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Abstract
In a recent paper the authors proved a nonuniform local limit theorem concerning
normal approximation of the point probabilities P(S = k) when S =

∑n
i=1 Xi and

X1,X2, . . . ,Xn are independent Bernoulli random variables that may have different
success probabilities. However, their main result contained an undetermined
constant, somewhat limiting its applicability. In this paper we give a nonuniform
bound in the same setting but with explicit constants. Our proof uses Stein’s method
and, in particular, the K-function and concentration inequality approaches. We also
prove a new uniform local limit theorem for Poisson binomial random variables that is
used to help simplify the proof in the nonuniform case.

Keywords: Poisson binomial random variable; Local limit theorem; Stein’s method;
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1 Introduction
Approximation of complicated distributions by simpler ones, on the basis of asymptotic
theory, is a ubiquitous theme in probability and statistics. By far the most commonly used
and well-known such result is the central limit theorem (CLT), which ensures the weak
convergence of appropriately normalized sums of independent random variables to a stan-
dard normal distribution. Statisticians frequently invoke the CLT to construct approxi-
mate confidence intervals and hypothesis tests. Due to their widespread use, it is clearly
important to understand the quality of commonly applied probability approximations as
a function of the sample size.

In order to improve the quality of the normal approximation of an integer-valued ran-
dom variable, it is standard to apply a continuity correction [1, 2]. Thus, if S is an integer-
valued random variable with mean μ and variance σ 2, and Zμ,σ 2 ∼ N(μ,σ 2), a continuity
corrected normal approximation of P(a ≤ S ≤ b), a, b ∈ Z, is P(a – 0.5 ≤ Zμ,σ 2 ≤ b + 0.5).

Section 7.1 of [3] studies the accuracy of the normal approximation with continuity cor-
rection in the case where S =

∑n
i=1 Xi and X1, . . . , Xn are independent Bernoulli random

variables with distributions P(Xi = 1) = pi = 1 – P(Xi = 0), pi ∈ (0, 1). In this case, S is said to
have a Poisson binomial distribution. It is shown, in their Theorem 7.1, that if σ 2 = Var(S)
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then

dTV
(
L(S),L(Y )

)
:= sup

A⊂R

∣
∣P(S ∈ A) – P(Y ∈ A)

∣
∣ ≤ 7.6

σ
, (1.1)

where dTV is the total variation distance and Y is an integer-valued random variable with
distribution

P(Y = k) = P
(

k – μ – 0.5
σ

< Z ≤ k – μ + 0.5
σ

)

, k ∈ Z (1.2)

and Z ∼ N(0, 1). The random variable Y defined by (1.2) is said to have a discretized nor-
mal distribution with parameters μ and σ 2, written Y ∼ Nd(μ,σ 2). The proof of (1.1) uses
Stein’s method and the zero bias coupling of [4]. [5] also considers discretized normal ap-
proximation via Stein’s method, giving bounds in the total variation distance for a wide
range of examples including sums of locally dependent integer-valued random variables.

In addition to considering central limit theorems and bounds in the total variation met-
ric, we may analyze the accuracy of a local normal approximation of the point probabilities
P(S = k), when S is integer-valued, via the quantity

�k =
∣
∣
∣
∣P(S = k) –

1
σ
√

2π
exp

{

–
(k – μ)2

2σ 2

}∣
∣
∣
∣, k ∈ Z. (1.3)

Proving local limit theorems for a general integer-valued random variable is more delicate
than proving central limit theorems as conditions are required to ensure that S does not
concentrate on a lattice of span greater than 1. For example, if S is a sum of random vari-
ables that are concentrated on the even integers, then P(S = k) = 0 for odd k, and a normal
approximation for S cannot be expected to be successful uniformly over Z. Consequently,
local limit theorems have been comparatively less studied than central limit theorems al-
though they came first in the historical development of probability [6].

Local limit theorems with uniform error bounds for sums of independent integer-valued
random variables are studied in Chap. 7 of [7] via Fourier analysis of characteristic func-
tions. Sufficient conditions are given that ensure supk∈Z �k = O(1/σ 2), which is shown to
be the optimal order for the error as a function of σ . However, explicit constants are not
given in the error bounds, and much of the subsequent literature on local limit theorems
presents uniform bounds for �k using the O symbol without explicit constants. More re-
cently, [8] and [9] give uniform bounds for �k with explicit constants in the cases where
S has a binomial and Poisson binomial distribution respectively.

Theorem 1.1 of [10] gives a nonuniform bound for �k when S has a Poisson binomial
distribution. It was shown that if σ 2 ≥ 1, then for each k ∈ Z∩ [0, n] we have

�k ≤ Ce–| k–μ
σ |

σ 2 (1.4)

for some positive absolute constant C. The main novelty in this result is the nonuniformity
in k, which makes explicit how �k decays the further k is into the tail of the distribution,
an aspect lost in previous studies that only give uniform bounds.

The presence of an undetermined constant in (1.4) somewhat limits the results applica-
bility. We remedy this here with the following explicit nonuniform bound.
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Theorem 1.1 Let X1, X2, . . . , Xn be jointly independent Bernoulli random variables such
that P(Xi = 1) = 1 – P(Xi = 0) = pi ∈ (0, 1), and let S =

∑n
i=1 Xi, μ = ES, and σ 2 = Var(S). If

σ 2 ≥ 5, then for each k ∈ [0, n] ∩Z,

∣
∣
∣
∣P(S = k) –

1
σ
√

2π
exp

{

–
(k – μ)2

2σ 2

}∣
∣
∣
∣ ≤ e–| k–μ

σ |

σ 2

(

C1 +
C2

σ
+

C3

σ 2

)

,

where

C1 = 3.15 + 7.39e
1
σ + 4.5e

7
3σ ,

C2 = 2.58 + 4.87e
1
σ + 4.58e

7
3σ ,

C3 = 0.79e
1
σ + 0.75e

7
3σ .

A trivial corollary of Theorem 1.1 is to give a value of the constant C appearing in (1.4),
albeit under a slightly more restrictive condition on σ 2. For example, if σ 2 ≥ 5, 25 and 100,
then one may take C = 38.6, 22.7 and 18.4 respectively.

Our proof of Theorem 1.1 uses Stein’s method, in particular the K-function and con-
centration inequality approaches, which are both discussed in Sect. 2. In [10], (1.4) was
proved using the zero bias coupling [4]. The use of the K-function approach here allows
for a more direct determination of constants as we avoid the need to prove an interme-
diate result concerning normal approximation of the zero biased random variable as in
Theorem 3.1 of [10]. While the use of the K-function and concentration inequalities is a
standard approach for proving quantitative Berry–Esseen bounds for sums of indepen-
dent random variables [3, Chap. 3], and even for locally dependent random variables [11],
this paper appears to be the first to use this approach to prove a local limit theorem. The
zero bias coupling still plays a role when we derive concentration inequalities in Sect. 2.2.
Although some previous studies have used Stein’s method to prove local limit theorems
in more general settings, they consider only uniform bounds with different approximating
distributions such as the translated Poisson [12, 13] or symmetric binomial [14] distribu-
tions.

It is easily checked that the normal density function appearing in Theorem 1.1 may be
replaced by the discretized normal distribution (1.2) at the cost of different constants,
as we make explicit in Lemma 2.2 of Sect. 2.1. However, the formulation in terms of the
normal density is in keeping with the classical literature on local limit theorems such as
[7].

In our proof of Theorem 1.1, we will also make use of the following uniform local limit
theorem, which we prove using the same basic approach as for Theorem 1.1.

Theorem 1.2 Under the same setup as Theorem 1.1 but assuming only σ 2 ≥ 1, we have

sup
k∈[0,n]∩Z

∣
∣
∣
∣P(S = k) –

1
σ
√

2π
exp

{

–
(k – μ)2

2σ 2

}∣
∣
∣
∣ ≤ 3.23

σ 2 +
1.35
σ 3 +

0.25
σ 4 .

We will not consider the question of whether a bound of the form (1.4) is optimal. It
is conceivable that one could obtain a faster decaying function of k than the exponential
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decay in our result. Proving optimality of any such bound would likely involve more so-
phisticated techniques than those used in this paper, and we leave it as an interesting open
problem for future research.

The remainder of the paper is structured as follows. Section 2 covers the appropriate
background material, in particular Stein’s method for local limit theorems as developed in
[10] required for proving our main results, as well as giving some useful auxiliary lemmas.
Section 3 gives the proof of our main result, Theorem 1.1, as well as that of Theorem 1.2,
while proofs of some of the auxiliary results are given in Sect. 4.

2 Background and auxiliary results
In this section we cover the necessary prerequisites and give some auxiliary results re-
quired to prove Theorem 1.1. Section 2.1 introduces Stein’s method for normal approxi-
mation and the setup of [10] required for local limit theorems. Section 2.2 introduces the
zero bias coupling, which is used to derive various concentration inequalities. Section 2.3
considers properties of the solution of the Stein equation and its derivative while, finally,
Sect. 2.4 introduces the K-function, which is our main technique for manipulating the
Stein equation and proving Theorem 1.1.

