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Abstract
The alternating direction method of multipliers (ADMM) has been widely used to
solve linear constrained problems in signal processing, matrix decomposition,
machine learning, and many other fields. This paper introduces two linearized ADMM
algorithms, namely sequential partial linear inertial ADMM (SPLI-ADMM) and
sequential complete linear inertial ADMM (SCLI-ADMM), which integrate linearized
ADMM approach with inertial technique in the full nonconvex framework with
nonseparable structure. Iterative schemes are formulated using either partial or full
linearization while also incorporating the sequential gradient of the composite term
in each subproblem’s update. This adaptation ensures that each iteration utilizes the
latest information to improve the efficiency of the algorithms. Under some mild
conditions, we prove that the sequences generated by two proposed algorithms
converge to the critical points of the problem with the help of KŁ property. Finally,
some numerical results are reported to show the effectiveness of the proposed
algorithms.

Keywords: Inertial technique; Linear ADMM; Multiblock optimization problems;
Global convergence; Kurdyka; Łojasiewicz property; Sequential gradient

1 Introduction
In this paper, we consider the following linearly constrained nonconvex optimization
problem with multiple block variables:

min
xi ,y

n∑

i=1

fi(xi) + g(x1, x2, . . . , xn, y),

s.t.
n∑

i=1

Aixi + By = b,

(1.1)

where xi ∈R
pi (i = 1, 2, . . . n) and y ∈R

q are variables, each fi : Rpi →R∪{+∞}(i = 1, 2, . . . n)
are proper lower semicontinuous functions, which are nonconvex and (possibly) nons-
mooth, g : Rp1 ×R

p2 × · · · ×R
pn ×R

q →R is continuously differentiable, and ∇g is Lips-
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chitz continuous with modulus lg > 0, Ai ∈ R
m×pi (i = 1, 2, . . . n), B ∈ R

m×q are given matri-
ces, and b ∈R

m. Denote x[i,j] = (xi, xi+1, . . . , xj–1, xj) and Ax[j,k] =
∑k

i=j Aixi.
The Augmented Lagrangian Function (ALF) of (1.1) is defined as

L(x[1,n], y,λ) =
n∑

i=1

fi(xi) + g(x[1,n], y) – 〈λ, Ax[1,n] + By – b〉 +
β

2
‖Ax[1,n] + By – b‖2,

where λ ∈R
m is the Lagrangian dual variable, and β > 0 is a penalty parameter.

The problem (1.1) encapsulates a multitude of nonconvex optimization problems across
various domains, including signal processing, image reconstruction, matrix decomposi-
tion, machine learning, etc. [1–3]. When the number of blocks n equals 2, and g(·) is iden-
tically zero, this problem degenerates into two-block separable problem. If the problem
contains merely a mixed term, it becomes similar to the problem in [4]. On the other
hand, if variable y is absent, the problem becomes the study in [5]. Hence, problem (1.1)
extends the scope of the objective functions found in the literature [4–6], encompassing
a broader range of scenarios with additional variables and potential mixed terms, thereby
reflecting the versatility and complexity encountered in contemporary applications.

Indeed, ADMM has been established as a powerful tool for solving two-block separable
convex optimization problems [7, 8]. However, its effectiveness and convergence guar-
antees become much more intricate when dealing with nonconvex problems, especially
when the number of blocks exceeds two. Zhang et al. [9] tackled this challenge by propos-
ing a proximal ADMM for solving three-block nonconvex optimization tasks, building
upon the groundwork laid by Sun et al. [10]. Meanwhile, Wang et al. [11] proposed an
inertial proximal partially symmetric ADMM, suitable for handling multiblock separa-
ble nonconvex optimization problems. Hien et al. [12] developed an inertial version of
ADMM, referred to as iADMM, which integrated the majorization-minimization princi-
ple within each block update step to address a specific class of nonconvex low-rank repre-
sentation problems. Chao et al. [13] contributed to this area with a linear Bregman ADMM
algorithm for nonconvex multiblock optimization problems featuring nonseparable struc-
tures.

