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Abstract
The stationary point of optimization problems can be obtained via conjugate
gradient (CG) methods without the second derivative. Many researchers have used
this method to solve applications in various fields, such as neural networks and image
restoration. In this study, we construct a three-term CG method that fulfills
convergence analysis and a descent property. Next, in the second term, we employ a
Hestenses-Stiefel CG formula with some restrictions to be positive. The third term
includes a negative gradient used as a search direction multiplied by an accelerating
expression. We also provide some numerical results collected using a strong Wolfe
line search with different sigma values over 166 optimization functions from the
CUTEr library. The result shows the proposed approach is far more efficient than
alternative prevalent CG methods regarding central processing unit (CPU) time,
number of iterations, number of function evaluations, and gradient evaluations.
Moreover, we present some applications for the proposed three-term search direction
in image restoration, and we compare the results with well-known CG methods with
respect to the number of iterations, CPU time, as well as root-mean-square error
(RMSE). Finally, we present three applications in regression analysis, image restoration,
and electrical engineering.
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1 Introduction
In order to determine the stationary point of optimization problems, the nonlinear con-
jugate gradient (CG) method does not necessitate the second derivative or its approxima-
tion. Here, the form we consider in the present investigation is as follows:

min f (x), x ∈ Rn, (1)

where f : Rn → R as well as the gradient g(x) = ∇f (x) is available. The following is how
iterative approaches are usually applied to solve (1).

xk+1 = xk + αkdk , k = 1, 2, . . . , (2)
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where αk is obtained by an exact or inexact line search. Moreover, an inexact line search,
for instance, a strong Wolfe–Powell (SWP) line [1, 2], is commonly used and may be ex-
pressed as the following:

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk , (3)

and

∣
∣g(xk + αkdk)T dk

∣
∣ ≤ σ

∣
∣gT

k dk
∣
∣. (4)

A weak Wolfe-Powell (WWP) line search is as given by Equation (3) and

g(xk + αkdk)T dk ≥ σ gT
k dk (5)

with 0 < δ < σ < 1.
The following expresses the search direction, dk pertaining to two terms

dk =

⎧

⎨

⎩

–gk , k = 1,

–gk + βkdk–1, k ≥ 2,
(6)

where gk = g(xk), while βk resembles the CG parameter. Here, the most well-known CG
parameters are divided into two groups, the first of which is an efficient group defined as
follows, which includes the Hestenses–Stiefel (HS) [3], Polak–Ribière–Polyak (PRP) [4],
as well as Liu and Storey (LS) [5] methods.

βHS
k =

gT
k yk–1

dT
k–1yk–1

, βPRP
k =

gT
k yk–1

‖gk–1‖2 , βLS
k = –

gT
k yk–1

dT
k–1gk–1

,

where yk–1 = gk – gk–1. However, this group encounters a convergence problem if their
values become negative [6]. In contrast, the second group is inefficient and exhibits strong
global convergence. This category includes the Fletcher–Reeves (FR) [7], Fletcher (CD)
[8], and Dai and Yuan (DY) [9] approaches, as defined by the following equations.

βFR
k =

‖gk‖2

‖gk–1‖2 , βCD
k = –

‖gk‖2

dT
k–1gk–1

, βDY
k =

‖gk‖2

dT
k–1gk–1

.

The subsequent conjugacy condition was put forth by Dai and Liao [10].

dT
k yk–1 = –tgT

k sk–1, (7)

where sk–1 = xk – xk–1 and t ≥ 0. Pertaining to t = 0, the classical conjugacy condition
is then expressed as Equation (8) becomes the classical conjugacy condition. They also
presented the CG formula below [10], utilizing (6) and (7).

βDL
k =

gT
k yk–1

dT
k–1yk–1

– t
gT

k sk–1

dT
k–1yk–1

= βHS
k – t

gT
k sk–1

dT
k–1yk–1

. (8)
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Table 1 Some recent three-term CG methods

Andrei [13, 14] t = (1 + ‖yk–1‖2
sTk–1yk–1

), t = (1 + 2 ‖yk–1‖2
sTk–1yk–1

).

Babaie-Kafaki and Ghanbari [15] t = (max(ς , 1 – ‖yk–1‖2
sTk–1yk–1

))ς > 0.

Deng and Wan [16] t = (max(0, 1 – ‖yk–1‖2
sTk–1yk–1

)).

Nonetheless, βDL
k carries over the same issue as βPRP

k and βHS
k , e.g., βDL

k is generally not
nonnegative. Equation (8) was then replaced [10]:

βDL+
k = max

{

βHS
k , 0

}

– t
gT

k sk–1

dT
k–1yk–1

.

Hager and Zhang [11, 12] provided the CG formula below, predicated in Eq. (8).

βHZ
k = max

{

βN
k ,ηk

}

, (9)

where βN
k = 1

dT
k yk

(yk – 2dk
‖yk‖2

dT
k yk

)T gk ,ηk = – 1
‖dk‖min{η,‖gk‖} , while η > 0 is a constant. Note that

t = 2 ‖yk‖2

sT
k yk

when βN
k = βDY

k .
Based on Equation (8), many researchers have suggested the three-term CG methods

given below. Let the following equation represent the general form with regard to the
three-term CG method:

dk = –gk + ηkdk–1 – θkyk–1, (10)

where θk = gT
k yk–1–tgT

k sk–1
yT

k–1dk–1
and ηk = gT

k dk–1
yT

k–1dk–1
. We then obtain a wide variety of choices by

replacing t in Eq. (10) with an appropriate term, as shown in Table 1.
By replacing yk–1 with gk–1, Liu et al. [17] proposed the following three-term CG method:

dk = –gk +
(

βLS
k –

‖gk–1‖2gT
k dk–1

(dT
k–1gk–1)2

)

dk–1 +
(

gT
k dk–1

dT
k–1yk–1

)

gk–1,

with the following assumption

(
gT

k dk–1

dT
k–1gk–1

)

> ν ∈ (0, 1).