2.1 Stein’s method for local limit theorems
Let F be the set of absolutely continuous functions f : R → R such that f ′ exists almost
everywhere and E|f ′(Z)| < ∞ where, here and for the remainder of the paper, Z ∼ N(0, 1).
Stein’s method for normal approximation revolves around the following characterization
of the normal distribution. A random variable W has a standard normal distribution if
and only if

E
{

f ′(W ) – Wf (W )
}

= 0, f ∈F . (2.1)

For a proof of this characterization, see Lemma 1 of [15] or Lemma 2.1 of [3].
Now let f := fh be the bounded solution of the ordinary differential equation

f ′(w) – wf (w) = h(w) – Eh(Z) (2.2)

with h ∈ H, where H is a class of test functions that will be chosen depending on the
problem at hand. For example, suppose that we wish to bound the Kolmogorov distance

dK (W , Z) = sup
h∈HK

∣
∣Eh(W ) – Eh(Z)

∣
∣ (2.3)

between the random variable W , not necessarily normally distributed, and Z. The class of
test functions in this case is

HK =
{

h : R →R : h(w) = 1(–∞,x](w) for some x ∈R
}

. (2.4)

The Kolmogorov metric gives a uniform bound on the absolute differences of the distribu-
tion functions of W and Z and is the appropriate metric to consider in order to prove the
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Berry–Esseen theorem [3, Chap. 3]. Replacing w by W in (2.2) and taking expectations,
we see that a bound on the Kolmogorov metric may be obtained from

dK (W , Z) ≤ sup
h∈HK

∣
∣E

{
f ′(W ) – Wf (W )

}∣
∣. (2.5)

Boundedness properties of f and f ′ together with various coupling techniques that have
been developed [3, Chap. 2] mean that it is often more straightforward to obtain a bound
from (2.5) than to work directly with (2.3).

In order to utilize the Stein framework for our problem, we let W be a normalized
version of S with mean 0 and unit variance. In particular, we let ξi = (Xi – pi)/σ and
W =

∑n
i=1 ξi so that EW = Eξi = 0, VarW = 1, Varξi = σ 2

i /σ 2 and W takes values in the
set An = {(k – μ)/σ : k ∈ Z∩ [0, n]}. The set of test functions we consider is

H = {h : R→ R : h = 1(x–1/σ ,x] for some x ∈An}. (2.6)

If h = hx ∈H with x = (k – μ)/σ , k ∈ Z∩ [0, n], then we have Eh(W ) = P(W = x) = P(S = k),
and our problem is to bound

∣
∣
∣
∣P(S = k) –

1
σ
√

2π
exp

{

–
(k – μ)2

2σ 2

}∣
∣
∣
∣ =

∣
∣
∣
∣P(W = x) –

1
σ
√

2π
e–x2/2

∣
∣
∣
∣. (2.7)

The next result quantifies Eh(Z) and verifies that H defined in (2.6) is indeed an appro-
priate set of test functions for proving Theorem 1.1.

Lemma 2.1 Let x ∈An and hx(w) = 1(x–1/σ ,x](w). If σ 2 ≥ 1, then Eh(Z) = (σ
√

2π )–1e–x2/2 +
R, where

(a) |R| ≤ 1
σ 2

√
2eπ

and (b) |R| ≤ 0.88e1/σ e–|x|

σ 2 .

Proof Part (a) is just a restatement of Lemma 4.1 (a) in [10]. We note that (a) implies (b)
if |x| ≤ 1 since in this case

|R| ≤ 1
σ 2

√
2eπ

=
e|x|e–|x|

σ 2
√

2eπ
≤ e–|x|

σ 2

√
e

2π
<

0.66e–|x|

σ 2 .

Thus to prove (b), we may assume that |x| > 1.
By the mean value theorem for integrals, we have that Eh(Z) = σ –1φ(c) for some c ∈

(x – 1/σ , x), where φ(c) = (
√

2π )–1e–c2/2. Since |c – x| < 1/σ , by the mean value theorem,
|φ(c) – φ(x)| < σ –1|φ′(d)| for some d between c and x, and thus d ∈ (x – 1/σ , x). Now write
φ(c) = φ(x) + R1 with |R1| < σ –1|φ′(d)|, d ∈ (x – 1/σ , x), and since Eh(Z) = σ –1φ(c), we have

Eh(Z) =
e–x2/2

σ
√

2π
+ R,

where R = R1/σ . Now |φ′(d)| ≤ 2.2(σ
√

2π )–1e–|d|, since |de–d2/2| ≤ 2.2e–|d| for all d. As
d ∈ (x – 1/σ , x), we may write d = x + δ with δ ∈ (–1/σ , 0). Now we consider the cases x > 1
and x < –1.
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If x > 1, then x – 1/σ > 0, and so d > 0 and |d| = d. In this case then, |φ′(d)| ≤
2.2(σ

√
2π )–1e–|d| = 2.2(σ

√
2π )–1e–d ≤ 0.88e1/σ σ –1e–x.

If x < –1, then |d| = –d, and so |φ′(d)| ≤ 2.2(σ
√

2π )–1e–|d| ≤ 0.88σ –1eδex ≤ 0.88σ –1e–|x|.
As R = R1/σ and |R1| < σ –1|φ′(d)|, this completes the proof. �

As a consequence of Lemma 2.1, we have that for each x ∈An

∣
∣
∣
∣P(W = x) –

1
σ
√

2π
e–x2/2

∣
∣
∣
∣ ≤ ∣

∣E
{

f ′(W ) – Wf (W )
}∣
∣ +

1
σ 2

√
2eπ

(2.8)

and
∣
∣
∣
∣P(W = x) –

1
σ
√

2π
e–x2/2

∣
∣
∣
∣ ≤ ∣

∣E
{

f ′(W ) – Wf (W )
}∣
∣ +

0.88e1/σ e–|x|

σ 2 , (2.9)

where f := fx is the bounded solution of

f ′(w) – wf (w) = hx(w) – Nh (2.10)

with hx(w) = 1(x–1/σ ,x](w) and Nh = Ehx(Z).
Our problem then is reduced to bounding |E{f ′(W )–Wf (W )}| with f the bounded solu-

tion of (2.10). Our approach to bounding this quantity is discussed in Sect. 2.4. Before we
can deal with this problem, we need to acquire some further auxiliary results in Sects. 2.2
and 2.3.

We end this section by making explicit the fact that Theorems 1.1 and 1.2 imply analo-
gous results with the discretized normal distribution replacing the normal density.

Lemma 2.2 Let Y have a discretized normal distribution with parameters μ and σ 2 as
defined by (1.2). Then

(a)
∣
∣
∣
∣P(Y = k) –

1
σ
√

2π
exp

{

–
(k – μ)2

2σ 2

}∣
∣
∣
∣ ≤ 1

σ 2
√

2eπ
.

If σ 2 ≥ 5, then

(b)
∣
∣
∣
∣P(Y = k) –

1
σ
√

2π
exp

{

–
(k – μ)2

2σ 2

}∣
∣
∣
∣ ≤ 1.11e–| k–μ

σ |

σ 2 .

Proof The proof follows in essentially the same way as that of Lemma 2.1, and we omit
the details. �

2.2 Concentration inequalities via the zero bias coupling
In this section we derive some concentration inequalities for P(a ≤ W ≤ b) and give
bounds for the point probabilities P(W = x), x ∈ An. We recall that if Y is a zero mean
random variable with Var(Y ) = σ 2

Y , then the random variable Y ∗ is said to have the Y -zero
biased distribution if

σ 2
YEf ′(Y ∗) = EYf (Y ) (2.11)
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for all absolutely continuous functions f such that the above expectations exist. The no-
tion of zero biasing was introduced in [4], where the existence of Y ∗ was established
for any mean zero random variable Y . For further applications of the zero bias cou-
pling beyond Berry-Esseen bounds in the classical central limit theorem, see [16] and
[17]. Throughout the remainder of this section, an asterisk * in the exponent of a ran-
dom variable denotes a random variable with the corresponding zero biased distribu-
tion.

In our setting, from Lemma 2.1 of [4], W ∗ may be constructed on the same space as W
by setting W ∗ = W – ξI + ξ ∗

I , where I is a random index with distribution P(I = i) = σ 2
i /σ 2,

1 ≤ i ≤ n. It may be shown [3, p. 29] that ξ ∗
i is uniformly distributed on [–pi/σ , (1 – pi)/σ ],

and thus, as ξi and ξ ∗
i have the same support and W – W ∗ = ξI – ξ ∗

I , we have that

∣
∣W – W ∗∣∣ ≤ 1

σ
. (2.12)

[10] use (2.12) to prove a nonuniform bound on the local normal approximation of W ∗

that forms one of the key steps in the proof of their Theorem 1.1. Here, we will prove con-
centration inequalities for W ∗ and use these together with (2.12) to obtain concentration
inequalities for W .

Choosing the function f in (2.11) such that f ′(x) = 1[a,b](x) and f ( a+b
2 ) = 0, for a ≤ b, it is

shown in Lemma 3.2 of [17] that for any random variable Y with E(Y ) = 0 and Var(Y ) =
σ 2

Y ,

P
(
a ≤ Y ∗ ≤ b

) ≤ b – a
2σY

. (2.13)

We now use this to obtain uniform concentration inequalities for W and W (i) = W –
ξi.

Lemma 2.3 For all a ≤ b, we have

P(a ≤ W ≤ b) ≤ b – a
2

+
1
σ

. (2.14)

Moreover, if σ 2 ≥ 5, we have

P
(
a ≤ W (i) ≤ b

) ≤ b – a
1.94

+
1.03
σ

, (2.15)

where W (i) = W – ξi.