Linearized Alternating Direction Method of Multipliers (LADMM) simplifies the
problem-solving process and significantly decreases the computational overhead asso-
ciated with traditional ADMM. By linearizing certain components of the optimization
problem at each iteration, LADMM allows for more straightforward and efficient updates.
Li et al. [14] effectively utilized LADMM in the context of the least absolute shrinkage and
selection operator (LASSO) problem, demonstrating that this linearized approach is sim-
ple and highly efficient. Ling et al. [15] further extended the application of LADMM by
introducing a decentralized linearized ADMM algorithm, which solely linearizes the ob-
jective functions at each iterative step. This method facilitates distributed computation
and can handle large-scale problems more effectively. Specifically addressing nonconvex
and nonsmooth scenarios, Liu et al. [16] proposed a two-block linearized ADMM. This
variant linearizes the mixed term and the quadratic penalty term in the Augmented La-
grangian Function (ALF), thereby providing a viable solution strategy for such challenging
optimization problems. Chao et al. [13] presented a linear Bregman ADMM, which only
linearized the mixed term for solving three-block nonseparable problems. This approach
maintains the efficiency gains of LADMM while adapting it to accommodate the com-
plexities inherent in multiblock and nonseparable optimizations.
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Inertial technique, initially conceived by Polyak [17], serves as an acceleration strat-
egy that takes into account the dynamics of the optimization process by incorporating
information from the last two iterations, thereby mitigating substantial differences be-
tween consecutive points. Subsequently, Zavriv et al. [18] expanded the use of the iner-
tial technique to tackle nonconvex optimization problems, marking a significant mile-
stone in broadening the applicability of this methodology. Recently, the inertial technique
has seen widespread adoption in conjunction with various optimization algorithms to en-
hance their performance in solving nonconvex optimization problems. Bot et al. [19] pro-
posed an inertial forward-backward algorithm for the minimization of the sum of two
non-convex functions. Attouch et al. [20] introduced an inertial proximal method and a
proximal alternating projection method for maximal-monotone problems and minimiza-
tion problems, respectively. Pock et al. [21] went on to propose a linear Inertial Proximal
Alternating Minimization Algorithm (IPAMA) for a diverse range of nonconvex and non-
smooth optimization problems. Building upon these advancements, researchers have suc-
cessfully integrated the inertial technique with the Alternating Direction Method of Mul-
tipliers (ADMM). Hien et al. [22] developed an Inertial Alternating Direction Method of
Multipliers (iADMM) specifically designed for a class of nonconvex multiblock optimiza-
tion problems with nonlinear coupling constraints. Wang et al. [11] also introduced an
Inertial Proximal Partially Symmetric ADMM, tailored for nonconvex settings, further
highlighting the versatility and efficacy of combining inertial techniques with ADMM in
modern optimization methodologies.

Inspired by the previous works [11, 13, 16, 23], in this paper, we construct two new
variant linear inertial ADMM algorithms, sequential partial linear inertial ADMM (SPLI-
ADMM) and sequential complete linear inertial ADMM (SCLI-ADMM) for problem
(1.1).

The novelty of this paper can be summarized as follows:
(I) The proposed algorithms combine the inertial effect with the linearization skill. The

former improves the feasibility of the algorithms, while the latter contributes to fast con-
vergence.

(II) Unlike conventional approaches such as those in [13], during the linearization phase,
the gradient of the mixed term of the xj-sub-problem is calculated as ∇xj g(xk+1

[1,j–1], xk
[j,k], yk)

rather than ∇xj g(xk
[1,n], yk). This distinctive characteristic enables us to linearize the mixed

term dynamically based on the progress of the indicator sequence, meaning that each up-
date depends on the current state of the indicators. Consequently, it is referred to as a
sequential gradient iteration scheme.

The rest of this paper is organized as follows: In Sect. 2, some necessary preliminaries for
further analysis are summarized. Then, we establish the convergence of the two algorithms
in Sect. 3. Section 4 shows the validity of the algorithms by some numerical experiments.
Finally, some conclusions are drawn in Sect. 5.

2 Preliminaries
In this section, we recall some basic notations and preliminary results, which will be used
in this paper. Throughout, Rn denotes the n-dimensional Euclidean space, R ∪ {+∞} de-
notes the extended real number set, and N denotes the natural number set. The image
space of a matrix Q ∈R

m×n is defined as ImQ := {Qx : x ∈ R
n}. If matrix Q 
= 0, let ρmin(QTQ)
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denote the smallest positive singular value of the matrix QTQ. ‖ · ‖ represents the Eu-
clidean norm. dom f := {x ∈R

n : f (x) < +∞} is the domain of a function f : Rn →R∪{+∞},
〈x, y〉 = xTy =

∑n
i=1 xiyi.