Liu et al. [17] demonstrated how nonconvex functions may address nonlinear monotone
equations if the sufficient descent condition is met. Meanwhile, Liu et al. [18] created the
three-term CG methods given below and solved Equation (1) by utilizing it in order to
avoid using the condition ( gT

k dk–1
dT

k–1gk–1
) > ν ∈ (0, 1).

dk = –gk +
(

βLS
k –

‖gk–1‖2gT
k sk–1

(dT
k–1gk–1)2

)

dk–1 –
(

gT
k dk–1

dT
k–1yk–1

)

gk–1.

Yao et al. [19] suggested a three-term CG with the following new choice of t given by

dk+1 = –gk+1 +
(

gT
k yk – tkgT

k+1sk

yT
k dk

)

dk +
gT

k+1dk

yT
k dk

yk .
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tk was also chosen to meet the descent condition like the one below as per the SWP line
search.

tk >
‖yk‖2

yT
k sk

.

Another theorem put forth by Yao et al. [19] states that if tk is close to ‖yk‖2

yT
k sk

, then the
search direction produces a zigzag search path. Thus, they decided on the option tk given
below.

tk = 1 + 2
‖yk‖2

yT
k sk

.

At the beginning of the CG method, a nonnegative CG formula with a new restart prop-
erty was presented by Alhawarat et al. [20].

βAZPRP
k =

⎧

⎨

⎩

‖gk‖2–μk |gT
k gk–1|

‖gk–1‖2 if ‖gk‖2 > μk|gT
k gk–1|,

0 otherwise,

where ‖ · ‖ denotes the Euclidean norm, while μk can be represented as

μk =
‖xk – xk–1‖

‖yk–1‖ .

Similarly, Jiang et al. [21] suggested the CG method given by:

β
JJSL
k =

gT
k yk–1

gT
k–1yk–1

.

To improve the efficiency of prior methods, they constructed a restart criterion given as
follows:

dk =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

–gk , k = 1,

–gk + β
JJSL
k dk–1 + gT

k dk–1
dT

k–1(gk –gk–1)
gk–1 if 0 ≤ gT

k gk–1 ≤ ‖gk‖2 ≤ ‖gk–1‖2, k ≥ 2,

–gk + ξ
gT

k gk–1
‖gk–1‖2 gk–1, k ≥ 2, otherwise.

where 0 < ξ < 1.
Recently, a convex combination between two distinct search directions is presented by

Alhawarat et al. [22] as follows:

dk = λd(
k(1)) + (1 – λ)d(

k(2))

where

0 ≤ λ ≤ 1,

d(
k(1)) =

⎧

⎨

⎩

–gk , if k = 1,

–gk + β
(
k(1))d(

k–1(1)), if k ≥ 2,
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and

d(
k(2)) =

⎧

⎨

⎩

–gk , if k = 1,

–gk + β
(
k(2)d(

k(2), if k ≥ 2.

The authors selected β
(
k(1)) and β

(
k(2)) given below:

β
(
k(1)) =

⎧

⎪⎨

⎪⎩

‖gk‖2–μk |gT
k gk–1|

d(
k–1(1)yk–1

if ‖gk‖2 > μk|gT
k gk–1|,

–t gT
k sk–1

d(
k–1(1)yk–1

otherwise,

and

β
(
k(2)) = βCG–DESCENT

k .

The descent condition, also known as the downhill condition, given by

gT
k dk < 0, ∀k ≥ 1,

helps research CG methods and is crucial to the validation of global convergence analysis.
Al-Baali [23] also utilized the subsequent version of (13) to demonstrate the FR method.

gT
k dk ≤ –c‖gk‖2, ∀k ≥ 1, (11)

where c ∈ (0, 1). Next, the sufficient descent condition is given by Eq. (14) below. Moreover,
it performs better than (13) because the quantity of gT

k dk can be controlled using ‖gk‖2.

2 Proposed modified search direction (3TCGHS) and motivation
The main motivation for researchers in CG methods is to propose a positive CG method
with an efficiency similar to that of PRP or HS, with a global convergence. In the following
modification, we utilize the new search direction gk–1 proposed by [17] with βHS

k restricted
to be nonnegative, as given below:

dJiang
k =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

–gk , k = 1,

–gk + βHS
k dk–1 + gT

k dk–1
dT

k–1(gk –gk–1)
gk–1, if ‖gk‖2 > gT

k gk–1, k ≥ 2,

–μk
gT

k sk–1
dT

k–1(gk –gk–1)
, otherwise.

(12)

where μk = ‖xk –xk–1‖
‖gk –gk–1‖ .

The procedures acquired to determine the optimization function’s stationary point are
outlined in the following Algorithm 1.

