seT
T
and
a ke ‘
D(FO) = 33 V@) [ DG, 6,
e=1 i=0

respectively.
For o = 2,3, (28), (32) and (34) become

a ke
LGORES D)WY RICHEEACYE

e=1 i=0

_/fD(Ga(V2))Gﬂ,n—3(2,5)f(")(s)dsdfz,
TJT

| PE.D)EuaEI =0 seT
T

(35)

(36)

(37)

(38)

(39)

Page 9 of 19
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and
a ke
D) <= 30 Y6 [ DGl )G a2 (40)
e=1 i=0
respectively.

Theorem 3 Assume B. Let d; = S <PH<<g= d, (a > 2) be the points and f €
c" [21’1, 212]. Choose positive weights (p1,...,ps) such that Zf;”:lpa =1. Then

(i) Foreverye=2,...,a,ifk, is odd, then (37) and (40) hold.

(i) Let (37) and (40) be fulfilled and the function

a ke
F@) =Y > f"I@)H,©?. (41)
e=1 i=0

IfF(z) > 0, then (37) and (40) become

D(f(-)) =0 (42)
and
D(f()) <0, (43)
respectively.
Proof

(i) Since the weights are positive and the Green functions G, (-, z) are 3-convex,
D(Gq(+ 2)) > 0, for fixed «. Additionally, for each e =2,...,a, k. is odd this implies
T(-) > 0 and by part (i) of Lemma 1

G?—[,n—B('r S) = 0;

hence (32) holds. Thus, applying Theorem 2 for the #-convex function f, we obtain
(37) and (40).
(i) Using (41) in (37) and (40) gives (42) and (43), respectively. O

Theorem 4 Let positive real numbers p, ..., py be such that Z?:Ipa =1.Letalso x,,y, €
T be such that x, + Yo = 2C, for 0 = 1,...,11, X5 + Xjp_o41 < 2C and I%W <.
Then for an n-convex function f, we have the following

(i) Foreache=2,...,a,ifk, is odd, then (37) and (40) hold.

(ii) Let (37) and (40) hold and

a ke
F@) =3 S SO @)H, () (a4)
e=1 i=0

be 3-convex. Then (37) and (40) become

D(f() =0 (45)

Page 10 of 19
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and
D(f(-)) <0, (46)
respectively.
Proof Proof is similar to Theorem 3. g

2.2 Levinson-type inequality for n-convex (n > 3) functions
In this section, results are given for the generalization of Levinson-type inequality using
new green functions G, (« = 1,...,4) and interpolating Hermite polynomial. For this, first,
we have

H: Consider x1,...,x; € (0,y) and f : I, = [0,2y] — R. Choose (p1,...,p;) € R” and
(q1>-..,95) € R® be such that Z?leg = 1 and Zil qe = 1. Also, let x,,
Zil qe(2y —x) and Z:;":lp,, €1,. Then

D(f()) =Y qf 2y —x)-f (Z (2y - xe ) Zpaf Xo)
+f (Zp(,x(,). (47)
o=1
For the next results, we construct the following identities:

Theorem 5 Assume H and B. Let d; = G1<PH< - <gy= d, (a > 2) be the points and
fe C”[cAll,cAlg]. Then for 0 < 2131 < 212 <2y and o = 1,4, we have

D) = [qu(zy %) (qu(zy xe) ipax%(ipgxa)z]

o=1 o=1

(f<2<d1) ~fP(dn)) + Zf“*‘@) / (Ga(-2)H;, (2) dz

e=1 i=0

+ﬁﬁﬁ@¢@mmﬁ@wwwm& (48)

and for o = 2,3,

1) 2 i s 2
D(f() = [Z%(ZV %)’ - (Z%(%ﬁ&)) - poxs+ <Zpaxo) }
e=1 o=1 o=1

() @) - 33 e [ D@t

e=1 i=0

_//ﬁ@w@mmﬁ@mwwﬁ&, (49)
TJT

Page 11 0of 19
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where D(f (-)) is defined in (47) and

D(Gu (-, Z%Gk 2y —%e,2 Gk<2qe(2y xe,2)>—2paGk(xm2)
o=1

e=1 e=1

+Gy (Zpgxgi). (50)

o=1

Proof Replace T, D(-) and y, with I, D(") and (2y —x.) in Theorem 1, respectively, to get
the required result. O

For n-convex functions, we give the following form of identity (48).

Theorem 6 Counsider f is an n-convex function and all the conditions of Theorem 2 hold.

I
| DG D)GHasdzz0, et (51)
T

then for o = 1,4,
) 2 i 2
D(f() = [Zq 2y - %)’ (qu 2y - xe ) =) poxl+ (Zm%) }
e=1 o=1 o=1

(2f (dh) - () ZZf’*3 @) f (Go(-0)H, () dz  (52)
e=1 i=0
and for o = 2,3,

D(f()) < [Z 2y - %) - (qu 2y —x) )2—§;pax§ . (im&)z}

e=1 e=1

(2f (d) —f P (dh)) ZZf”?’(g) / (Go(-2)H, (B)dz  (53)

e=1 i=0
whereO§£11<212§2y.