Definition 2.1 ([24]) Let f : Rn →R
⋃{+∞} be a proper lower semicontinuous function.

(I) The Fréchet subdifferential, or regular subdifferential, of f at x ∈ domf , written ∂̂f (x),
is defined as

∂̂f (x) =
{

x∗ ∈R
n : lim

y
=x
inf
y
=x

f (y) – f (x) – 〈x∗, y – x〉
‖y – x‖ ≥ 0

}
,

when x /∈ dom f , we set ∂̂f (x) = ∅.
(II) The limiting-subdifferential, or simply the subdifferential, of f at x ∈ domf , written

∂f (x), is defined as

∂f (x) =
{

x∗ ∈R
n : ∃xk → x, s.t.f (xk) → f (x), x∗

k ∈ ∂̂f (x), x∗
k → x∗}.

(III) A point that satisfies

0 ∈ ∂f (x)

is called a critical point or a stationary point of the function f . The set of critical points of
f is denoted by crit f .

Proposition 2.1 We collect some basic properties of the subdifferential [24].
(I) f̂ (x) ⊆ ∂f (x) for each x ∈ R

n, where the first set is closed convex, and the second set is
only closed.

(II) Let x∗
k ∈ ∂f (xk) and limk→∞(xk , x∗

k) = (x, x∗), then, x∗ ∈ ∂f (x).
(III) If f : Rn →R

⋃{+∞} is proper lower semicontinuous, and g : Rm →R is continuous
differentiable, then ∂(f + g)(x) = ∂f (x) + ∇g(x) for any x ∈ dom f .

Definition 2.2 If ω∗ = (x∗
1, . . . x∗

n, y∗,λ∗)T such that

⎧
⎪⎪⎨

⎪⎪⎩

AT
i λ∗ ∈ ∂fi(x∗

i ) + ∇xi g(x∗
1, . . . x∗

n, y∗), i = 1, 2, . . . n,

BTλ∗ = ∇yg(x∗
1, . . . x∗

n, y∗),

A1x∗
1 + · · · + Anx∗

n + By∗ = b,

(2.1)

then ω∗ is called a critical point or stationary point of the Lagrangian function L(x1, . . . ,
xn, y,λ).

A very important technique to prove the convergence of ADMM for nonconvex opti-
mization problems is the assumption that the Lagrangian function satisfies the Kurdyka-
Łojasiewicz property (KŁ property) [19, 25]. For notational simplicity, we use �η(η > 0) to
denote the set of concave functions ϕ : [0,η) → [0,∞) such that

(I) ϕ(0) = 0;
(II) ϕ is continuously differentiable on (0,η) and continuous at 0;
(III) ϕ′(s) > 0 for all s ∈ (0,η).
The KŁ property can be described as follows.
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Definition 2.3 (see [19, 26]) (KŁ property) Let f : Rn →R∪{+∞} be a proper lower semi-
continuous function. If there exist η ∈ (0, +∞], a neighborhood U of x∗, and a continuous
concave function ϕ ∈ �η such that for all x ∈ U ∩{x ∈ Rm : f (x∗) < f (x) < f (x∗) + η}, it holds
that

ϕ′(f (x) – f
(
x∗))dist

(
0, ∂f (x)

) ≥ 1, (2.2)

where the distance from x to S is defined by d(x, S) := inf{‖y – x‖ : y ∈ S}. Then, f is said to
have the KŁ property at x∗.

Lemma 2.1 (see [25]) (Uniformized KŁ property) Suppose that f : Rn → R ∪ {+∞} is a
proper lower semicontinuous function, and 
 is a compact set. If f (x) ≡ f ∗ for all x ∈ 


and satisfies the KŁ property at each point of 
, then there exist ε > 0,η > 0 and ϕ ∈ �η

such that

ϕ′(f (x) – f ∗)dist
(
0, ∂f (x)

) ≥ 1, (2.3)

for all x ∈ {x ∈R
m : dist(x,
) < ε} ∩ {f ∗ < f (x) < f ∗ + η}.

Lemma 2.2 (see [25]) (Descent lemma) Let h : Rn → R be a continuous differentiable
function where gradient ∇h is Lipschitz continuous with the modulus lh > 0, then for any
x, y ∈R

n, we have

∣∣h(y) – h(x) –
〈∇h(x), y – x

〉∣∣2 ≤ lh

2
‖y – x‖2. (2.4)

Lemma 2.3 (see [27]) Let Q ∈ R
m×n be a nonzero matrix, and let ρmin(QTQ) denote the

smallest positive eigenvalue of QTQ. Then, for every u ∈R
n, it holds that

√
ρmin(QTQ)‖PQu‖ ≤ ‖Qu‖, (2.5)

where PQ denotes the Euclidean projection onto Im(Q).