3 Global convergence properties
The assumption that follows is considered as a condition for the objective function.
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Figure 1 Algorithm 1

Assumption 1 I. The level set � = {x ∈ Rn : f (x) ≤ f (x1)} is bounded. Here, a positive
constant ρ exists; in this case

‖x‖ ≤ ρ, ∀x ∈ � .
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II. f is a continuous and differentiable function in some neighborhood W of � , and its
gradient is Lipchitz continuous, meaning that, for every x, y ∈ W , a constant L > 0 exists,
in which case

∥
∥g(x) – g(y)

∥
∥ ≤ L‖x – y‖.

As per this assumption, there must be a positive constant η; in this case

∥
∥g(u)

∥
∥ ≤ η, ∀η ∈ W .

The CG method’s convergence properties are typically established using the following
lemma proposed by Zoutendijk [24]. The method involves multiple line searches, includ-
ing SWP and WWP line searches.

Lemma 3.1 Let Assumption 1 hold. If αk satisfies the WWP line search with the descent
condition (9), then take any form of (2) and (3). Then, the inequality that follows holds.

∞
∑

k=1

(gT
k dk)2

‖dk‖2 < ∞. (13)

As can be seen from the following theorem, the new formula fulfills the descent condition
(9).

Theorem 3.1 Let the sequences {xk} and {dJiang
k } be developed by Equations (2) and (12),

and consider the line search method obtained using Equations (3) and (4). The sufficient
descent condition (11) is then satisfied.

Proof Multiply (12) by gT
k to obtain

gT
k dJiang

k = –‖gk‖2 +
gT

k (gk – gk–1)
dT

k–1(gk – gk–1)
dk–1 +

gT
k dk–1

dT
k–1(gk – gk–1)

gT
k gk–1,

= –‖gk‖2 +
‖gk‖2

dT
k–1(gk – gk–1)

gT
k dk–1.

Using a SWP line search, we obtain

≤ –‖gk‖2 +
‖gk‖2

(1 – σ )gT
k dk–1

σ gT
k dk–1 = –‖gk‖2 +

σ‖gk‖2

(1 – σ )
.

If σ ≤ 1
2 ,

gT
k dJiang

k ≤ –c||gk||2.

The proof is now complete. �

Theorem 3.2 Let sequence {xk} be generated by Equation (2), where dk = –μk
gT

k sk–1
dT

k–1(gk –gk–1)
is the step length obtained by SWP line search. Afterwards, condition (11) for a sufficient
descent holds.
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Proof After multiplying (2) by gT
k and substituting dk = –μk

gT
k sk–1

dT
k–1(gk –gk–1)

, we acquire

gT
k dk = –‖gk‖2 – μk

αk–1gT
k dk–1

dT
k–1yk–1

gT
k dk–1,

gT
k dk = –‖gk‖2 – μk

αk–1‖gT
k dk–1‖2

dT
k–1yk–1

< 0.

This completes the proof. �

Gilbert and Nocedal [25] outlined a property known as Property* to perform a special-
ized role in studies on CG formulas related to the PRP method. The property is described
below.

Property* Consider a method of the form (2) and (6), and let

0 < γ ≤ ‖gk‖ ≤ γ̄ . (14)

We claim that the method contains Property (*) provided that constants b > 1 and λ > 0
exist, where for every k ≥ 1, we acquire |βk| ≤ b. Meanwhile, if ‖xk – xk–1‖ ≤ λ, then

|βk| ≤ 1
2b

.

The lemma below illustrates that βHS
k inherits Property*. The proof is similar to that given

by Gilbert and Nocedal [25].

Lemma 3.2 Let Assumption 1 hold and consider any form of Equations (2) and (3). Con-
sequently, βHS

k fulfills Property*.

Proof Let b = 2γ̄

(1–σ )cγ 2 > 1, and λ = (1–σ )cγ 4

2Lγ̄ b . Then, using (14) and SWP line search, we ob-
tain

∣
∣βHS

k
∣
∣ ≤

∣
∣
∣
∣

gT
k (gk – gk–1)

dT
k–1(gk – gk–1)

∣
∣
∣
∣
≤ ‖gk‖2 + |gT

k gk–1|
c(1 – σ )‖gk–1‖2 =

2γ̄

c(1 – σ )y2 = b.

If ‖xk+1 – xk‖ ≤ λ holds with Assumption 1, then

∣
∣βHS

k
∣
∣ ≤ gT

k (gk – gk–1)
dT

k–1(gk – gk–1)
≤ ‖gk‖‖gk – gk–1‖

c(1 – σ )‖gk–1‖2 ≤ L‖gk‖‖xk – xk–1‖
c(1 – σ )‖gk–1‖2

≤ Lγ̄ λ

c(1 – σ )γ 2 =
1

2b
. �

Lemma 3.3 Via Algorithm 1, let Assumption 1 hold while the sequences {gk} and {dJiang
k }

are developed. The step size αk is determined by utilizing the SWP line search to ensure that
the sufficient descent condition is met. Provided that βk ≥ 0, then a constant γ > 0 exists,
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where ‖gk‖ > γ for every k ≥ 1. Afterwards, dk 
= 0 and

∞
∑

k=0

‖uk+1 – uk‖2 < ∞, (15)

where uk = dk
‖dk‖ .

Proof First, given that dk = 0, we can acquire gk = 0 from the sufficient descent condition.
Hence, we can assume that dk 
= 0 and

γ̄ ≥ ‖gk‖ ≥ γ > 0, ∀k ≥ 1. (16)

We provide definitions as below:

uk = wk + δkuk–1,

ηk =
gT

k (gk – gk–1)
dT

k–1(gk – gk–1)
,

where

wk =
–gk + gT

k dk–1
dT

k–1(gk –gk–1)
gk–1

‖dk‖ , δk = ηk
‖dk–1‖
‖dk‖ .