Proof From (2.12), (2.13) and the fact that σ 2
W = Var(W ) = 1, we have

P(a ≤ W ≤ b) ≤ P
(

a –
1
σ

≤ W ∗ ≤ b +
1
σ

)

≤ b – a
2

+
1
σ

,

which is (2.14). For (2.15) we have that

σW (i) =

√

1 –
σ 2

i
σ 2 =

√

1 –
pi(1 – pi)

σ 2 ≥
√

1 –
1

4σ 2 ≥
√

19
20

≥ 0.974,
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and so using this in (2.13) with |W (i) – W (i)∗| ≤ 1/σ gives

P
(
a ≤ W (i) ≤ b

) ≤ P
(

a –
1
σ

≤ W (i)∗ ≤ b +
1
σ

)

≤ b – a
1.94

+
1.03
σ

,

as required. �

Lemma 2.3 may be used to uniformly bound P(W = x), e.g., by writing P(W = x) = P(x –
ε/2 ≤ W ≤ x + ε/2) for small positive ε and letting ε → 0+. However, this approach gives
a worse constant than that of [18], which we state in Lemma 2.4 below together with an
analogous result for P(W (i) = x). As before, An denotes the support of W , and we will
denote the support of W (i) by A(i)

n so that A(i)
n = {(k – μ(i))/σ : k ∈ [0, k – 1] ∩ Z} where

μ(i) = μ – pi.

Lemma 2.4 The following uniform bound holds:

sup
k∈[0,n]∩Z

P(S = k) = sup
x∈An

P(W = x) ≤ 0.5
σ

. (2.16)

Moreover if σ 2 ≥ 1 then

sup
k∈[0,n–1]∩Z

P
(
S(i) = k

)
= sup

x∈A(i)
n

P
(
W (i) = x

) ≤ 0.58
σ

, (2.17)

where S(i) = S – Xi.

Proof The bound (2.16) is given in Lemma 1 from [18]. Now, as S(i) is also a Poisson bino-
mial random variable, we have from (2.16) and the fact that σ ≥ 1 that

P
(
S(i) = k

) ≤ 0.5
√

σ 2 – pi(1 – pi)
≤ 0.5√

σ 2 – 1/4
≤ 1

σ
√

3
(2.18)

for each k ∈ [0, n – 1] ∩Z, which implies (2.17). �

Lemma 2.5 and Corollary 2.1 below are nonuniform versions of Lemmas 2.3 and 2.4.
Before stating these results, we recall from Lemma 3.3 of [10] that for each m ∈N we have
the bound E|W |2m ≤ p(2m), uniformly in n, where p(2m) is the number of partitions of
2m, i.e., the number of ways that 2m may be written as a sum of positive integers irrespec-
tive of order. Since p(2m)1/2m → 1 as m → ∞ [19, Sect. 6.4], it follows that, uniformly in
n,

lim sup
(
E|W |2m)1/2m ≤ 1. (2.19)

The same bound holds when W is replaced by W (i) = W – ξi.
We also make use of the fact that if σ 2 ≥ A2 then ξi ≤ 1/A for each 1 ≤ i ≤ n, and so by

Lemma 8.1 in [3] with α = 1/A and B2 = 1, we have that for each t > 0

EetW ≤ exp
{

A2(et/A – 1 – t/A
)}

. (2.20)
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In particular, letting t = 2m/(2m – 1) for m ∈N, we find that, uniformly in n,

lim sup
(
Ee

2m
2m–1 W ) 2m–1

2m ≤ exp
{

A2(e1/A – 1 – 1/A
)}

, (2.21)

with the same bound holding when W is replaced by W (i).

Lemma 2.5 If σ 2 ≥ 5 then for 0 ≤ a < b, we have

P(a ≤ W ≤ b) ≤ 1.8
(
1 + e1/σ )

e–a
(

b – a +
1
σ

)

(2.22)

and

P
(
a ≤ W (i) ≤ b

) ≤ 1.9
(
1 + e1/σ )

e–a
(

b – a +
1
σ

)

. (2.23)

Proof Define the function g : R→R by

g(w) =

⎧
⎪⎪⎨

⎪⎪⎩

0, w < a,

ew(w – a), a ≤ w ≤ b,

ew(b – a), w > b,

for which we have g ′(w) ≥ 0, for w ∈ R and g ′(w) ≥ ea, for w ∈ [a, b]. We also have 0 ≤
g(w) ≤ (b – a)ew for w ∈R. It follows that

Eg ′(W ∗) ≥ Eg ′(W ∗)1[a,b]
(
W ∗) ≥ eaP

(
a ≤ W ∗ ≤ b

)
(2.24)

and

EWg(W ) = EWg(W )1[a,∞)(W ) ≤ (b – a)EWeW1[a,∞)(W ).

By Holder’s inequality, for all m ∈N,

EWeW1[a,∞)(W ) ≤ E|W |eW ≤ (
E|W |2m) 1

2m
(
Ee

2m
2m–1 W )1– 1

2m .

Letting m → ∞ and applying (2.19) and (2.21) with A =
√

5, we get

EWeW1[a,∞)(W ) ≤ exp
{

5
(
e1/

√
5 – 1 – 1/

√
5
)}

< 1.8,

and hence

0 ≤ EWg(W ) ≤ 1.8(b – a). (2.25)

Now, as Eg ′(W ∗) = EWg(W ), we get from (2.24) and (2.25)

P
(
a ≤ W ∗ ≤ b

) ≤ 1.8e–a(b – a), 0 ≤ a < b. (2.26)
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Since |W – W ∗| ≤ 1/σ , we have, assuming a ≥ 1/σ , that

P(a ≤ W ≤ b) = P
(
a ≤ W ≤ b, W > W ∗) + P

(
a ≤ W ≤ b, W ≤ W ∗)

≤ P
(

a –
1
σ

≤ W ∗ ≤ b
)

+ P
(

a ≤ W ∗ ≤ b +
1
σ

)

≤ 1.8e1/σ e–a
(

b – a +
1
σ

)

+ 1.8e–a
(

b – a +
1
σ

)

(2.27)

= 1.8
(
1 + e1/σ )

e–a
(

b – a +
1
σ

)

.

The assumption a ≥ 1/σ was required in (2.27) to ensure that (2.26) could be applied. If
0 ≤ a < 1/σ , then a ∈ [0, 1/

√
5), and the result follows from Lemma 2.3 since

P(a ≤ W ≤ b) ≤ b – a
2

+
1
σ

= eae–a
(

b – a
2

+
1
σ

)

≤ 1.6e–a
(

b – a
2

+
1
σ

)

.

The proof of (2.23) follows in the same way except that, as Var(W (i)) �= 1, prior to (2.26) we
must use that σ 2

W (i)Eg ′(W (i)∗) = EW (i)g(W (i)) and the fact that σ 2
W (i) ≥ (

√
19/20)2 = 0.95, as

shown in the proof of Lemma 2.3. �

Remark 1 It is clear from the proof of Lemma 2.5 that (2.22) holds more generally when-
ever W =

∑n
i=1 ξi, Var(W ) = 1 with Eξi = 0 and ξi ≤ 1/

√
5. Thus, if a and b are both nega-

tive, we have

P(a ≤ W ≤ b) = P
(|b| ≤ –W ≤ |a|) ≤ 1.8

(
1 + e1/σ )

e–|b|
(

b – a +
1
σ

)

,

a < b ≤ 0.
(2.28)

Arguing as in the paragraph prior to Lemma 2.4, we obtain from Lemma 2.5 the fol-
lowing nonuniform bound on the point probabilities P(W = x), x ∈ An and P(W (i) = x),
x ∈A(i)

n .

Corollary 2.1 For x ∈An with x = (k – μ)/σ , k ∈ [0, n] ∩Z, we have

P(W = x) = P(S = k) ≤ 1.8
(
1 + e1/σ )e–|x|

σ
. (2.29)

Similarly, for x ∈A(i)
n , we have

P
(
W (i) = x

) ≤ 1.9
(
1 + e1/σ )e–|x|

σ
. (2.30)

2.3 The Stein equation
In this section we consider the properties of the function f , which is the bounded solution
to the Stein equation (2.10). For the remainder of the paper, unless otherwise stated, it may
be assumed that x ∈ An where An is as defined in Sect. 2.1. We first recall the following
basic properties of f from Lemma 3.2 in [10].
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Lemma 2.6 Let f := fx be the bounded solution of (2.10). Then
(a) 0 ≤ f ′(w) ≤ 1, w ∈ (x – 1/σ , x],
(b) f is continuous, increasing on the interval w ∈ (x – 1/σ , x] and decreasing otherwise,
(c) if σ 2 ≥ 1, we have

∣
∣f (w)

∣
∣ ≤ 1

σ
, w ∈R. (2.31)

It was also shown in [10] that the term Nh appearing in (2.10) is bounded above by
Cσ –1e–|x| for some absolute positive constant C. We now quantify the value of C.

Lemma 2.7 Let Nh = P(x – 1/σ < Z ≤ x), where Z ∼ N(0, 1). Then,
(a) Nh ≤ 1.03e–|x|

σ
if σ 2 ≥ 5,

(b) Nh ≤ 0.4e–x2/2

σ
for all σ > 0 when x ≤ 0.

