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1 Introduction
Optimization and fixed point problems epitomize fundamental mathematical concepts
with wide-ranging applications across various fields, including engineering, medicine, sig-
nal processing, and image processing. Engineers routinely grapple with the imperative to
minimize expenditures, optimize designs, or maximize system efficiency, all of which can
be aptly framed as optimization conundrums. In parallel, fixed point theorems assume
profound significance in addressing particular engineering challenges, providing a robust
mathematical framework for establishing the existence of solutions in diverse scenarios.
Signal processing substantially reaps benefits from the incorporation of fixed point prob-
lems, particularly within the purview of optimization methodologies. These methodolo-
gies establish a resilient framework for effectively navigating the intricate complexities
associated with denoising and restoration tasks. Notably, the least absolute shrinkage and
selection operator (LASSO) [1] emerges as a pivotal optimization problem, assuming a
critical role in the domain of signal reconstruction. Acknowledged for its remarkable effi-
cacy within the compressed sensing paradigm, LASSO has enjoyed widespread recogni-
tion within the official discourse of signal processing. Within the realm of image process-
ing, the application of optimization techniques and fixed point problem-solving takes on
paramount importance, proving invaluable in the effective resolution of challenges such
as image deblurring and image inpainting (refer to [2–7] for comprehensive information).

In 2014 (Jaggi [8]), an equivalence between the LASSO and support vector machines
(SVMs) was shown in the following sense. Given any L2 norm loss function SVMs, a cor-
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responding LASSO formulation has the same optimal solutions and vice versa. As a result,
one can be re-translated into the other. From further investigation, the sparsity of a LASSO
solution is equal to the number of support vectors for the corresponding SVMs. Many use-
ful properties and sublinear time algorithms for SVMs naturally arise from LASSO prop-
erties. SVMs are commonly used for classification and regression tasks and have an exten-
sive list of applications in natural language processing (NLP), particularly in the fields of in-
formation extraction and email phishing detection. SVMs are highly effective in informa-
tion extraction tasks, such as named entity recognition, text categorization, and relation
extraction. They are able to identify entities and patterns in unstructured text, as demon-
strated in [9]. SVMs in email phishing detection [10, 11] utilize features such as sender
addresses and content to perform binary classification, distinguishing between valid and
questionable emails. SVMs can effectively detect anomalies in email traffic, but their suc-
cess depends on the quality of features, data representation, and the training dataset. Uti-
lizing ensemble approaches, which involve mixing SVMs with other models, improves the
effectiveness of phishing detection. This emphasizes the significance of regularly updating
the system to effectively respond to shifting phishing strategies. Moreover, in 2021, Afrin
et al. [12] employed SVMs in conjunction with LASSO feature selection techniques to pre-
dict liver disease. More recently, Cholamjiak and Das [13] developed a modified projective
forward-backward splitting algorithm for multiple models, including the LASSO, aimed
at the prediction of Parkinson’s disease through the application of the extreme learning
machine.

Prominent optimization techniques for the minimization of the sum of a smooth func-
tion and a nonsmooth function encompass the proximal gradient algorithm, credited to
its originator [14] (also referenced in [15]). This method involves the sequential appli-
cation of gradient steps to the first function, followed by the proximity operator applied
to the second function. It is widely recognized that the inclusion of inertia, alternatively
referred to as Nesterov’s acceleration [16], has the capacity to notably enhance both the
theoretical and practical convergence rates of this approach. The recent surge in pop-
ularity of Nesterov’s acceleration [16] has spurred the development of numerous vari-
ations, such as those detailed in references [17–19]. Particularly noteworthy is the fast
iterative shrinkage-thresholding algorithm (FISTA), as introduced by Beck and Teboulle
[17], which exhibits a significantly enhanced convergence rate akin to Nesterov’s optimal
gradient approach, specifically tailored for convex composite objective functions.