Since uk denotes a unit vector, we have

‖wk‖ = ‖uk – δkuk–1‖ = ‖δkuk – uk–1‖.

By the triangular inequality and δk ≥ 0, we obtain

‖uk – uk–1‖ ≤ (1 + δk)‖uk – uk–1‖ =
∥
∥uk – δkuk–1 – (uk–1 – δkuk)

∥
∥. (17)

≤ ‖uk – δkuk–1‖ + ‖uk–1 – δkuk‖ = 2‖wk‖.

We now define

ν = –gk +
gT

k dk–1

dT
k–1(gk – gk–1)

gk–1.

Utilizing the triangular inequality, we establish

‖ν‖ ≤ ‖gk‖ +
∣
∣
∣
∣

gT
k dk–1

dT
k–1(gk – gk–1)

∣
∣
∣
∣
‖gk–1‖. (18)

Using the SWP Equations (4) and (5), we can obtain the following two inequalities.

dT
k–1yk–1 ≥ (σ – 1)gT

k–1dk–1,
∣
∣
∣
∣

gT
k dk–1

dT
k–1yk–1

∣
∣
∣
∣
≤

(
σ

1 – σ

)

.
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Hence, the inequality in Eq. (18) can be expressed in the following way:

‖ν‖ ≤ B
(

1 +
(

σ

1 – σ

))

.

Let

T = B
(

1 +
(

σ

1 – σ

))

.

Then, ‖ν‖ ≤ T . From Eq. (17), we have ‖uk – uk–1‖ ≤ 2w.
By Eqs. (16) and (15), we acquire what is presented below

∞
∑

k=0

‖uk+1 – uk‖2 ≤ 4
∞

∑

k=0

‖w‖2 ≤ 4T2
∞

∑

k=0

1
‖dk‖2 < ∞.

This completes the proof. �

By Lemmas 4.1 and 4.2 in [10], we are able to obtain the following outcome:

Theorem 3.3 Using the CG method in Eq. (12), let (2) and (3) generate the sequences {xk}
and {dJiang

k }, and let the step size satisfy (4) and (5). Utilizing Lemmas 3.2, 3.3, and Lem-
mas 4.1 and 4.2 in [10], we acquire such findings of lim infk→∞ ‖gk‖ = 0.

4 Numerical results and discussions
In this section, we provide some numerical findings to validate the efficiency for the pro-
posed search direction. Details are provided in the Appendix. We used 166 test functions
from the CUTEr library [26]. The functions can be downloaded in .SIF file format from
the URL below.

https://www.cuter.rl.ac.uk/Problems/mastsif.shtml
We modified the code from CG-Descent 6.8 to implement the proposed search direction

and DL+ method. The following website has the code available for download.
https://people.clas.ufl.edu/hager/software/
With an AMD A4-7210 CPU and 4 GB of RAM, the host computer was running Ubuntu

20.04 to carry out the necessary computations. We compared the modified search direc-
tion dJiang

k with DL+ methods, and we used a SWP line search to acquire the step length
with σ = 0.1 and δ = 0.01 for 3TCGHS and DL+ and the previously mentioned approx-
imate Wolfe-Powell line search for CG-Descent. Figures 1–4 present all outcomes via a
performance measure first used by Dolan and More [27]. We utilize an SWP line search
together with σ = 0.1 and δ = 0.01 for dJiang

k method and DL+. From Figs. 1–4, it may be
observed that the new search direction strongly outperformed DL+ in terms of the num-
ber of iterations, function evaluation, CPU time, and a number of gradient evaluations.
The subsequent big notations are used in the Appendix:

No. iter: Number of iterations.
No. function: Number of function evaluations
No. gradient: Number of gradient evaluations

https://www.cuter.rl.ac.uk/Problems/mastsif.shtml
https://people.clas.ufl.edu/hager/software/
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Figure 2 Graph of the number of iterations

Figure 3 Graph of the number of function evaluations

4.1 Application to image restoration
To the original images, we applied Gaussian noise with a standard deviation of 25%. Next,
we used 3TCGHS as well as the βDL+

k (Dai–Liao) CG algorithm to restore these images.



Alhawarat et al. Journal of Inequalities and Applications         (2024) 2024:73 Page 12 of 21

Figure 4 Graph of CPU time

Figure 5 Graph of the number of number of gradient evaluations

Take note that we made use of the (Dai–Liao) CG algorithm and 3TCGHS.

βDL+
k = max

(

0,
gT

k yk–1

dT
k–1yk–1

)

– t
gT

k sk–1

dT
k–1yk–1

.