Proof For (a), we divide the proof into three cases according to whether x > 1/
√

5, |x| ≤
1/

√
5 or x < –1/

√
5.

Case 1: x > 1/
√

5. In this case, since σ ≥ √
5, we have x – 1/σ > 0 and Nh ≤ (σ

√
2π )–1 ×

e– 1
2 (x– 1

σ )2 . Since e–t2/2 ≤ e1/2e–t , when t > 0, we have Nh ≤ (σ
√

2π )–1e1/2e–(x–1/σ ) = e 1
2 + 1

σ ×
(
√

2π )–1 e–x

σ
. Since (

√
2π )–1e1/2+1/

√
5 < 1.03, (a) holds when x > 1/

√
5.

Case 2: |x| ≤ 1/
√

5. Since Nh ≤ (σ
√

2π )–1, we have for all |x| ≤ 1/
√

5 that

Nh ≤ 1
σ
√

2π
e|x|e–|x| ≤ 0.63e–|x|

σ
,

which holds for all σ > 0.
Case 3: x < –1/

√
5. In this case we have

Nh = P(x – 1/σ < Z ≤ x) = P
(|x| ≤ –Z < |x| + 1/σ

)
= P

(|x| < Z ≤ |x| + 1/σ
)

≤ e–x2/2

σ
√

2π
≤ e1/2e–|x|

σ
√

2π
≤ 0.66e–|x|

σ

valid for all σ > 0, where we used the fact that e–x2/2 ≤ e1/2e–|x|. This completes the proof
of (a).

For (b), noting that the working in Case 3 above holds whenever x ≤ 0, we have Nh ≤
(σ

√
2π )–1e–x2/2 ≤ 0.4σ –1e–x2/2. �

We recall, from equation (3.6) of [10], that the unique bounded solution f , of (2.10), may
be written as

f (w) =

⎧
⎪⎪⎨

⎪⎪⎩

(
√

2π )Nhew2/2[1 – 	(w)], w > x,

(
√

2π )ew2/2[	(w)(1 – 	(x)) – 	(x – 1
σ

)(1 – 	(w))], w ∈ (x – 1
σ

, x],

–(
√

2π )Nhew2/2	(w), w ≤ x – 1
σ

,

(2.32)

and so

f ′(w) = (
√

2π )Nhwew2/2[1 – 	(w)
]

– Nh, w > x, (2.33)
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and

f ′(w) = –(
√

2π )Nhwew2/2	(w) – Nh, w ≤ x –
1
σ

. (2.34)

We will not need to make use of the explicit expression for f ′(w) for w ∈ (x – 1
σ

, x]; it will
suffice to know that 0 ≤ f ′(w) ≤ 1 in this case. For w /∈ (x – 1

σ
, x], we know from Lemma 2.6

(b) that f ′(w) < 0 and together with Lemma 2.4 in [3] we have –2 ≤ f ′(w) ≤ 0 in this case.
Our next result, Lemma 2.8, gives more detailed bounds on |f ′(w)|. We first recall the
standard Gaussian tail bounds [3, p. 37 & 38]

we–w2/2
√

2π (1 + w2)
≤ 1 – 	(w) ≤ e–w2/2

w
√

2π
, w > 0 (2.35)

and

|w|e–w2/2

(1 + w2)
√

2π
≤ 	(w) ≤ e–w2/2

|w|√2π
, w < 0. (2.36)

Lemma 2.8 Let f be the bounded solution of (2.10).
(a) If x ≥ 0 then

∣
∣f ′(w)

∣
∣ ≤ Nh

1 + w2 , w > x.

(b) If x > 1/σ then

(i)
∣
∣f ′(w)

∣
∣ ≤ Nh

1 + w2 , w ≤ 0,

(ii)
∣
∣f ′(w)

∣
∣ ≤ e

8
7 + 1

σ
|w|e–x

σ
+ Nh, w ∈

(

0,
3
4

(x – 1/σ )
)

,

(iii)
∣
∣f ′(w)

∣
∣ ≤ |w|

σ
+ Nh, w ∈ (0, x – 1/σ ].

(c) If 0 ≤ x ≤ 1/σ then

∣
∣f ′(w)

∣
∣ ≤ Nh

1 + w2 , w ≤ x – 1/σ .

(d) If x < 0 then

(i)
∣
∣f ′(w)

∣
∣ ≤ e

8
7

e–|x|

σ
+ Nh, w ∈ (3x/4, 0],

(ii)
∣
∣f ′(w)

∣
∣ ≤ |w|

σ
+ Nh, w ∈ (x, 0],

(iii)
∣
∣f ′(w)

∣
∣ ≤ Nh

1 + w2 , w ∈ (–∞, x – 1/σ ] ∪ (0,∞).

Proof (a) is immediate from (2.33) together with the tail bounds (2.35).
For (b), when w ≤ 0, we have from (2.34) that f ′(w) =

√
2πNh|w|ew2/2[1 – 	(|w|)] – Nh

and (i) again follows from (2.35).
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For (ii), as Nh ≤ (σ
√

2π )–1e– 1
2 (x– 1

σ )2 in this case and ew2/2 ≤ e 9
32 (x– 1

σ )2 , we have

√
2πNhew2/2 ≤ e– 7

32 (x– 1
σ )2

σ
≤ e8/7 e–(x–1/σ )

σ
(2.37)

as e–7t2/32 ≤ e8/7e–t for t ≥ 0. The result then follows from (2.34).
For (iii), use (2.34) together with Nh ≤ (σ

√
2π )–1e– 1

2 (x– 1
σ )2 and ew2/2 ≤ e 1

2 (x– 1
σ )2 for w ∈

(0, x – 1/σ ).
For (c), if w ≤ x – 1/σ then w ≤ 0, and we may write, from (2.34), f ′(w) =

√
2πNh|w| ×

ew2/2[1 – 	(|w|)] – Nh, and we again get the result from (2.35).
(d)(i) follows in essentially the same way as (b)(ii) but now using (2.33) with Nh ≤

(σ
√

2π )–1e–x2/2 and e–7t2/32 ≤ e8/7e–|t|.
(d)(ii) follows in essentially the same way as (b)(iii) but using (2.33).
For (d)(iii), if w ≤ x – 1/σ then w < 0, and we get the result in this case as in (c), while for

w > 0, we get the result as in (a). �

We now use Lemma 2.8 to give O(1/σ ) bounds on |Ef ′(W̄ )| when W̄ is a random variable
that is sufficiently close to W .

Lemma 2.9 If σ 2 ≥ 1 and W̄ is a random variable strictly between W (i) – pi/σ and W (i) +
(1 – pi)/σ , then

(a)
∣
∣Ef ′(W̄ )

∣
∣ ≤ 1.4

σ
+

1
σ 2 . (2.38)

Furthermore, if σ 2 ≥ 5 and |x| ≥ 1/σ , then

(b)
∣
∣Ef ′(W̄ )

∣
∣ ≤ (

3e
7

3σ + e
8
7 + 1

σ + 2.06
)e–|x|

σ
+

(
3e

7
3σ + e

8
7 + 1

σ
)e–|x|

σ 2 . (2.39)

Proof The proof is given in Sect. 4.1. �

We now give our final two auxiliary results required to prove Theorems 1.1 and 1.2.

Lemma 2.10 If σ 2 ≥ 1 and W̄ is a random variable strictly between W and W (i) + t with
t ∈ [–pi/σ , (1 – pi)/σ ], then

(a)
∣
∣EW (i)f ′(W̄ )

∣
∣ ≤ 1.98

σ
+

1
σ 2 . (2.40)

If we also have σ 2 ≥ 5 and |x| > 1.5, then

(b)
∣
∣EW (i)f ′(W̄ )

∣
∣ ≤ (

3e
7

3σ + e
8
7 + 1

σ + 1.35
)e–x

σ
+

(
3e

7
3σ + e

8
7 + 1

σ + 2.06
)e–x

σ 2 . (2.41)

Proof The proof is given in Sect. 4.2. �

Lemma 2.11 If σ 2 ≥ 5 and t ∈ (–pi/σ , (1 – pi)/σ ], then

∣
∣Ef

(
W (i) + t

)∣
∣ ≤ (

3e
7

3σ + e
8
7 + 1

σ
)e–|x|

σ
+ 1.9e

1
σ
(
1 + e

1
σ
)e–|x|

σ 2 . (2.42)

Proof The proof is given in Sect. 4.3. �
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2.4 The K-function
As discussed in Sect. 2.1, our problem reduces to bounding |E{f ′(W ) – Wf (W )}|, where f
is the bounded solution of the Stein equation (2.10). To this end, define the functions Ki,
1 ≤ i ≤ n, by

Ki(t) = E
{
ξi(1[0≤t≤ξi] – 1[ξi≤t<0])

}
.

By Fubini’s theorem we find that

∫ ∞

–∞
Ki(t) dt = Eξ 2

i , and
∫ ∞

–∞
|t|Ki(t) dt =

1
2
E|ξi|3, (2.43)

and so

n∑

i=1

∫ ∞

–∞
Ki(t) dt = 1 and

n∑

i=1

∫ ∞

–∞
|t|Ki(t) dt ≤ 1

2σ
(2.44)

since

n∑

i=1

E|ξi|3 ≤ 1
σ

n∑

i=1

E|ξi|2 =
1
σ

.