Throughout this article, denote by H a real Hilbert space with the inner product 〈·, ·〉
and the associated norm ‖ · ‖. Let R and N be the sets of real numbers and nonnegative
integers, respectively. We are interested in the following minimization problem:

min
x∈H

f (x) + g(x), (1.1)

where f : H → R and g : H → (–∞, +∞] belong to the class of proper, lower semi-
continuous (l.s.c.), and convex functions on H. Furthermore, the function f is assumed
to be differentiable with L-Lipschitz continuous gradient ∇f . The set of minimizers of
f + g is denoted by arg min(f + g). It is well known that

x̃ ∈ arg min(f + g) ⇐⇒ 0 ∈ (∇f + ∂g)(x̃),
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where ∂g is the subdifferential of g . Recently, Kesornprom and Cholamjiak [20] introduced
a new proximal gradient method that integrates the inertial technique alongside adap-
tive step size, demonstrating its effectiveness in addressing the minimization problem de-
fined in equation (1.1). This algorithm has been applied to solve X-ray image deblurring.
Similarly, Kankam and Cholamjiak [21] investigated image restoration as a mathematical
model using the minimization problem (1.1).

Next, we consider the following fixed point problem:

find x ∈H such that x = Tx, (1.2)

where T : H →H is a mapping. We denote by Fix(T) the fixed point set of T . The Mann it-
eration [22] is prominent among the frequently employed algorithms for solving the fixed
point problem described in equation (1.2). In 2008, Maingé [23] introduced an algorithm
that cleverly integrates the inertial technique with Mann iteration, customizing it to ad-
dress the fixed point problem (1.2). It is noteworthy that, under certain conditions, the
iterative sequence generated by this algorithm weakly converges to a fixed point of a non-
expansive mapping. The general inertial Mann iteration for a nonexpansive mapping was
introduced by Dong et al. in 2018 [24]. It is evident that the method in [23] is a specific in-
stance of this general inertial Mann iteration. According to [24], the sequence obtained by
the general inertial Mann iteration weakly converges to a fixed point under certain suitable
circumstances.

Drawing upon the insights garnered from preceding research, this paper proposes a
novel proximal gradient method that incorporates the general inertial Mann iteration to
obtain a weak convergence theorem for solving both the minimization problem (1.1) and
the fixed point problem (1.2) associated with a demicontractive mapping, subject to spec-
ified control conditions. Furthermore, the efficacy of our proposed algorithm is demon-
strated by its application to a signal recovery problem, underscoring its practical utility.

2 Preliminaries
To establish our primary result, this section provides necessary definitions and lemmas.
We use the symbol → to represent strong convergence and denote weak convergence as
⇀. Let s, t ∈H and η ∈ R. Then we have

‖s + t‖2 = ‖s‖2 + 2〈s, t〉 + ‖t‖2, (2.1)

‖s + t‖2 ≤ ‖s‖2 + 2〈t, s + t〉, (2.2)

and

∥
∥ηs + (1 – η)t

∥
∥

2 = η‖s‖2 + (1 – η)‖t‖2 – η(1 – η)‖s – t‖2. (2.3)

Definition 2.1 Let h : H → (–∞, +∞] be proper, convex, and l.s.c. function and c̃ > 0.
The proximity operator of h of order c̃ is defined by

proxc̃h(s) := arg min
t∈H

{

h(t) +
1
2c̃

‖s – t‖2
}

for all s ∈H.
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Next, let T : H →H be a mapping and G : H → 2H be a multivalued mapping.

Definition 2.2 T is said to be
(i) μ-demicontractive if Fix(T) �= ∅ and there is μ ∈ [0, 1) such that for all s ∈H and all

p ∈ Fix(T),

‖Ts – p‖2 ≤ ‖s – p‖2 + μ‖s – Ts‖2,

(ii) L-Lipschitz continuous if there is L > 0 such that

‖Ts – Tt‖ ≤ L‖s – t‖

for all s, t ∈H.

Definition 2.3 G is said to be
(i) monotone if for all (s, u), (t, v) ∈ graph(G) (the graph of mapping G),

〈u – v, s – t〉 ≥ 0,

(ii) maximal monotone if for every (s, u) ∈H×H,

(s, u) ∈ graph(G) ⇐⇒ 〈u – v, s – t〉 ≥ 0 for all (t, v) ∈ graph(G).

Definition 2.4 [25] Suppose Fix(T) �= ∅. Then I – T is demiclosed at zero if for any {sn} ∈
H, the following implication holds:

sn ⇀ s∗ and sn – Tsn → 0 �⇒ s∗ ∈ Fix(T).