If the descent condition was met; if not, we employed the steepest-descent approach
to restart the algorithm. We utilized the root-mean-square error (RMSE) between the
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Table 2 Numerical outcomes from images with Gaussian noise with a 25% standard deviation
added to the original images using the Dai-Liao CG method as well as 3TCGHS

Image Algorithm Number of iterations CPU time in seconds RMSE

Moon 128 pixels Dai-Liao (DL+) 171 1.189E+001 00.0654
3TCGHS 173 9.922E+000 00.0652

Baboon 128 pixels Dai-Liao(DL+) 156 1.198E+001 00.1492
3TCGHS 154 1.095E+001 00.1487

Cameraman 128 pixels Dai-Liao(DL+) 162 1.217E+001 00.1146
3TCGHS 160 9.891E+000 00.1143

Coins 128 pixels Dai-Liao(DL+) 132 9.422E+000 00.0834
3TCGHS 133 8.141E+000 00.0836

Moon 256 pixels Dai-Liao(DL+) 167 5.497E+001 00.0351
3TCGHS 166 4.917E+001 00.0351

Baboon 256 pixels Dai-Liao(DL+) 169 1.453E+002 00.1058
3TCGHS 169 1.433E+002 00.1058

Cameraman 256 pixels Dai-Liao(DL+) 164 9.627E+001 00.0889
3TCGHS 164 9.411E+001 00.0887

Coins 256 pixels Dai-Liao(DL+) 128 5.845E+001 00.0504
3TCGHS 129 5.539E+001 00.0505

Moon 512 pixels Dai-Liao(DL+) 155 2.071E+002 00.0183
3TCGHS 154 1.866E+002 00.0182

Baboon 512 pixels Dai-Liao(DL+) 173 8.931E+002 00.1070
3TCGHS 177 8.636E+002 00.1070

Cameraman 512 pixels Dai-Liao(DL+) 146 3.931E+002 00.0534
3TCGHS 146 3.600E+002 00.0534

Coins 512 pixels Dai-Liao(DL+) 129 2.964E+002 00.0326
3TCGHS 128 2.682E+002 00.0326

Moon 1024 pixels Dai-Liao(DL+) 151 7.440E+002 00.0080
3TCGHS 150 6.448E+002 00.0080

Cameraman 1024 pixels Dai-Liao(DL+) 126 1.210E+003 00.0028
3TCGHS 125 1.116E+003 00.0026

Coins 1024 pixels Dai-Liao(DL+) 120 9.912E+002 00.0017
3TCGHS 114 9.612E+002 00.0015

restored image and the original true image to assess the quality of the restored image.

RMSE =
‖ς – ςk‖2

‖ς‖ .

The restored image is denoted by ςk and the true image by ς . The RMSE determines
the quality of the restored image, in which lower values correspond to higher quality. The
criteria for stopping is

‖xk+1 – xk‖2

‖xk‖2
< ω.

In this context, ω = 10–3. Note that if ω = 10–4 or ω = 10–6, then RMSE remains constant,
meaning that a fixed RMSE can vary in the number of iterations.

Table 2 compares 3TCGHS with the Dai-Liao CG algorithm through a series of numer-
ical experiments. The RMSE, CPU time, and the number of iterations are all compared. It
may be observed that the 3TCGHS method performed better than Dai–Liao with respect
to CPU time, RMSE, and the number of iterations for most experimental tests.

Table 3 shows the outcomes of restoring destroyed images using Algorithm 1, indicating
that it can be considered an efficient approach.
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Table 3 Restoration of destroyed images of Coins, Cameraman,d Moon, an Baboon by reducing z via
Algorithm 1

Image Original image Image with Gaussian noise Resorted image

Coins (256 pixels)

Baboon (256 pixels)

Moon (128 pixels)

Cameraman (128 pixels)

Table 4 Data on demand and price

x:Price ($) y:Demand

1 5
2 3.5
2 3
2.3 2.7
2.5 2.4
2.6 2.5
2.8 2
3 1.5
3.3 1.2
3.5 1.2

4.2 Application to a regression problem
Table 4 shows data on the prices and demand for some commodities over several years.
The data is similar to that used by [28].

The relation between x and y is parabolic; thus, the regression function can be defined
as follows:

r = w2x2 + w1x + w0, (19)
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where w0, w1, and w2 are the regression parameters. We aim to solve the equation given
below using the least square method.

min Q =
n

∑

j=1

(

yj –
(

w0 + w1xj + w2x2
j
))2.

This equation is able to be modified to the following unconstrained optimization prob-
lem.

min
n

∑

j=1

f (w)w∈R3 =
n

∑

j=1

(

yj – ψ
(

1 + xj + x2
j
)T)2.

Next, we can use Algorithm 1 to get the subsequent outcomes. w2 = 0.1345, w1 =
–2.1925, w0 = 7.0762.

4.3 Solving system of linear equations in electrical engineering
The main challenge is solving complex systems of linear equations generated from lin-
ear circuits with many components. The first CG formula was suggested by Hestenes and
Steifel [3] in 1952 to solve the linear equation systems. The linear equation system is pre-
sented in the format

Qx = b.

In the case where the matrix Q is symmetric and positive definite, it may be regarded as
a method for resolving a corresponding quadratic function.

min f (x) =
1
2

xT Qx – bT x.

To see the similarities between the above equations, differentiate f (x) in relation to x
and make the gradient zero. In other words,

∇f (x) = Qx – b = 0.

The following example illustrates using the CG method to solve a linear equation system
generated from the circuit.

Example 1 [29, 30]. Consider the circuit shown in Fig. 6. To create the loop equations, use
loop analysis. Then, Algorithm 1 is applied to find the solution for the unknown currents.