Writing W (i) = W – ξi, it is shown in Sect. 2.3.1 of [3] that

E
{

f ′(W ) – Wf (W )
}

=
n∑

i=1

∫ ∞

–∞
E

{
f ′(W (i) + ξi

)
– f ′(W (i) + t

)}
Ki(t) dt. (2.45)

As f is the solution of (2.10), we may decompose the right-hand side of (2.45) as

n∑

i=1

∫ ∞

–∞
EW (i)[f

(
W (i) + ξi

)
– f

(
W (i) + t

)]
Ki(t) dt (2.46)

+
n∑

i=1

∫ ∞

–∞
Eξif

(
W (i) + ξi

)
Ki(t) dt (2.47)

–
n∑

i=1

∫ ∞

–∞
Etf

(
W (i) + t

)
Ki(t) dt (2.48)

+
n∑

i=1

∫ ∞

–∞
E

(
hx

(
W (i) + ξi

)
– hx

(
W (i) + t

))
Ki(t) dt. (2.49)

Since ξi ∈ {–pi/σ , (1 – pi)/σ }, we see that Ki(t) �= 0 requires that t ∈ [–pi/σ , (1 – pi)/σ ].
Thus in bounding (2.46)–(2.49), for each i, 1 ≤ i ≤ n, we may restrict our attention to
t ∈ [–pi/σ , (1 – pi)/σ ] as otherwise the integrands are zero. In particular this condition
implies that |t| < 1/σ and |ξi – t| ≤ 1/σ .

3 Proofs of main results
We now give our proofs of Theorems 1.1 and 1.2, starting with Theorem 1.2, which is then
used to simplify the proof of Theorem 1.1. We use the K-function approach and notation
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from Sect. 2.4. Our problem is to bound the four terms (2.46)–(2.49), and we will consider
each term in turn.

3.1 Proof of Theorem 1.2
Bounding (2.46): For (2.46), there is a random W̄ between W (i) + ξi and W (i) + t such that
f (W (i) + ξi) – f (W (i) + t) = f ′(W̄ )(ξi – t). Since for each i we only need to consider t such
that |ξi – t| ≤ 1/σ , we may bound (2.46) as

∣
∣
∣
∣
∣

n∑

i=1

∫ ∞

–∞
EW (i)[f

(
W (i) + ξi

)
– f

(
W (i) + t

)]
Ki(t) dt

∣
∣
∣
∣
∣

≤ 1
σ

n∑

i=1

∫ ∞

–∞

∣
∣EW (i)f ′(W̄ )

∣
∣Ki(t) dt =

1
σ

n∑

i=1

∣
∣EW (i)f ′(W̄ )

∣
∣
∫ ∞

–∞
Ki(t) dt (3.1)

≤ 1.98
σ 2 +

1
σ 3

by (2.40).
Bounding (2.47): As ξi = (1 – pi)/σ with probability pi and ξi = –pi/σ with probability

1 – pi, we have that

∣
∣Eξif

(
W (i) + ξi

)∣
∣ =

∣
∣
∣
∣
(1 – pi)

σ
Ef

(

W (i) +
1 – pi

σ

)

pi –
pi

σ
Ef

(

W (i) –
pi

σ

)

(1 – pi)
∣
∣
∣
∣

=
pi(1 – pi)

σ
E

{∣
∣
∣
∣f

(

W (i) +
1 – pi

σ

)

– f
(

W (i) –
pi

σ

)∣
∣
∣
∣

}

=
pi(1 – pi)

σ
E

{
1
σ

∣
∣f ′(W̄ )

∣
∣
}

for some random variable W̄ strictly between W (i) + (1 – pi)/σ and W (i) – pi/σ . Now, by
Lemma 2.9 (a) and the fact that p(1 – p) ∈ (0, 1/4] when p ∈ (0, 1), (2.47) may be bounded
as

∣
∣
∣
∣
∣

n∑

i=1

∫ ∞

–∞
Eξif

(
W (i) +ξi

)
Ki(t) dt

∣
∣
∣
∣
∣
≤ 1

4σ 2

n∑

i=1

∣
∣Ef ′(W̄ )

∣
∣
∫ ∞

–∞
Ki(t) dt ≤ 0.35

σ 3 +
0.25
σ 4 . (3.2)

Bounding (2.48): Using the fact that |f (W (i) + t)| ≤ 1/σ with (2.44) gives

∣
∣
∣
∣
∣

n∑

i=1

∫ ∞

–∞
Etf

(
W (i) + t

)
Ki(t) dt

∣
∣
∣
∣
∣
≤ 0.5

σ 2 . (3.3)

Bounding (2.49): We first find an expression for the functions Ki, 1 ≤ i ≤ n. Since P(ξi =
(1 – pi)/σ ) = pi and P(ξi = –pi/σ ) = 1 – pi, we have

Ki(t) = Eξi[1(0≤t≤ξi) – 1(ξi≤t<0)]

=
(1 – pi)

σ
[1(0≤t≤ 1–pi

σ ) – 1( 1–pi
σ ≤t<0)]pi –

pi

σ
[1(0≤t≤ –pi

σ ) – 1( –pi
σ ≤t<0)](1 – pi)

=
pi(1 – pi)

σ
[1(0≤t≤ 1–pi

σ ) + 1(– pi
σ ≤t<0)]
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=
pi(1 – pi)

σ
1(– pi

σ ≤t≤ 1–pi
σ ),

and hence

n∑

i=1

E

∫ ∞

–∞
hx

(
W (i) + t

)
Ki(t) dt

=
1
σ

n∑

i=1

pi(1 – pi)E
∫ ∞

–∞
hx

(
W (i) + t

)
1(– pi

σ ≤t≤ 1–pi
σ ) dt

=
1
σ

n∑

i=1

pi(1 – pi)
∫ 1–pi

σ

– pi
σ

P
(
x – 1/σ < W (i) + t ≤ x

)
dt.

Now we consider the value of P(x – 1/σ – t < W (i) ≤ x – t) as t varies over the interval
[–pi/σ , (1 – pi)/σ ]. Since W (i) takes values in the set A(i)

n = {(k – μ(i))/σ : k ∈ Z∩ [0, n – 1]},
where μ(i) = μ – pi, it follows that the interval (x – 1/σ – t, x – t] contains exactly one
element of A(i)

n as it is of length 1/σ . Suppose x = (k – μ)/σ , k ∈ Z ∩ [0, n], and let x(i) =
(k – μ(i))/σ ∈ A(i)

n . Then we have x = x(i) – pi/σ with |pi| < 1, and so

P
(
x – 1/σ – t < W (i) ≤ x – t

)
= P

(
x(i) – 1/σ – pi/σ – t < W (i) ≤ x(i) – pi/σ – t

)

=

⎧
⎨

⎩

P(W (i) = x(i) – 1/σ ), t ∈ (–pi/σ , (1 – pi)/σ ]

P(W (i) = x(i)), t = –pi/σ .

Thus we have

∫ 1–pi
σ

– pi
σ

P
(
x – 1/σ < W (i) + t ≤ x

)
dt =

1
σ

P
(
W (i) = x(i) – 1/σ

)

=
1
σ

P
(

W (i) =
k – μ(i) – 1

σ

)

=
1
σ

P
(
S(i) + 1 = k

)
,

where S(i) = S – Xi. Thus

n∑

i=1

E

∫ ∞

–∞
hx

(
W (i) + t

)
Ki(t) dt =

n∑

i=1

pi(1 – pi)
σ 2 P

(
W (i) = x(i) – 1/σ

)

=
n∑

i=1

σ 2
i

σ 2 P
(
S(i) + 1 = k

)

= P
(
S(I) + 1 = k

)
,

where I is a random index with distribution P(I = i) = σ 2
i /σ 2, 1 ≤ i ≤ n, independent of the

Xi.
Also,

n∑

i=1

E

∫ ∞

–∞
hx

(
W (i) + ξi

)
Ki(t) dt =

n∑

i=1

Eξ 2
i P(W = x) = P(W = x) = P(S = k).
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Thus we may bound (2.49) as

∣
∣
∣
∣
∣

n∑

i=1

∫ ∞

–∞
E

(
hx

(
W (i) + ξi

)
– hx

(
W (i) + t

))
Ki(t) dt

∣
∣
∣
∣
∣

=
∣
∣P(S = k) – P

(
S(I) + 1 = k

)∣
∣

≤ 1
σ

P(S = k)

with the inequality following from the proof of Theorem 1.1 of [10]. From (2.16) we get
that

∣
∣
∣
∣
∣

n∑

i=1

∫ ∞

–∞
E

(
hx

(
W (i) + ξi

)
– hx

(
W (i) + t

))
Ki(t) dt

∣
∣
∣
∣
∣
≤ 0.5

σ 2 . (3.4)

Adding together our bounds for (2.46)–(2.49) in (2.8) together with the remainder R from
Lemma 2.1 (a), we find that

sup
k∈[0.n]∩Z

�k ≤ 3.23
σ 2 +

1.35
σ 3 +

0.25
σ 4

as required.

3.2 Proof of Theorem 1.1
The uniform bound in Theorem 1.2 implies the nonuniform bound of Theorem 1.1 when
|x| ≤ 1.5 as C1 > 3.15 + 7.39 + 4.5 = 15.04, C2 > 12.03, and C3 > 1.54 while 3.23e1.5 < 14.5,
1.35e1.5 < 6.1, and 0.25e1.5 < 1.2. Thus we may assume that |x| > 1.5 so that part (b) of
Lemmas 2.9 and 2.10 apply.