Proof As a consequences of conditions mentioned in the statement, the proof is similar
to Theorem 2. O

Remark 4 D() is reduced in D() if & = i1, p; = g5 and weights are positive. Then for
o = 1,4, (48), (51) and (52) become

)33 s, @) [ B(G.C2)H, G2

e=1 i=0

+ / / D(Go(2)) Gz (@ s)f " (s) ds dz, (54)
TJT
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/ B(Ga(-2)GrnsGs)dz =0, sel,
T
and
a ke
BO) = 3D V@) [ BG.62)H 6
e=1 i=0
For o = 2,3, (49), (51), and (53) become

D(f() = ZZf’+3><g)/ (Ga( 1) H;, (2) d2

e=1 i=0

- / / D(Ga(-2))Grun-s(@s)f " (s) ds dz,
TJT

| BE.tD)CwatEdzz0. sel,
T

and

Bf()) < ZzyM / (ol ) H () 2

e=1 i=0

respectively.

Theorem 7 Assume B. Let an n-convex function f : 1, — R and (p1, ...
that Z?zlpg = 1. Let also f € C"([0,2y]) and d; = <@ < <Gy =

points. Then
i) Ifk. is odd for each e=2,...,a, then (56) and (59) hold.
(i) Consider the function

a ke

F@) =) > f*I@)H;,(?)

e=1 i=0

(55)

(56)

(57)

(58)

(59)

,Pr) € RT be such
Ziz (a = 2) be the

(60)

is nonnegative, and (56) and (59) also hold. Then (56) and (59) become

D(f() =0

and

respectively, where 0 < cAil < 212 <2y.

Proof Proof is same as of Theorem 3.

(61)

(62)

Page 13 0of 19



Rasheed et al. Journal of Inequalities and Applications (2024) 2024:70 Page 14 of 19

3 Applications to information theory
Information theory is a branch of science that deals with data quantification, storage, and
transfer. In 1948, Claude Shannon [24] gave the idea of information theory and described
entropy as the fundamental unit of information. In other words, it is also possible to de-
termine the information using the probability density function. Divergence measure is an
idea in probability theory that helps solve certain problems because divergence measure is
used to calculate the distance between the two probability distributions. Moreover, diver-
gence measures are used to solve many problems in probability theory. Information and
divergence measures are extremely valuable and essential in many fields, including Sensor
networks [25], finance [26], economics [27], and approximation of probability distribu-
tions [28].

Levinson- type inequalities are essential for generalizing inequalities for divergence be-
tween probability distributions. The key conclusions from Sect. 2 are linked to information

theory in this part, using the Shannon entropy and f-divergence.

3.1 Csiszar divergence
Csiszar [29, 30] presented the subsequent definition.

Definition 1 If f : R, — R, is a convex function, choose v,le Rf‘ such that Zf’:l Vo =1

and Z;hzl I = 1. Then the Csiszar f-divergence is defines as follows:

~ o Vo
ILrv,D):=» Lfl-—). 63
(@D Zl f< 10) (63)
In [31], Horvath et al. generalized (63) as follows:

Definition 2 If f : I — R is such that I C R, choose v = (vy,...,v;) € R and 1 =
(I, ...,13) € (0,00)™ such that
v,

l_g el, o=1,...,m.

g

Then
~ -~ o Vo
Irv,D):= ) Lfl —). 64
(%, 1) Zl f< L ) (64)
Theorem 8 Assume that f € C" [211,212] is an n-convex function and ¥ = (f1,...,Fz), k=

(kn,...,kp) € (0,00)" and W = (Wr,...,wa), t = ({1,..., tw) € (0,00)? are such that

T A
TGH, O'=1,...,m,

and
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Ifk. is odd for each e=2,...,a, then for o = 1,4,

i 1 &wer (& ow ) 1 ()
Jcis(f(-))zg[ ZIV; —(Z - ) Y

Z?:l Zf € e=1 Zs:l te Z:rnzl kd o=1 k"

" o 2
+ (Z i ) }(Zf@)(&h) ~fO(dy))

o0 2o ko

a ke
Y Y f@) / J(Gu(-2)H,, (2) d2

e=1 i=0 T
and for o = 2,3,
J.(f(.))<1[ 1 i(:ﬁ_(i 2 )2_ Ly
2 Zl::lzf e=1 te e=1 Z?:lt: Z?:lkﬁ o=1 ks
M 2
+ (Z . ) }(f‘”(-?h) ~fO(dy))
o=1 Za:l o
a ke ‘
_ szoa)@e) / J(Ga(-2))H,, (2) d2,
e=1 i=0 T
where

«]]cis(f(')) = le)l > ﬁf(‘TV)E)_f(Z Z)VE > ) - :;hiku f[f(i:’lv()

e=1 tf

m r:;
+f —
()

and

m k“ ;- m p
- AU va(TG,»%)‘}‘Gk Aa V,A .
o1 2ot ko ky Z Y ks

o=1 o=1

(65)

(66)

(67)

(68)

Proof Since the weights are positive and the Green functions G,(-,z) given in (22)—(25)

are 3-convex, therefore,

for fixed @ = 1,2, 3, 4.