Kirchhoff’s Current Law (often abbreviated as KCL) asserts that all currents entering
and leaving a node must sum up to zero algebraically. This law describes the flow of charge
into and out of a wire junction point or node. The circuit in Fig. 6 has four loops; thus,
Kirchhoff’s Loop Equations can be written as follows:

14L1 – 3L2 – 3L3 + 0L4 = 0,

– 3L1 + 10L2 + 0L3 – 3L4 = 0,

– 3L1 + 0L2 + 10L3 – 3L4 = 0,
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Figure 6 The circuit of Example 1

0 – 3L2 – 3L3 + 14L4 = 0,

where the following is one way to write the system of equations:

⎡

⎢
⎢
⎢
⎣

14 –3 –3 0
–3 10 0 –3
–3 0 10 –3
0 –3 –3 14

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

L1
L2
L3
L4

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0
–5
5
0

⎤

⎥
⎥
⎥
⎦

.

Thus, we can write the system Qx = b as follows:

Q =

⎡

⎢
⎢
⎢
⎣

14 –3 –3 0
–3 10 0 –3
–3 0 10 –3
0 –3 –3 14

⎤

⎥
⎥
⎥
⎦

, x =

⎡

⎢
⎢
⎢
⎣

L1
L2
L3
L4

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎥
⎦

, b =

⎡

⎢
⎢
⎢
⎣

0
–5
5
0

⎤

⎥
⎥
⎥
⎦

where Q denotes positive definite and symmetric matrix. Thus, we have the following
form:

f (x) =
1
2

xT Qx – bT x,

i.e.,

f (x1, x2, x3, x4) =
1
2

[x1x2x3x4]

⎡

⎢
⎢
⎢
⎣

14 –3 –3 0
–3 10 0 –3
–3 0 10 –3
0 –3 –3 14

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎥
⎦

– [0 5 – 5 0]

⎡

⎢
⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎥
⎦

.

After simple calculations, we compute the following function:

f (x1, x2, x3, x4) = 7x2
1 + 5x2

2 + 5x2
3 – 3x1x2 – 3x3x1 – 3x2x4 – 3x3x4 + 5x2 – 5x3. (20)
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Using Algorithm 1, we can find the following solution for Eq. (20)

x1=0,x2=–0.5,x3=0.5,x4=0,

and the function value is

f =–2.5.

5 Conclusion
We have outlined a three-term CG method in the present research that satisfies both the
convergence analysis and the descent condition via an SWP line search. Moreover, we have
presented numerical results with different values of sigma, showing that the new search
direction strongly outperformed alternative approaches with regard to the number of iter-
ations as well as was very competitive when it came to the number of functions, gradients,
and CPU time evaluated. Additionally, we have offered an application of the new search
direction of image restoration, regression analysis, and solving linear systems in electrical
engineering. Algorithm 1 demonstrates its efficiency in restoring destroyed images from
degraded pixel data. In addition, using Algorithm 1 to solve a system of linear equations is
easier than other traditional methods. In regression analysis, we found Algorithm 1 useful
for obtaining the value of regression parameters. In future research, we intend to utilize
CG methods in machine learning, mathematical problems in engineering, and neural net-
works.

Appendix

Function Dim No. iter
3TCGHS

No.
function
3TCGHS

No.
gradient
3TCGHS

CPU time
3TCGHS

No. iter
DL+

NO.
function
DL+

No.
gradient
DL+

CPU time
DL+

AKIVA 2 9 21 13 00.03 8 20 15 00.03
ALLINITU 4 11 25 15 00.03 9 25 18 0.03
ARGLINB 200 2 105 104 0.06 5 73 72 0.09
ARGLINC 200 2 106 104 00.03 5 79 78 0.06
ARWHEAD 5000 8 16 10 0.03 6 16 12 00.03
BARD 3 16 33 17 00.03 12 32 22 00.03
BDEXP 5000 4 9 4 00.03 2 7 7 00.03
BDQRTIC 5000 141 299 278 0.55 168 363 359 0.63
BEALE 2 13 30 18 00.03 11 33 26 00.03
BIGGS3 6 78 172 100 00.03 79 207 144 00.03
BIGGS5 6 78 172 100 00.03 79 207 144 00.03
BIGGS6 6 26 58 33 00.03 24 64 44 00.03
BIGGSB1 5000 2500 2507 4995 2.4 8328 8335 16651 10.86
BOX2 3 10 22 12 00.03 10 23 14 00.03
BOX3 3 10 22 12 00.03 10 23 14 00.03
BOX 10000 7 23 18 0.11 7 25 21 0.09
BRKMCC 2 5 11 6 00.03 5 11 6 00.03
BROYDNBDLS 10 26 54 28 00.03 25 57 34 00.03
BROWNAL 200 2 106 104 0.05 10 29 21 00.03
BROWNBS 2 12 26 17 00.03 10 24 18 00.03
BROWNDEN 4 15 31 19 00.03 16 38 31 00.03
BRYBND 5000 48 103 58 0.17 149 317 174 0.55
CAMEL6 2 11 36 28 00.03 6 22 18 00.03
CHNROSNB 50 281 556 295 00.03 1009 1998 1180 0.01
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Function Dim No. iter
3TCGHS