Lemma 2.5 [26] If T is a Lipschitz continuous and monotone mapping and G is a maximal
monotone mapping, then the mapping T + G is maximal monotone.

Lemma 2.6 [27] Let {xn} and {�n} be nonnegative sequences of real numbers satisfying
xn+1 ≤ (1 + �n)xn + �nxn–1. Then xn+1 ≤ K ·∏n

j=1(1 + 2�j), where K = max{x1, x2}. Further-
more, if

∑∞
n=1 �n < ∞, then {xn} is bounded.

Lemma 2.7 [28] Let {xn} and {yn} be sequences of nonnegative real numbers such that
∑∞

n=1 yn < ∞ and xn+1 ≤ xn + yn. Then {xn} is a convergent sequence.

Lemma 2.8 [29, Opial] Let {sn} be a sequence in H and � be a nonempty subset of H. If, for
every s∗ ∈ � , {‖sn – s∗‖} converges and every weak sequential cluster point of {sn} belongs
to � , then {sn} converges weakly to a point in � .

3 Main result
We first assume that the following conditions are satisfied for the convergence analysis of
our algorithm:

Condition 1. f : H → R and g : H → (–∞, +∞] are two proper, l.s.c., and convex func-
tions.
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Algorithm 1 Modified Proximal Gradient Algorithm
Initialization: Select arbitrary elements s0, s1 ∈ H. Let λ ∈ (0, 1), τ1 ∈ (0,∞), {ηn} ⊂
(0, 1), {θn} ⊂ [0,∞), {ζn} ⊂ [0,∞), {pn} ⊂ [0,∞), and {qn} ⊂ [1,∞).
Iterative Steps: Construct {sn} by using the following steps:
Step 1. Compute

zn = sn + θn(sn – sn–1),

wn = zn + ζn(zn – sn–1),

yn = proxτng(I – τn∇f )wn,

un = yn + τn
(∇f (wn) – ∇f (yn)

)

,

and

sn+1 = (1 – ηn)un + ηnTun.

If wn = yn = un = Tun, then stop and wn ∈ � . Otherwise, go to Step 2.
Step 2. Update

τn+1 =

⎧

⎨

⎩

min{ λqn‖wn–yn‖
‖∇f (wn)–∇f (yn)‖ , τn + pn} if ∇f (wn) �= ∇f (yn);

τn + pn otherwise.

Replace n with n + 1 and then repeat Step 1.

Condition 2. f is differentiable and has an L-Lipschitz continuous gradient ∇f .
Condition 3. T : H → H is a μ-demicontractive mapping such that I – T is demiclosed

at zero.
Condition 4. � := arg min(f + g) ∩ Fix(T) is nonempty.

Remark 3.1 It is known from [29] that x̃ ∈ arg min(f + g) if and only if x̃ = proxc̃g(I – c̃∇f )x̃,
where c̃ > 0. If wn = yn = un = Tun in Algorithm 1, then wn ∈ � .

We are now prepared for the main convergence theorem.

Theorem 3.2 Let {sn} be generated by Algorithm 1. Assume that the following conditions
hold:

(C1)
∑∞

n=1 pn < ∞; (C2) limn→∞ qn = 1; (C3) η̄ < ηn < 1 – μ for some η̄ > 0;
(C4)

∑∞
n=1 θn < ∞; (C5)

∑∞
n=1 ζn < ∞.

Then {sn} converges weakly to a solution of � .

Proof Let s̃ ∈ � . Next, we prove all the following claims.
Claim 1. limn→∞ �n = λ, where �n = λqnτn

τn+1
.

Since ∇f is L-Lipschitz continuous mapping, if ∇f (wn) �= ∇f (yn), then

λqn‖wn – yn‖
‖∇f (wn) – ∇f (yn)‖ ≥ λqn‖wn – yn‖

L‖wn – yn‖ =
λqn

L
≥ λ

L
.



Mouktonglang et al. Journal of Inequalities and Applications         (2024) 2024:69 Page 6 of 12

By using the same technique as in the proof of [30, Lemma 3.1], we obtain

lim
n→∞ τn = τ ∈

[

min

{

τ1,
λ

L

}

, τ1 + p
]

,

where p =
∑∞

n=1 pn. It follows from (C2) that

lim
n→∞�n = lim

n→∞
λqnτn

τn+1
= λ.