3 Algorithms and their convergence
In this section, we propose two linear inertial ADMM algorithms, sequential partial linear
inertial ADMM (SPLI-ADMM), and sequential complete linear inertial ADMM (SCLI-
ADMM) and prove their convergence with some suitable conditions. Furthermore, we
prove the boundedness of the sequence.

3.1 Two linear inertial algorithms
First, we present Algorithm 1 for (1.1).

In every iteration of the subproblems, our approach utilizes sequential gradient to up-
date the variables. Specifically, for the (k + 1)th iteration of xi (i = 1, . . . , n), the mixed term
g(xk+1

[1,i–1], xi, xk
[i+1,n], yk) is replaced with a linearized approximation that includes an inertial

proximal term: gxi (x
k+1
[1,i–1], xk

[i,n], yk) + 〈xi – xk
i ,∇gxi (x

k+1
[1,i–1], xk

[i,n], yk)〉 + τ
2 ‖xi – zk

i ‖2. Here, the
sequential gradient ∇gxi (x

k+1
[1,i–1], xk

[i,n], yk) is refreshed for each subproblem, reflecting the
most recent variable updates. Note that the y-subproblem remains unlinearized, so we call
it sequential partial linear inertial ADMM.



Xue et al. Journal of Inequalities and Applications         (2024) 2024:65 Page 6 of 24

For xj-subproblem (i = 1, . . . , n) and y-subproblem, respectively, we get the following
auxiliary functions:

f̂ k
j (xj) = fj(xj) +

〈
xj – xk

j ,∇xj g
(
xk+1

[1,j–1], xk
[j,n], yk)〉

+
β

2

∥∥∥∥Axk+1
[1,j–1] + Ajxj + Axk

[j+1,n] + Byk – b –
λk

β

∥∥∥∥
2

+
τ

2
∥∥xj – zk

j
∥∥2,

(3.1)

ĥk(y) = g
(
xk+1

[1,n], y
)

+
β

2

∥∥∥∥Axk+1
[1,n] + By – b –

λk

β

∥∥∥∥
2

+
τ

2
∥∥y – yk∥∥2, (3.2)

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zk
1 = xk

1 + θk(xk–1
1 – xk

1),

zk
2 = xk

2 + θk(xk–1
2 – xk

2),
...

zk
n = xk

n + θk(xk–1
n – xk

n),

(3.3)

and θk ∈ [0, 1
2 ). Utilizing the auxiliary functions above, the update rules are summarized

in Algorithm 1 as follows:

Algorithm 1 SPLI-ADMM (Sequential Partial Linear Inertial ADMM)
1: Initialize x–1

[1,n] = x0
[1,n] = 0, y–1 = y0 = 0,λ0, θk ∈ [0, 1

2 ), τ ,β .
2: while Axk

[1,n]+Byk – b ≥ ε do
3: for i = 1, . . . , k do

xk+1
i = arg min

xi
f̂ k
i (xi). (3.4)

4: end for
5:

yk+1 = arg min
y

ĥk(y). (3.5)

6:

λk+1 = λk + β
(
Axk+1

[1,n] + Byk+1 – b
)
. (3.6)

7: end while
8: return (xk+1

1 , . . . , xk+1
n , yk+1,λk+1).

Remark 1 (I) The auxiliary functions defined in (3.1) own the inertial term τ
2 ‖xi – zk

i ‖2,
i = 1, 2, . . . , n, respectively. The inertial schemes update the new iteration by employing the
two previous iterations. By adding the inertial term to xi subproblems, the iteration trends
to the direction xk

i – xk–1
i .
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(II) The purpose of linearizing the mixed term in xi-subproblem is to use the properties
of differentiable blocks and simplify the calculation of each iteration.

(III) The initial point x–1
[1,n] = x0

[1,n] = 0, y–1 = y0 = 0 was designed for demonstrating the
boundedness of the sequence {ωk} generated by the algorithm.