Bounding (2.46): As in the uniform case, we have from (2.41)

∣
∣
∣
∣
∣

n∑

i=1

∫ ∞

–∞
EW (i)[f

(
W (i) + ξi

)
– f

(
W (i) + t

)]
Ki(t) dt

∣
∣
∣
∣
∣

≤ 1
σ

n∑

i=1

∣
∣EW (i)f ′(W̄ )

∣
∣
∫ ∞

–∞
Ki(t) dt

≤ (
3e

7
3σ + e

8
7 + 1

σ + 1.35
)e–|x|

σ 2 +
(
3e

7
3σ + e

8
7 + 1

σ + 2.06
)e–|x|

σ 3 .

Bounding (2.47): As in the uniform case, we have, with W̄ a random variable strictly
between W (i) – pi/σ and W (i) + (1 – pi)/σ , that

n∑

i=1

E

∫ ∞

–∞
ξif

(
W (i) + ξi

)
Ki(t) dt

(3.5)
≤ 1

4σ 2

n∑

i=1

∣
∣Ef ′(W̄ )

∣
∣
∫ ∞

–∞
Ki(t) dt

≤ (
0.75e

7
3σ + 0.25e

8
7 + 1

σ + 0.52
)e–|x|

σ 3 +
(
0.75e

7
3σ + 0.25e

8
7 + 1

σ
)e–|x|

σ 4 (3.6)

by (2.39).
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Bounding (2.48): As in the uniform case, but now applying (2.11) with (2.44), we obtain

∣
∣
∣
∣
∣

n∑

i=1

∫ ∞

–∞
Etf

(
W (i) + t

)
Ki(t) dt

∣
∣
∣
∣
∣

≤ (
1.5e

7
3σ + 0.5e

8
7 + 1

σ
)e–|x|

σ 2 + 0.95e
1
σ
(
1 + e

1
σ
)e–|x|

σ 3 .

Bounding (2.49): As in the uniform case, but now applying (2.29), we have

n∑

i=1

E

∫ ∞

–∞

(
hx

(
W (i) + ξi

)
– hx

(
W (i) + t

))
Ki(t) dt ≤ 1

σ
P(S = k) ≤ 1.8

(
1 + e1/σ )e–|x|

σ 2 .

Adding together our bounds for (2.46)–(2.49) in (2.9) together with the remainder R
from Lemma 2.1 (b) and using that e2/σ ≤ 0.87e7/3σ for σ 2 ≥ 5, we find

�k ≤ e–|x|

σ 2

(

C1 +
C2

σ
+

C3

σ 2

)

,

where

C1 = 3.15 + 7.39e
1
σ + 4.5e

7
3σ ,

C2 = 2.58 + 4.87e
1
σ + 4.58e

7
3σ ,

C3 = 0.79e
1
σ + 0.75e

7
3σ ,

completing the proof.

4 Proofs of auxiliary results
4.1 Proof of Lemma 2.9

Proof Throughout the proof we set A1 = (–∞, x – 1/σ ], A2 = (x – 1/σ , x], and A3 = (x,∞).
We will bound Ef ′(W̄ ) in two steps, first considering the case where W̄ ∈ A2 and then
W̄ /∈ A2. We also use the facts from Lemma 2.6 that f ′(w) ≤ 0 when w /∈ A2 and f ′(w) ≥ 0
when w ∈ A2.

(a) Case 1: W̄ ∈ A2.
When W̄ ∈ A2 we have 0 ≤ f ′(W̄ ) ≤ 1 and W (i) = x – (1 – pi)/σ . To see this latter fact,

recall that W (i) takes values in the set A(i)
n = An + pi/σ , i.e., the support of W (i) equals that

of W translated by pi/σ . Thus, for example, we cannot have W (i) = x + pi/σ since then W̄
would lie in the interval (x, x + 1/σ ) contradicting W̄ ∈ A2. From (2.17) we have that

0 ≤ Ef ′(W̄ )1A2 (W̄ ) ≤ P(x – 1/σ < W̄ ≤ x) ≤ P
(
W (i) = x – (1 – pi)/σ

) ≤ 0.58
σ

, (4.1)

and we note that this holds for any x ∈An.
Case 2: W̄ ∈ A1 ∪ A3.
Subcase 2.1: x ≥ 1/σ .
From Lemma 2.8 (a) and (b) and the fact that f ′(w) < 0 for w ∈ A1 ∪ A3, we have that

f ′(w) ∈ (–|w|/σ – Nh, 0] when w ∈ A1 ∪A3. Applying the Cauchy–Schwarz inequality gives
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E|W | ≤ (EW 2)1/2 = 1, and so E|W̄ | ≤ E|W | + 1/σ ≤ 1 + 1/σ . Also, as Nh ≤ (σ
√

2π )–1 <
0.4/σ , we have

–
1.4
σ

–
1
σ 2 ≤ Ef ′(W̄ )1A1∪A3 (W̄ ) ≤ 0. (4.2)

Subcase 2.2: 0 ≤ x < 1/σ .
In this case Lemma 2.8 (a) and (c) provide a tighter bound on |f ′(w)|, w ∈ A1 ∪ A3, than

in Subcase 2.1 so that (4.2) still holds.
Subcase 2.3: x < 0.
In this case applying Lemma 2.8 (d) shows that f ′(w) ∈ (–|w|/σ – Nh, 0] for w ∈ A1 ∪ A3,

and the result follows in the same way as when x ≥ 0.
Thus from each subcase we see that (4.1) and (4.2) hold for all x ∈ An, which gives the

result.
(b) First assume that x ≥ 1/σ . In slight contrast to the proof of part (a) we now consider

the contributions to Ef ′(W̄ ) when W̄ is in the sets (x – 1/σ , x], (–∞, 3
4 (x – 1/σ )) ∪ (x,∞),

and ( 3
4 (x – 1/σ ), x – 1/σ ]. The sets A1, A2, and A3 are as in part (a).

Case 1: W̄ ∈ (x – 1/σ , x] = A2.
In this case we have from Lemma 2.6 that 0 ≤ f ′(W̄ ) ≤ 1, and as in the proof of part (a),

W (i) = x – (1 – pi)/σ . Thus, for all x ∈An,

0 ≤ Ef ′(W̄ )1A2 (W̄ ) ≤ P(x – 1/σ < W̄ ≤ x) ≤ P
(
W (i) = x – (1 – pi)/σ

)

≤ 1.9e1/σ (
1 + e1/σ )e–x

σ
(4.3)

by (2.30).
Case 2: W̄ ∈ (–∞, 3

4 (x – 1/σ )) ∪ (x,∞).
By Lemma 2.8 parts (a), (b)(i) and (b)(ii) together with the fact that f ′(w) ≤ 0 when w /∈

A2, we have that f ′(w) ∈ [–e 8
7 + 1

σ |w|e–xσ –1 – Nh, 0] for w ∈ (–∞, 3
4 (x – 1/σ )] ∪ (x,∞). Using

this together with the fact that E|W̄ | ≤ E|W | + 1/σ ≤ 1 + 1/σ and Lemma 2.7 (a), we get

–e
8
7 + 1

σ
e–x

σ
– e

8
7 + 1

σ
e–x

σ 2 –
1.03e–x

σ
≤ Ef ′(W̄ )1A(W̄ ) ≤ 0, (4.4)

where A = (–∞, 3
4 (x – 1/σ )] ∪ (x,∞).

Case 3: W̄ ∈ ( 3
4 (x – 1/σ ), x – 1/σ ].

In this case from Lemma 2.8 (b)(iii),

∣
∣Ef ′(W̄ )1( 3

4 (x–1/σ ),x–1/σ ](W̄ )
∣
∣

≤ 1
σ
E|W |1( 3

4 (x–1/σ ),x–1/σ ](W̄ ) +
1
σ 2 E1( 3

4 (x–1/σ ),x–1/σ ](W̄ ) + Nh.

Now, by Holder’s inequality, we have for each p ∈ N that

E|W |1( 3
4 (x–1/σ ),x–1/σ ](W̄ ) ≤ (

E|W |2p) 1
2p P

(

W̄ >
3
4

(x – 1/σ )
)1– 1

2p
.
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Letting p → ∞ and applying (2.19) and (2.20), we find

∣
∣Ef ′(W̄ )1( 3

4 (x–1/σ ),x–1/σ ](W̄ )
∣
∣ ≤ 1

σ
P
(

4W̄
3

> x – 1/σ
)

+
1
σ 2 P

(
4W̄

3
> x – 1/σ

)

+ Nh

≤ e–(x–1/σ )

σ
Ee4W̄ /3 +

e–(x–1/σ )

σ 2 Ee4W̄ /3 + Nh

≤ e–(x–1/σ )e 4
3σ

σ
Ee4W /3 +

e–(x–1/σ )e 4
3σ

σ 2 Ee4W /3 + Nh

≤ 3e
7

3σ
e–x

σ
+ 3e

7
3σ

e–x

σ 2 +
1.03e–x

σ
,

and so, again using that f ′(w) ≤ 0 when w /∈ A2, we have

–
(
3e

7
3σ + 1.03

)e–x

σ
– 3e

7
3σ

e–x

σ 2 ≤ Ef ′(W̄ )1( 3
4 (x–1/σ ),x–1/σ ](W̄ ) ≤ 0. (4.5)

Combining (4.4) and (4.5) we get

–
(
3e

7
3σ + e

8
7 + 1

σ + 2.06
)e–x

σ
–

(
3e

7
3σ + e

8
7 + 1

σ
)e–x

σ 2 ≤ Ef ′(W̄ )1A1∪A3 (W̄ ) ≤ 0. (4.6)

Since 3e 7
3σ + e 8

7 + 1
σ + 2.06 > 1.9e1/σ (1 + e1/σ ) when σ ≥ √

5, from (4.6) and (4.3) we see
that

∣
∣Ef ′(W̄ )

∣
∣ ≤ (

3e
7

3σ + e
8
7 + 1

σ + 2.06
)e–x

σ
+

(
3e

7
3σ + e

8
7 + 1

σ
)e–x

σ 2 .