Claim 2. For any n ∈ N,

〈

yn – s̃, yn – wn + τn
(∇f (wn) – ∇f (yn)

)〉 ≤ 0.

By using the definition of yn, we have

(I – τn∇f )wn ∈ (I + τn∂g)yn.

Thus, we can write

cn =
wn – yn

τn
– ∇f (wn),

where cn ∈ ∂g(yn). By Lemma 2.5, we have that the mapping ∇f +∂g is maximal monotone.
This leads to

〈

yn – s̃,∇f (yn) + cn
〉 ≥ 0,

and thus

〈

yn – s̃, yn – wn + τn
(∇f (wn) – ∇f (yn)

)〉 ≤ 0.

Claim 3. For any n ∈ N,

‖sn+1 – s̃‖2 ≤ ‖wn – s̃‖2 –
(

1 – �2
n
)‖wn – yn‖2 – ηn(1 – μ – ηn)‖Tun – un‖2.

From (2.1), we have

‖un – s̃‖2 =
∥
∥yn – s̃ + τn

(∇f (wn) – ∇f (yn)
)∥
∥

2

=
∥
∥(yn – wn) + (wn – s̃)

∥
∥

2 + τ 2
n
∥
∥∇f (wn) – ∇f (yn)

∥
∥

2

+ 2τn
〈

yn – s̃,∇f (wn) – ∇f (yn)
〉

= ‖yn – wn‖2 + ‖wn – s̃‖2 + τ 2
n
∥
∥∇f (wn) – ∇f (yn)

∥
∥

2 + 2〈yn – wn, wn – s̃〉
+ 2τn

〈

yn – s̃,∇f (wn) – ∇f (yn)
〉

= ‖wn – s̃‖2 – ‖yn – wn‖2 + τ 2
n
∥
∥∇f (wn) – ∇f (yn)

∥
∥

2 + 2〈yn – wn, yn – s̃〉
+ 2τn

〈

yn – s̃,∇f (wn) – ∇f (yn)
〉
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= ‖wn – s̃‖2 – ‖yn – wn‖2 + τ 2
n
∥
∥∇f (wn) – ∇f (yn)

∥
∥

2

+ 2
〈

yn – s̃, yn – wn + τn
(∇f (wn) – ∇f (yn)

)〉

.

Using Claim 2, we get

‖un – s̃‖2 ≤ ‖wn – s̃‖2 – ‖yn – wn‖2 + τ 2
n
∥
∥∇f (wn) – ∇f (yn)

∥
∥

2. (3.1)

By the definitions of un and τn, we have

‖un – yn‖ = τn
∥
∥∇f (wn) – ∇f (yn)

∥
∥ ≤ �n‖wn – yn‖. (3.2)

This together with (3.1) implies that

‖un – s̃‖2 ≤ ‖wn – s̃‖2 –
(

1 – �2
n
)‖wn – yn‖2.

Applying this to (2.3) and the demicontractiveness of T , we derive

‖sn+1 – s̃‖2 = (1 – ηn)‖un – s̃‖2 + ηn‖Tun – s̃‖2 – ηn(1 – ηn)‖Tun – un‖2

≤ (1 – ηn)‖un – s̃‖2 + ηn‖un – s̃‖2 + ηnμ‖Tun – un‖2

– ηn(1 – ηn)‖Tun – un‖2

= ‖un – s̃‖2 – ηn(1 – μ – ηn)‖Tun – un‖2

≤ ‖wn – s̃‖2 –
(

1 – �2
n
)‖wn – yn‖2 – ηn(1 – μ – ηn)‖Tun – un‖2.