Since k. is odd for each e = 2,...,a, so we have T(-) > 0 and by part (i) of Lemma 1

GH,n—B('¢S) > 0
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k:r Iy
0 Xg = L, e =
ZZ”:] k(7 ’ k“, €

Ve = Ve in Theorem 2, (33) and (34) become (65) and (66), respectively. O

hence Gy, is 3-convex, therefore (32) holds. Thus, using p, =
Z? 1’;

3.2 Shannon entropy
Definition 3 (see [31]) For positive probability distribution 1=(,...,1;), the Shannon
entropy is given by

- Z Iy log(ly). (69)

In order to avoid many notions, we define the following functional:

Q: Let = (71,..., 7). k = (Ku,..., ka) € (0,00 and W = (i,...,wo), t = (f1,...,tw) €
(0, 00)%.

We denote b as a base of log function.

Corollary 2 Assume Q.
(i) Ifn=3,5,...and b > 1, then for o = 1,4,

2oeN 1 &wyr (& ow \
M)z(lm 2)[ 1 0 _( : )
(d1d2)2 Zil Le ; Le ; Zw 1 Le
1 e (S o\
Y ()|

Zm ktT o=1 kU o=1 ZZI:l kff
a k ;
. (—1)”2(i+2)!/ . i
+ ————— | I(G.(,2))H,,(2)dz (70)
ZI:XO: e D)
and for o = 2,3,

P(m(
/\
HMS
”’ | =
4\
v
)

d 2d2 @
J() < [ =2 )
()<<<d1d2)2 { o 21:

1 EEe (&

B R I P H

Zm ktf o=1 kU o=1 ZZI:l kU
l+2 2
—ZZ lir / 1(Gal ) H, (2) 2, (71)
e=1 =0 (C )l+3

where J(Gg (-, 2)) is defined in (68), and J(-) is given by

Zw:f we)+S—log(Zw:wg> Zm: log(ry) +S
e=1

e=1

+log (Z r}). (72)
o=1

(i) Ifke isodd and 1> b or n=4,6,..., then inequalities in (70) and (71) are conversed.

Page 16 of 19
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Proof
(i) Since f(x) = log(x) is an n-convex function for n = 3,5,..., and b > 1, putting
f(x) =log(x) in Theorem 8 gives (70) and (71), where S is given in (69) and

=D felog(iy).
e=1

(i) As k. is odd and f(x) = log(x) is n-concave for n =4,6,..., then by Remark 2(ii),

ra
’xU_ el

inequality (33) is reversed. Hence, using f(x) = log(x) and p, = p

z;"_ Yk
, ¥e = == in reversed inequality (33) and (34), we obtain (70) and (71) in

e = Z'é} 1te
the reverse dlrectlon. O

Corollary 3 Assume Q with odd values of k..
() Ifb>1and n = even (n > 4), then for o = 1,4,

(=D + 1)!

+2272 J(Ga(2)H;, (2) dz, (73)
e=1 i=0 (e T
and for a = 2,3,

B 20 1 &) (& v )

10 = (% )[ 3y —( : )
(d1d2)2 Ze=1te; Le ;:Z?:lte

1P (’“ 5 )2
— = + ~ o
i+2

_ZZ( D (’; =l fT (Gl 2))H, () d2, (74)

e=1 i=0

where

Z k[,

(i) Ifn =o0dd (n>3)orb <1, then inequality in (73) is inverted.

Page 17 of 19
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Proof
(i) Since f(x) = —xlog(x) is n-convex for n = 4,6,..., and b > 1, substituting
f(x) = —xlog(x) in Theorem 8 gives (73) and (74), where

S=- Zvﬁg log(w,)
e=1
and
m
S=- Zr} log(r).
o=1

(i) Since f(x) = —xlog(x) is n-concave (1 = 3,5,...), then (33) holds in the reverse
k~ .

direction by Remark 2(ii). Thus, using p, = Zm—“kv, Ky = ]:i Ge = =L 5 and y. = %
o=1Ko 4 e=1te €

in reversed inequality (33) and (34), we have (73) and (74) in the reverse direction.
O

4 Conclusion

The purpose of this study is to generalize Levinson-type inequalities (with real weights) for
two distinct types of data points that use convex functions of higher order. Newly defined
3-convex Green functions and Hermite interpolating polynomial are utilized for the class
of n-convex (n > 3) functions. We are able to find applications to information theory, as
well as the bounds for obtained entropies and divergences. Moreover, other interpolations,
e.g., Lidstone interpolation, Taylor’s polynomial, and Montgomery identity, are also useful
for exploring the related results.
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