The update rules of Algorithm 2 can be written as follows:

Algorithm 2 SCLI-ADMM (Sequential Complete Linear Inertial ADMM)
1: Initialize x–1

[1,n] = x0
[1,n] = 0, y–1 = y0 = 0, y–1 = y0 = 0,λ0, θk ∈ [0, 1

2 ), τ ,β .
2: while Axk

[1,n] + Byk – b ≥ ε do
3: for i = 1, . . . , n do

xk+1
i = arg min

xi
f̂ k
i (xi).

4: end for
5:

yk+1 = arg min
y

h̄k(y).

6:

λk+1 = λk + β
(
Axk+1

[1,n] + Byk+1 – b
)
. (3.7)

7: end while
8: return (xk+1

1 , . . . , xk+1
n , yk+1,λk+1).

Algorithm 2 is obtained by further linearization on the basis of Algorithm 1. The xi-
subproblems (i = 1, . . . , n) are same to that of Algorithm 1, the iterative scheme can be
written as (3.4). During the (k + 1)th iteration for updating y, we replace the function in
g(xk+1

[1,n], y) with a linearized approximation plus a regularization term gy(xk+1
[1,n], yk) + 〈y –

yk ,∇gy(xk+1
[1,n], yk)〉 + τ

2 ‖y – yk‖2. In Algorithm 2, all the subproblems were linearized and
sequential updated, hence we call it the Sequential Complete Linear Inertial ADMM.

The auxiliary function of y-subproblem is as follows

h̄k(y) =
〈
y – yk ,∇yg

(
xk+1

[1,n], yk)〉 +
β

2

∥∥∥∥Axk+1
[1,n] + By – b –

λk

β

∥∥∥∥
2

+
τ

2
∥∥y – yk∥∥2. (3.8)

3.2 A descent inequality
A crucial element in establishing the convergence of these algorithms is to verify the de-
scent property of the regularized augmented Lagrangian function sequence. To facilitate
our analysis, the following notations are introduced throughout this paper. For k ≥ 1,

�xk+1
i = xk+1

i – xk
i , �yk+1 = yk+1 – yk , �λk+1 = λk+1 – λk .

�xk+1
[i,j] =

(
�xk+1

i , . . . ,�xk+1
j

)
, θ

∥∥�xk+1
[i,j]

∥∥ =
j∑

s=i

θ
∥∥�xk+1

s
∥∥.
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The convergence analysis relies on the following assumptions:

Assumption A (I) g is lg -Lipschitz differentiable, and g is bounded from below. ∇g is lg -
Lipschitz continuous, i.e.,‖∇g(u) – ∇g(v)‖ ≤ lg‖u – v‖ for all u, v ∈R

p1 ×R
p2 ×· · ·×R

pn ×
R

q;
(II) fi, i = 1, . . . , n are proper lower semicontinuous, and fi are bounded from below;
(III) The linear operator B is surjective, i.e., B 
= 0 and {b}⋃{⋃n

i=1 Im Ai} ⊂ Im B;
(IV) For Algorithm 1 and Algorithm 2, θk ∈ [0, 1

2 ), τ > 0 and β is large enough such that

τ > 2+lg
1–2θk

, β > max{ 3(l2g +τ2)
ρmin(BTB)

, 6(τ2+l2g )
τθkρmin(BTB)

};

(V) Let X := R
p1 × · · · ×R

pn ×R
q ×R

m. The set {ω ∈ X : Lβ (ω) ≤ Lβ (ω0)} is bounded.

For showing the descent property, the following lemmas are necessary.

Lemma 3.1 For Algorithm 1, for each k ∈ N , we have

∥∥�λk+1∥∥2 ≤ 3l2
g

ρmin(BTB)

∥∥�xk+1
[1,n]

∥∥2 +
3(l2

g + τ 2)
ρmin(BTB)

∥∥�yk+1∥∥2 +
3τ 2

ρmin(BTB)

∥∥�yk∥∥2. (3.9)

For Algorithm 2, for each k ∈ N , we have

∥∥�λk+1∥∥2 ≤ 3l2
g

ρmin(BTB)

∥∥�xk+1
[1,n]

∥∥2 +
3τ 2

ρmin(BTB)

∥∥�yk+1∥∥2 +
3(l2

g + τ 2)
ρmin(BTB)

∥∥�yk∥∥2. (3.10)

Proof Using Assumption A(III) and Lemma 2.3, we have

∥∥�λk+1∥∥ ≤ 1√
ρmin(BTB)

∥∥BT�λk+1∥∥. (3.11)

For Algorithm 1, the optimal condition of y-subproblem in (3.2) yields

0 = ∇yg
(
xk+1

[1,n], yk+1) – BTλk + βBT(
Axk+1

[1,n] + Byk+1 – b
)

+ τ
(
�yk+1).