Claim 4. limn→∞ ‖sn – s̃‖ exists.
From Claim 1, we immediately get that limn→∞(1 – �2

n) = 1 – λ2 > 0, and so we can find
n0 ∈ N such that 1 – �2

n > 0 for all n ≥ n0. By the definitions of wn, zn, and using Claim 3,
we have, for all n ≥ n0,

‖sn+1 – s̃‖ ≤ ‖wn – s̃‖
≤ ‖zn – s̃‖ + ζn‖zn – sn–1‖
≤ ‖sn – s̃‖ + θn‖sn – sn–1‖ + ζn(1 + θn)‖sn – sn–1‖
≤ ‖sn – s̃‖ + �n‖sn – sn–1‖ (3.3)

≤ (1 + �n)‖sn – s̃‖ + �n‖sn–1 – s̃‖, (3.4)

where �n = θn + ζn(1 + θn). By (C4) and (C5), we have
∑∞

n=1 �n < ∞, which together with
Lemma 2.6 and (3.4) conclude that {sn} is bounded. This implies that

∞
∑

n=1

�n‖sn – sn–1‖ < ∞, (3.5)

and so

lim
n→∞‖sn – wn‖ = lim

n→∞�n‖sn – sn–1‖ = 0. (3.6)
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It follows that {‖sn – s̃‖} is convergent because of using Lemma 2.7, (3.3), and
(3.5).

Claim 5. limn→∞ ‖sn – un‖ = 0.
Indeed, applying Claim 3 and (2.2), we have

‖sn+1 – s̃‖2 ≤ ‖zn – s̃‖2 + 2ζn〈zn – sn–1, wn – s̃〉
–

(

1 – �2
n
)‖wn – yn‖2 – ηn(1 – μ – ηn)‖Tun – un‖2

≤ ‖sn – s̃‖2 + 2θn〈sn – sn–1, zn – s̃〉 + 2ζn(1 + θn)〈sn – sn–1, wn – s̃〉
–

(

1 – �2
n
)‖wn – yn‖2 – ηn(1 – μ – ηn)‖Tun – un‖2

≤ ‖sn – s̃‖2 + 2θn‖sn – sn–1‖‖zn – s̃‖ + 2ζn(1 + θn)‖sn – sn–1‖‖wn – s̃‖
–

(

1 – �2
n
)‖wn – yn‖2 – ηn(1 – μ – ηn)‖Tun – un‖2

≤ ‖sn – s̃‖2 + 2M�n‖sn – sn–1‖
–

(

1 – �2
n
)‖wn – yn‖2 – ηn(1 – μ – ηn)‖Tun – un‖2,

where M := supn∈N{‖zn – s̃‖,‖wn – s̃‖}. It follows that

(

1 – �2
n
)‖wn – yn‖2 ≤ ‖sn – s̃‖2 – ‖sn+1 – s̃‖2 + 2M�n‖sn – sn–1‖

– ηn(1 – μ – ηn)‖Tun – un‖2.

From Claim 4, (C3), (3.6), and limn→∞(1 – �2
n) > 0, we obtain

lim
n→∞‖wn – yn‖ = 0, (3.7)

implying that

lim
n→∞‖Tun – un‖ = 0. (3.8)

Using limn→∞ �n = λ, (3.2), and (3.7), we deduce

lim
n→∞‖un – yn‖ = 0. (3.9)

This implies in view of (3.6) and (3.7) that

‖sn – un‖ ≤ ‖sn – wn‖ + ‖wn – yn‖ + ‖yn – un‖ → 0 as n → ∞.

Claim 6. Every weak sequential cluster point of {sn} belongs to � .
Let s∗ be a weak sequential cluster point of {sn}, meaning that snk ⇀ s∗ as k → ∞ for

some subsequence {snk } of {sn}. This implies by Claim 5 that unk ⇀ s∗ as k → ∞. This
together with (3.8), by the demiclosedness at zero of I – T , s∗ ∈ Fix(T). Next, we show that
s∗ ∈ arg min(f + g). Let (v, u) ∈ graph(∇f + ∂g), that is, u – ∇f (v) ∈ ∂g(v). It implies by the
definition of yn that wnk –ynk –τnk ∇f (wnk )

τnk
∈ ∂g(ynk ). By the maximal monotonicity of ∂g , we

have
〈

v – ynk , u – ∇f (v) –
wnk – ynk – τnk ∇f (wnk )

τnk

〉

≥ 0.
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Thus, by the monotonicity of ∇f , we get

〈v – ynk , u〉 ≥
〈

v – ynk ,∇f (v) +
wnk – ynk – τnk ∇f (wnk )

τnk

〉

=
〈

v – ynk ,∇f (v) – ∇f (ynk )
〉

+
〈

v – ynk ,∇f (ynk ) – ∇f (wnk )
〉

+
〈

v – ynk ,
wnk – ynk

τnk

〉

≥ 〈

v – ynk ,∇f (ynk ) – ∇f (wnk )
〉

+
1

τnk

〈v – ynk , wnk – ynk 〉.