The result follows in a similar way when x ≤ –1/σ . �

4.2 Proof of Lemma 2.10

Proof As in the proof of Lemma 2.9, we let A1 = (–∞, x – 1/σ ], A2 = (x – 1/σ , x] and A3 =
(x,∞).

(a) We first consider the case where x ≥ 1/σ . For each p ∈ N, we have, by Hölder’s in-
equality, that

∣
∣EW (i)f ′(W̄ )

∣
∣ ≤ (

E
∣
∣W (i)∣∣2p) 1

2p
(
E

∣
∣f ′(W̄ )

∣
∣

2p
2p–1

) 2p–1
2p . (4.7)

We will bound the second factor appearing on the right of (4.7) separately for W̄ /∈ A2 and
W̄ ∈ A2, starting with the case W̄ /∈ A2.

By Lemma 2.8 parts (a) and (b)(iii) together with the fact that Nh ≤ (σ
√

2π )–1 ≤ 0.4/σ ,
we have that |f ′(W̄ )| ≤ |W̄ |/σ + 0.4/σ when W̄ ∈ A1 ∪ A3. Thus, using that (a + b)q ≤
2q–1(aq + bq) whenever a, b > 0 and q ≥ 1 together with |W̄ | ≤ |W | + 1/σ , we have

E
∣
∣f ′(W̄ )1A1∪A3 (W̄ )

∣
∣

2p
2p–1 ≤ 1

σ 2p/(2p–1) E
{(|W̄ | + 0.4

)2p/(2p–1)}

≤ 21/(2p–1)

σ 2p/(2p–1)

(
E|W̄ |2p/(2p–1) + 0.42p/(2p–1))

≤ 21/(2p–1)

σ 2p/(2p–1)



Auld and Neammanee Journal of Inequalities and Applications         (2024) 2024:67 Page 21 of 26

×
{

21/(2p–1)
(

E|W |2p/(2p–1) +
1

σ 2p/(2p–1)

)

+ 0.42p/(2p–1)
}

≤ 21/(2p–1)

σ 2p/(2p–1)

{

21/(2p–1)
(

1 +
1

σ 2p/(2p–1)

)

+ 0.42p/(2p–1)
}

, (4.8)

where we used that E|W |2p/(2p–1) ≤ (E|W |2)
2p

2(2p–1) = 1.
Now, when W̄ ∈ A2 we have |f ′(W̄ )| ≤ 1 and W (i) = x – (1 – pi)/σ . The latter fact follows

in a similar way as the case W̄ ∈ A2 in the proof of Lemma 2.9. For example, if W̄ ∈ A2 then
we cannot have W (i) = x + pi/σ as then W (i) + t ∈ [x, x + 1/σ ] and W ∈ {x, x + 1/σ }, and it
is impossible for W̄ to be strictly between W and W (i) + t while at the same time W̄ ∈ A2.
Similarly, we see that it is impossible for W (i) = x – 2/σ + pi/σ . Thus, we have from (2.15)
that for all x ∈An

E
∣
∣f ′(W̄ )1A2 (W̄ )

∣
∣

2p
2p–1 ≤ P(x – 1/σ < W̄ ≤ x) ≤ P

(

W (i) = x –
1 – pi

σ

)

≤ 0.58
σ

. (4.9)

From (4.8) and (4.9) we have that

E
∣
∣f ′(W̄ )

∣
∣

2p
2p–1

≤ 21/(2p–1)

σ 2p/(2p–1)

{

0.58
(
2

–1
2p–1

)
σ 1/(2p–1) + 21/(2p–1)

(

1 +
1

σ 2p/(2p–1)

)

+ 0.4
2p

2p–1

}

,

and so

(
E

∣
∣f ′(W̄ )

∣
∣

2p
2p–1

) 2p–1
2p

≤ 21/2p

σ

{

0.58
(
2

–1
2p–1

)
σ 1/(2p–1) + 21/(2p–1)

(

1 +
1

σ 2p/(2p–1)

)

+ 0.4
2p

2p–1

} 2p
2p–1

and using this in (4.7) and letting p → ∞ gives (2.40).
As in the proof of Lemma 2.9 (a), we note that when 0 ≤ x < 1/σ , then Lemma 2.8 (a)

and (c) provide a tighter bound on |f ′(w)|, w ∈ A1 ∪ A3. This together with the fact that
(4.9) holds for all x ∈ An gives the result when 0 ≤ x < 1/σ . The case x < 0 is dealt with in
a similar way using part (d) of Lemma 2.8.

(b) Our strategy is slightly different than for part (a). We will consider the contributions
toEW (i)f ′(W̄ ) when W̄ is in A1, A2, and A3. As f ′(W̄ ) is positive when W̄ ∈ A2 and negative
otherwise, together with the fact that |W̄ – W (i)| ≤ 1/σ , we will be able to keep track of
the signs of the various contributions and obtain some partial cancellation that would not
be possible with a simple use of Hölder’s inequality as in part (a).

We first assume that x > 1.5.
Case 1: W̄ ∈ A3.
In this case W̄ > x > 1.5 and as |W̄ – W (i)| < 1/σ ≤ 1/

√
5, we also have W (i) > 0 and hence

W (i)f ′(W̄ ) < 0. Thus by Lemma 2.8 (a)

∣
∣EW (i)f ′(W̄ )1A3 (W̄ )

∣
∣ ≤ NhE

∣
∣
∣
∣

W (i)

1 + W̄ 2

∣
∣
∣
∣1(1.5,∞)(W̄ ) ≤ Nh

1 + 1.52 E
∣
∣W (i)∣∣ ≤ 1.03e–x

3.25σ
,
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and so

–0.32e–x

σ
≤ EW (i)f ′(W̄ )1A3 (W̄ ) ≤ 0. (4.10)

Case 2: W̄ ∈ A1.
We write A1 = (–∞, 0)∪ [0, 3

4 (x – 1/σ )]∪ ( 3
4 (x – 1/σ ), x – 1/σ ] and consider the contribu-

tion to EW (i)f ′(W̄ )1A1 (W̄ ) from each set. For W̄ ∈ (–∞, 0) we have that W (i) ∈ (–∞, 1/σ )
and

EW (i)f ′(W̄ )1(–∞,0)(W̄ ) = EW (i)f ′(W̄ )1(W (i)<0,W̄<0) +EW (i)f ′(W̄ )1(0≤W (i)< 1
σ ,W̄ <0) (4.11)

and the first term on the right of (4.11) is positive and the second negative. Now, from
Lemma 2.8 (b)(i) we have that

–Nh
1 + W̄ 2

≤ f ′(W̄ )1(W̄<0) ≤ 0, (4.12)

and so using the fact that |W̄ – W (i)| ≤ 1/σ gives

∣
∣EW (i)f ′(W̄ )1(W (i)<0,W̄<0)

∣
∣ ≤ NhE

∣
∣
∣
∣

W (i)

1 + W̄ 2

∣
∣
∣
∣ ≤ NhE

∣
∣
∣
∣

W̄
1 + W̄ 2

∣
∣
∣
∣ +

Nh
σ

(4.13)

≤ Nh
2

+
Nh
σ

. (4.14)

Using the bound for Nh from Lemma 2.7 (a), we get

0 ≤ EW (i)f ′(W̄ )1[W̄<0,W (i)<0] ≤ 0.515e–x

σ
+

1.03e–x

σ 2 . (4.15)

For the second term in (4.11) we have

∣
∣EW (i)f ′(W̄ )1(0≤W (i)< 1

σ ,W̄ <0)
∣
∣ ≤ Nh

σ
≤ 1.03e–x

σ 2 .