No.
function
3TCGHS

No.
gradient
3TCGHS

CPU time
3TCGHS

No. iter
DL+

NO.
function
DL+

No.
gradient
DL+

CPU time
DL+

CLIFF 2 13 58 40 00.03 10 46 39 0.01
COSINE 10000 14 77 70 0.26 12 52 43 0.2
CUBE 2 30 82 61 00.03 17 48 34 00.03
CURLY10 10000 46959 66455 74448 164.98 68087 88635 105434 240.64
CURLY20 10000 72787 95616 122794 391 88068 112535 142271 540.5
CURLY30 10000 77907 101195 132628 571.64 93324 121387 183418 712.27
DENSCHNA 2 8 18 11 00.03 6 16 12 00.03
DENSCHNB 2 7 15 8 00.03 6 18 15 00.03
DENSCHNC 2 11 26 16 00.03 11 36 31 00.03
DENSCHNE 3 16 49 36 00.03 12 43 38 00.03
DENSCHNF 2 8 17 9 00.03 9 31 26 00.03
DIXMAANA 3000 7 15 8 00.03 6 15 11 00.03
DIXMAANB 3000 6 13 7 00.03 6 15 11 00.03
DIXMAANC 3000 7 15 8 00.03 6 14 9 00.03
DIXMAAND 3000 10 21 11 00.03 7 17 12 00.03
DIXMAANF 3000 160 321 161 0.16 247 499 255 0.27
DIXMAANG 3000 167 335 168 0.19 348 701 356 0.38
DIXMAANH 3000 170 395 233 0.19 332 671 343 0.45
DIXMAANI 3000 3589 3673 7096 3.94 3522 3623 6953 4.66
DIXMAANJ 3000 360 721 361 0.3 476 957 486 0.56
DIXMAANK 3000 280 561 281 0.27 425 854 432 0.49
DIXON3DQ 10000 10000 10007 19995 19.48 15258 15265 30511 37.63
DQDRTIC 5000 5 11 6 00.03 15 32 18 00.03
ECKERLE4LS.SIF 3 3 7 4 00.03 2 6 4 00.03
EDENSCH 2000 28 54 42 0.05 27 66 54 0.03
EGGCRATE 2 6 15 10 00.03 6 15 10 00.03
EG2 1000 2 30 29 00.03 3 13 10 00.03
EIGENALS 2550 9104 17012 10328 152.7 9534 18450 18540 185.64
EIGENBLS 2550 27364 54733 27369 408.39 22540 45340 24700 350.43
EIGENCLS 2652 10972 21962 10992 174.08 13450 26740 18450 203.45
ELATVIDU 2 9 21 13 00.03 8 32 29 00.03
ENGVAL2 3 28 65 41 00.03 26 73 55 00.03
EXPFIT 2 9 21 13 00.03 9 29 22 00.03
EXTROSNB 1000 156 347 203 0.06 7182 12662 10680 2.39
exp2 2 7 16 9 00.03 7 16 9 00.03
FBRAINLS 2 9 23 16 00.03 9 27 21 00.03
FLETCHCR 1000 102 210 110 0.03 199 412 217 0.08
FMINSRF2 5625 378 805 451 1.37 733 1545 826 2.34
FMINSURF 5625 471 964 502 1.53 1245 2567 1342 4.08
GROWTHLS 3 135 425 333 00.03 109 431 369 00.03
GULF 3 35 85 52 00.03 33 95 72 00.03
HAIRY 2 15 62 50 00.03 17 82 68 00.03
HATFLDD 3 20 44 25 00.03 17 49 37 00.03
HATFLDE 3 18 49 32 00.03 13 37 30 00.03
HATFLDFLS 3 56 143 97 00.03 48 156 125 00.03
HEART8LS 8 237 531 309 00.03 253 657 440 00.03
HIELOW 3 15 33 19 0.03 13 30 21 0.05
HILBERTA 2 2 5 3 00.03 2 5 3 00.03
HILBERTB 10 4 9 5 00.03 4 9 5 00.03
HIMMELBB 2 8 25 19 00.03 4 18 18 00.03
HIMMELBF 4 22 50 30 00.03 23 59 46 00.03
HIMMELBG 2 7 20 15 00.03 7 22 17 00.03
HIMMELBH 2 7 16 9 00.03 5 13 9 00.03
HYDCAR6LS.SIF 29 33 70 38 00.03 1001 2027 1174 0.03
INDEF 5000 1 46 147 0.44 1 46 147 0.42
INTEQNELS.SIF 12 7 15 8 00.03 6 13 7 00.03
JENSMP 2 15 33 22 00.03 12 47 41 00.03
JIMACK 3549 8352 16706 8354 1196 11978 23971 12235 1732.9
JUDGE 2 9 21 12 00.03 9 24 18 00.03
KOWOSB 4 18 44 28 00.03 16 46 32 00.03
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Function Dim No. iter
3TCGHS