It follows from the Lipschitz continuity of ∇f , limk→∞ 1
τnk

> 0, (3.7), and (3.9) that

〈

v – s∗, u
〉

= lim
k→∞

〈v – ynk , u〉 ≥ 0,

from which, together with the maximal monotonicity of ∇f + ∂g , we get that s∗ ∈
arg min(f + g). Therefore, s∗ ∈ � . Finally, by Lemma 2.8, we can conclude that {sn} con-
verges weakly to a solution of � . �

4 Signal recovery problem
We consider the signal recovery problem using the linear equation shown below:

b = Ax∗ + ε,

where the original signal is x∗ ∈ R
N , b ∈ R

M is the observed signal with noise ε, and A ∈
R

M×N (M < N) is a filter matrix. It is generally known that resolving this linear equation is
equivalent to determining the LASSO problem:

min
x∈RN

1
2
‖Ax – b‖2

2 + ‖x‖1.

So we can apply our algorithm to solve this problem in case f (·) = 1
2‖A(·) – b‖2

2, g(·) = ‖ · ‖1

and T = proxc̃g(I – c̃∇f ), where 0 < c̃ < 2
‖A‖2

2
. We present the numerical comparison of

Algorithm 1 with Algorithm 3.1 in [20] (IMFB) and Algorithm 2.1 in [21] (IFBAS). All
calculations are performed in Matlab R2021a on an iMac (Apple M1 chip with 16GB of
RAM). Select the original signal x∗ generated by the uniform distribution in [–2, 2] with d
nonzero components, and A is the Gaussian matrix generated by command randn(M, N),
where the signal size is set to be N = 5000 and M = 2500. The observation b is generated via
the addition of white Gaussian noise ε with variance σ 2 = 0.01 and the initial points being

randomly generated. Let t0 = 1 and tn =
1+

√

1+4t2
n–1

2 for all n ∈N. The control parameters of
each algorithm are defined in the following manner:

(i) IFBAS: α1 = 0.09, δ = 0.6, and

θn =

⎧

⎨

⎩

1
n2 if n > 1500;
tn–1–1

tn
otherwise;
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Figure 1 The original signal, the measurement, and the recovered signals by the three algorithms in case
d = 500

Figure 2 Illustration of the mean-squared error value versus the number of iterations using the three
algorithms in case d = 500
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Table 1 The numerical comparison of the three algorithms

d Number of iterations CPU time (s)

IFBAS IMFB Algorithm 1 IFBAS IMFB Algorithm 1

100 1053 1320 488 8.3065 10.4608 5.7580
180 1091 1381 501 8.6204 10.9159 5.8884
260 1093 1393 521 8.7759 11.0372 6.0982
340 1117 1399 531 8.8687 11.0945 6.2135
420 1158 1413 537 9.1763 11.1996 6.3128
500 1197 1456 543 9.7094 11.5568 6.3541

(ii) IMFB: λ1 = 0.09, δ = 0.6, and

θn =

⎧

⎨

⎩

1
n2 if n > 1500;
tn–1–1

tn
otherwise;

(iii) Algorithm 1: c̃ = 1
‖A‖2

2
, τ1 = 0.09, λ = 0.6, ηn = 0.9, qn = 1 + 1

n+1 , pn = ζn = 1
(5n+2)2 , and

θn =

⎧

⎨

⎩

1
n2 if n > 1500;
tn–1–1

tn
otherwise.

We measure the accuracy of the signal recovery using the mean-squared error, which
is defined as MSEn = 1

N ‖vn – x∗‖2
2 < 5 × 10–5, where {vn} is the sequence to be measured.

The numerical results are illustrated next.
When d = 500, Fig. 1 illustrates the original signal, measurement, and signals recovered

by each algorithm. Figure 2 displays the mean-squared error for the results obtained from
all three algorithms in the same scenario. As shown in Table 1, our algorithm improves
CPU time and reduces the number of iterations compared to IFBAS and IMFB. This in-
dicates that the new algorithm outperforms the other two.
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