Thus, as the second term in (4.11) is negative, we have

–1.03e–x

σ 2 ≤ EW (i)f ′(W̄ )1[W̄ <0,0≤W (i)<1/σ ] ≤ 0,

and so together with (4.15) this implies

–1.03e–x

σ 2 ≤ EW (i)f ′(W̄ )1(–∞,0)(W̄ ) ≤ 0.515e–x

σ
+

1.03e–x

σ 2 . (4.16)

Now suppose that W̄ ∈ [0, 3
4 (x – 1/σ )] and write

EW (i)f ′(W̄ )1[0, 3
4 (x–1/σ )](W̄ ) = EW (i)f ′(W̄ )1(W (i)>0,W̄∈[0, 3

4 (x– 1
σ )])

+ EW (i)f ′(W̄ )1(– 1
σ <W (i)≤0,W̄∈[0, 3

4 (x– 1
σ )])
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with the first term negative and the second positive. Now applying Lemma 2.8 (b)(ii) we
have

∣
∣EW (i)f ′(W̄ )1(W (i)>0,W̄∈[0, 3

4 (x– 1
σ )])

∣
∣ ≤ e

8
7 + 1

σ E
∣
∣W (i)W̄

∣
∣e–x

σ
+ NhE

∣
∣W (i)∣∣

≤ (
e

8
7 + 1

σ + 1.03
)e–x

σ
+ e

8
7 + 1

σ
e–x

σ 2 ,

where we used that E|W (i)W̄ | ≤ E|W (i)|2 + σ –1
E|W (i)|. Hence,

–
(
e

8
7 + 1

σ + 1.03
)e–x

σ
– e

8
7 + 1

σ
e–x

σ 2 ≤ EW (i)f ′(W̄ )1(W (i)>0,W̄∈[0, 3
4 (x– 1

σ )]) ≤ 0. (4.17)

Also,

0 ≤ EW (i)f ′(W̄ )1(– 1
σ <W (i)≤0,W̄∈[0, 3

4 (x– 1
σ )]) ≤ 1

σ

(

e
8
7 + 1

σ
E|W̄ |e–x

σ
+ Nh

)

≤ (
e

8
7 + 1

σ + 1.03
)e–x

σ 2 + e
8
7 + 1

σ
e–x

σ 3 ,

which together with (4.17) implies that

–
(
e

8
7 + 1

σ + 1.03
)e–x

σ
– e

8
7 + 1

σ
e–x

σ 2 ≤ EW (i)f ′(W̄ )1[0, 3
4 (x–1/σ )](W̄ )

≤ (
e

8
7 + 1

σ + 1.03
)e–x

σ 2 + e
8
7 + 1

σ
e–x

σ 3 . (4.18)

Now consider W̄ ∈ ( 3
4 (x – 1/σ ), x – 1/σ ]. As x > 1.5 and σ ≥ √

5, we have 3
4 (x – 1/σ ) > 0.78,

and thus W (i) > 0 and W (i)f ′(W̄ ) < 0 in this case.
We have by Lemma 2.8 (b)(iii) that for each p ∈ N,

∣
∣EW (i)f ′(W̄ )1(W̄∈( 3

4 (x–1/σ ),x–1/σ ])
∣
∣

≤ 1
σ
E

∣
∣W (i)W̄

∣
∣1(W̄> 3

4 (x–1/σ )) +
Nh
σ

E
∣
∣W (i)∣∣1(W̄ > 3

4 (x–1/σ ))

≤ 1
σ
E

∣
∣W (i)∣∣2

1(W̄> 3
4 (x–1/σ )) +

1
σ 2 E

∣
∣W (i)∣∣1(W̄ > 3

4 (x–1/σ )) +
1.03e–x

σ

≤ 1
σ

{(
E

∣
∣W (i)∣∣2p) 1

2p
}2P

(
4W̄

3
> x –

1
σ

)1– 1
p

+
1
σ 2

(
E

∣
∣W (i)∣∣2p) 1

2p P
(

4W̄
3

> x –
1
σ

)1– 1
2p

+
1.03e–x

σ
. (4.19)

Now, using (2.20) we find

P
(

4W̄
3

> x –
1
σ

)

≤ e–(x–1/σ )
Ee4W̄ /3 ≤ e

7
3σ e–x

Ee4W /3 ≤ 3e
7

3σ e–x (4.20)

and using this together with (2.19) in (4.19) and letting p → ∞ gives

–3e 7
3σ e–x

σ
–

(
3e

7
3σ + 1.03

)e–x

σ 2 ≤ EW (i)f ′(W̄ )1(W̄∈( 3
4 (x–1/σ ),x–1/σ ]) ≤ 0.



Auld and Neammanee Journal of Inequalities and Applications         (2024) 2024:67 Page 24 of 26

Hence,

–3e 7
3σ e–x

σ
–

(
3e

7
3σ + 1.03

)e–x

σ 2 ≤ EW (i)f ′(W̄ )1( 3
4 (x–1/σ ),x–1/σ ](W̄ ) ≤ 0,

and combining this with our bounds (4.16) and (4.18), we find that

–
(
3e

7
3σ + e

8
7 + 1

σ + 1.03
)e–x

σ
–

(
3e

7
3σ + e

8
7 + 1

σ + 2.06
)e–x

σ 2

≤ EW (i)f ′(W̄ )1A1 (W̄ )

≤ 0.515e–x

σ
+

(
e

8
7 + 1

σ + 2.06
)e–x

σ 2 + e
8
7 + 1

σ
e–x

σ 3

≤ 0.515e–x

σ
+

(
1.45e

8
7 + 1

σ + 2.06
)e–x

σ 2 ,

where we used that σ ≥ √
5 in the last line. Together with our bound (4.10) we have

–
(
3e

7
3σ + e

8
7 + 1

σ + 1.35
)e–x

σ
–

(
3e

7
3σ + e

8
7 + 1

σ + 2.06
)e–x

σ 2

≤ EW (i)f ′(W̄ )1A1∪A3 (W̄ )

≤ 0.515e–x

σ
+

(
1.45e

8
7 + 1

σ + 2.06
)e–x

σ 2 . (4.21)

Case 3: W̄ ∈ A2.
In this case, W (i) ≥ x – 2/σ ≥ 0, and so as f ′(W̄ ) ∈ [0, 1] we have W (i)f ′(W̄ ) ≥ 0. As in

part (a), W (i) = x – 1/σ + pi/σ and so again using Holder’s inequality

0 ≤ EW (i)f ′(W̄ )1A2 (W̄ ) ≤ (
E

∣
∣W (i)∣∣2p)1/2pP

(

W (i) = x –
1 – pi

σ

)1–1/2p

. (4.22)

Letting p → ∞, we get from (2.19) and (2.29) that

0 ≤ EW (i)f ′(W̄ )1A2 (W̄ ) ≤ 1.9e1/σ (
1 + e1/σ )e–x

σ
. (4.23)

Since 3e 7
3σ + e 8

7 + 1
σ + 1.35 > 1.9e1/σ (1 + e1/σ ) + 0.515 and 3e 7

3σ + e 8
7 + 1

σ > 1.45e 8
7 + 1

σ when σ ≥√
5, we have from (4.21) and (4.23) that

∣
∣EW (i)f ′(W̄ )

∣
∣ ≤ (

3e
7

3σ + e
8
7 + 1

σ + 1.35
)e–x

σ
+

(
3e

7
3σ + e

8
7 + 1

σ + 2.06
)e–x

σ 2 .

The case x < –1.5 follows in a similar way. �

4.3 Proof of Lemma 2.11
We assume that x ≥ 0 and the sets A1, A2, and A3 are as in the proofs of the previous
lemmas. From (2.32), we see that f is negative on A1 and positive on A3.

From (2.32), the tail bound (2.35), and Lemma 2.7, we have that

0 ≤ f
(
W (i) + t

)
1A3

(
W (i) + t

) ≤ Nh
(W (i) + t)

1A3

(
W (i) + t

) ≤ Nh ≤ 1.03e–x

σ
(4.24)
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if x ≥ 1. Since ew2/2[1 – 	(w)] is a decreasing function of w, we have that when x ∈ [0, 1]

0 ≤ f
(
W (i) + t

)
1A3

(
W (i) + t

) ≤ √
2πNhe0[1 – 	(0)

] ≤ 1.26Nh ≤ 1.3e–x

σ
(4.25)

and from (4.24), we see this holds for all x ≥ 0.
Now we consider the case where W (i) + t ∈ A1. Again, from (2.32) we have that

∣
∣f

(
W (i) + t

)
1[0, 3

4 (x–1/σ )]
(
W (i) + t

)∣
∣ ≤ e– 1

2 (x–1/σ )2 e 9
32 (x–1/σ )2

σ
=

e– 7
32 (x–1/σ )2

σ

≤ e 8
7 + 1

σ e–x

σ

using that e–7t2/32 ≤ e8/7e–t for t ≥ 0 and from the tail bounds (2.36) we see that this also
holds for W (i) + t ≤ 0. Thus,

–
e 8

7 + 1
σ e–x

σ
≤ Ef

(
W (i) + t

)
1(–∞, 3

4 (x–1/σ )]
(
W (i) + t

) ≤ 0. (4.26)

Now, by Markov’s inequality, (2.20), and the fact that |f (w)| ≤ 1/σ , we have

∣
∣Ef

(
W (i) + t

)
1( 3

4 (x–1/σ ),x–1/σ ]
(
W (i) + t

)∣
∣ ≤ 1

σ
P
(

W (i) + t >
3
4

(x – 1/σ )
)

≤ 3e 7
3σ e–x

σ
,

and thus

–
3e 7

3σ e–x

σ
≤ Ef

(
W (i) + t

)
1( 3

4 (x–1/σ ),x–1/σ ]
(
W (i) + t

) ≤ 0. (4.27)

Finally, when W (i) + t ∈ A2, we have that W (i) = x – 1/σ + pi/σ , and so

∣
∣f

(
W (i) + t

)
1A2

(
W (i) + t

)∣
∣ ≤ 1

σ
P
(

W (i) = x –
1 – pi

σ

)

≤ 1.9e1/σ (
1 + e1/σ )e–x

σ
. (4.28)

From (4.25), (4.26), (4.27), and (4.28) we see that the claimed bound holds. The case where
x < 0 is dealt with in a similar way.
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