No.
function
3TCGHS

No.
gradient
3TCGHS

CPU time
3TCGHS

No. iter
DL+

NO.
function
DL+

No.
gradient
DL+

CPU time
DL+

KSSLS 1000 2 5 3 0.08 6 19 16 0.55
LIARWHD 5000 16 41 27 0.03 15 41 31 0.03
LOGHAIRY 2 26 114 94 00.03 26 196 179 00.03
LSC1LS 3 36 98 66 00.03 31 108 89 00.03
LSC2LS 3 44 112 78 00.03 37 106 86 00.03
LUKSAN11LS 100 989 2004 1018 0.05 2434 5355 3048 0.13
LUKSAN12LS 98 118 274 165 00.03 252 529 407 0.01
LUKSAN13LS 98 102 186 163 00.03 142 279 243 00.03
LUKSAN14LS 98 151 302 205 00.03 157 313 201 00.03
LUKSAN15LS 100 26 57 40 00.03 27 60 45 00.03
LUKSAN16LS 100 28 55 39 00.03 35 72 53 00.03
MANCINO 100 10 21 11 0.06 11 23 12 0.06
MGH09LS 4 51 139 102 00.03 25 82 72 00.03
MGH10LS 3 1098 2724 3703 00.03 1082 4052 4968 00.03
MGH17LS 5 57 204 170 00.03 84 323 365 00.03
MISRA1DLS.SIF 2 26 115 100 00.03 22 90 84 00.03
MODBEALE.SIF 20000 180 374 242 3.7 224 473 304 4.89
MOREBV 5000 161 168 317 0.31 117 124 229 0.23
MSQRTALS 1024 2726 5458 2733 8.36 8953 17316 9581 28.81
MSQRTBLS 1024 2252 4510 2259 6.3 5786 11558 5818 17.72
NCB20 5010 6619 13128 7244 64.03 11026 20505 15341 129.2
NONCVXU2 5000 9816 16811 12915 25 54585 94397 84907 182.92
NONDIA 5000 7 25 20 0.01 7 25 19 0.03
OSBORNEB 11 62 135 77 00.03 57 134 84 00.03
OSCIPATH 10 301809 689800 405691 2.06 295029 781729 534425 2.42
PALMER1C 8 12 27 28 00.03 12 27 28 00.03
PALMER1D 7 10 24 23 0 10 24 23 00.03
PALMER2C 8 12 21 22 00.03 11 21 22 00.03
PALMER3C 8 11 21 21 00.03 11 21 21 00.03
PALMER4C 8 11 21 21 00.03 11 21 21 00.03
PALMER5C 6 6 13 7 00.03 6 13 7 00.03
PALMER6C 8 11 24 24 00.03 11 24 24 00.03
PALMER7C 8 11 20 20 00.03 11 20 20 00.03
PALMER8C 8 11 19 19 00.03 11 19 19 00.03
PARKCH 15 336 714 393 10.3 412 982 611 16.02
PENALTY1 1000 22 61 45 00.03 14 51 43 00.03
PENALTY2 200 200 234 375 0.03 337 480 758 0.06
PENALTY3 200 93 283 229 1.83 102 346 290 2.19
PENALTY3 200 93 283 229 1.91 102 346 290 2.22
POWELLBSLS 2 62 195 254 0 50 211 234 00.03
POWELLSG 5000 22 46 25 0.03 36 92 65 0.05
POWER 10000 324 701 386 0.66 356 733 391 0.58
POWERSUM 4 5 11 6 00.03 4 10 6 00.03
PRICE3 2 14 30 17 00.03 10 25 17 00.03
PRICE4 2 10 23 13 00.03 9 30 23 00.03
QING 100 68 136 86 00.03 85 179 96 00.03
RAT43LS 4 43 126 91 00.03 44 156 122 00.03
ROSENBR 2 32 78 51 00.03 28 84 65 00.03
ROSENBRTU.SIF 2 44 155 124 00.03 37 175 153 00.03
S308 2 8 19 12 00.03 7 21 17 00.03
SCHMVETT 5000 2 106 104 0.31 59 103 88 0.28
SENSORS 100 23 62 45 0.41 24 71 53 0.47
SINQUAD 5000 15 42 34 0.09 13 46 38 0.09
SISSER 2 6 18 14 00.03 5 19 19 00.03
SNAIL 2 89 232 162 00.03 61 251 211 00.03
SPMSRTLS 4999 217 440 224 0.66 310 633 327 0.81
SROSENBR 5000 9 20 12 00.03 9 23 15 00.03
STREG 4 80 222 168 00.03 60 218 180 00.03
STRATEC 10 222 507 303 6.72 170 419 283 6.3
TESTQUAD 5000 1496 1503 2987 1.61 20325 20361 40674 21.61
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Function Dim No. iter
3TCGHS

No.
function
3TCGHS

No.
gradient
3TCGHS

CPU time
3TCGHS

No. iter
DL+

NO.
function
DL+

No.
gradient
DL+

CPU time
DL+

THURBERLS 7 112 260 208 00.03 105 259 216 00.03
TOINTGOR 50 123 222 153 00.03 192 348 270 00.03
TOINTGSS 5000 4 9 5 00.03 4 9 5 00.03
TOINTPSP 50 157 303 241 00.03 145 313 250 00.03
TOINTQOR 50 29 36 53 00.03 49 56 93 00.03
TQUARTIC 5000 12 38 28 00.03 11 41 34 0.03
TRIDIA 5000 782 789 1559 1.08 4699 4721 9408 6.38
TRIGON1.SIF 10 22 45 23 00.03 19 41 22 00.03
TRIGON2.SIF 10 26 52 28 00.03 22 57 43 00.03
VANDANMSLS.SIF 22 6 13 7 00.03 5 11 6 00.03
IM 200 10 21 11 00.03 9 20 15 00.03
VAREIGVL 50 23 48 26 00.03 28 71 51 00.03
VESUVIALS 8 1184 1856 3176 1.22 1262 1954 3155 1.22
VESUVIOULS 8 70 166 125 0.06 79 211 173 0.09
WAYSEA1 2 70 146 79 00.03 11 55 50 00.03
WAYSEA2 2 16 36 21 00.03 9 28 23 00.03
WOODS 4000 32 78 53 00.03 24 62 41 0.03
YATP1CLS 1E+05 18 45 31 5.89 17 48 36 7.12
YATP2CLS 1E+05 8 23 17 2.02 7 27 22 2.67
YFITU 3 71 176 116 00.03 68 208 167 0.03
ZANGWIL2 2 1 3 2 00.03 1 3 2 00.03
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