Since λk+1 = λk – β(Axk+1
[1,n] + Byk+1 – b), we have

BTλk+1 = ∇yg
(
xk+1

[1,n], yk+1) + τ
(
�yk+1). (3.12)

Let uk = (xk
[1,n], yk). Using Assumption A (I) and (3.12), we have

∥∥BTλk+1 – BTλk∥∥2

=
∥∥∇yg

(
uk+1) – ∇yg

(
uk) + τ�yk+1 – τ�yk∥∥2

=
∥∥∇yg

(
uk+1) – ∇yg

(
uk)∥∥2 +

∥∥τ�yk+1∥∥2 +
∥∥τ�yk∥∥2 – 2

〈
τ�yk+1, τ�yk 〉

– 2
〈∇yg

(
uk+1) – ∇yg

(
uk), τ�yk 〉 + 2

〈∇yg
(
uk+1) – ∇yg

(
uk), τ�yk+1〉

≤ 3l2
g
∥∥�uk+1∥∥2 + 3τ 2∥∥�yk+1∥∥2 + 3τ 2∥∥�yk∥∥2

≤ 3l2
g
∥∥�xk+1

[1,n]
∥∥2 + 3

(
l2
g + τ 2)∥∥�yk+1∥∥2 + 3τ 2∥∥�yk∥∥2.

(3.13)
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It follows from the above mentioned formula and (3.11) that

∥∥�λk+1∥∥2 ≤ 3l2
g

ρmin(BTB)

∥∥�xk+1
[1,n]

∥∥2 +
3(l2

g + τ 2)
ρmin(BTB)

∥∥�yk+1∥∥2 +
3τ 2

ρmin(BTB)

∥∥�yk∥∥2.

For Algorithm 2, similarly, we get

∥∥�λk+1∥∥2 ≤ 3l2
g

ρmin(BTB)

∥∥�xk+1
[1,n]

∥∥2 +
3τ 2

ρmin(BTB)

∥∥�yk+1∥∥2 +
3(l2

g + τ 2)
ρmin(BTB)

∥∥�yk∥∥2.

The proof is completed. �

To brief the analysis, some notations are given below. Let wk = (xk
[1,n], yk ,λk), uk =

(xk
[1,n], yk), rk = Axk

[1,n] + Byk – b. The following lemma is important to prove the mono-
tonicity of the sequence {L̂β (ŵk+1)} defined as (3.20).

Lemma 3.2 For Algorithm 1 and Algorithm 2, select θk ∈ [0, 1
2 ) and τ ,β large enough to

assure τ > 2+lg
1–2θk

, β > max{ 3(l2g +τ2)
ρmin(BTB)

, 6(τ2+l2g )
τθkρmin(BTB)

}.
Then, for each k ∈ N, we have

Lβ

(
wk+1) + δ2

(∥∥�xk+1
[1,n]

∥∥2 +
∥∥�yk+1∥∥2) ≤ Lβ

(
wk) + δ1

(∥∥�xk
[1,n]

∥∥2 +
∥∥�yk∥∥2), (3.14)

where δ2 > δ1 > 0.

Proof We first give the proof of Algorithm 1.
From (3.1) and (3.4), for j = 1, . . . , n, we have

fj
(
xk+1

j
)

+
〈
�xk+1

j ,∇xj g
(
xk+1

[1,j–1], xk
[j,n], yk)〉

–
〈
λk , Axk+1

[1,j] + Axk
[j+1,n] + Byk – b

〉
+

β

2
∥∥Axk+1

[1,j–1] + Axk
[j,n] + Byk – b

∥∥2

≤ fj
(
xk

j
)

–
〈
λk , Axk+1

[1,j–1] + Axk
[j,n] + Byk – b

〉

+
β

2
∥∥Axk+1

[1,j–1] + Axk
[j,n] + Byk – b

∥∥2 +
τ

2
∥∥xk

j – zk
j
∥∥2 –

τ

2
∥∥xk+1

j – zk
j
∥∥2.

From (3.2) and (3.5), we have

g
(
uk+1) –

〈
λk , rk+1

〉
+

β

2
‖rk+1‖2

≤ g
(
xk+1

[1,n], yk) –
〈
λk , Axk+1

[1,n] + Byk – b
〉
+

β

2
∥∥Axk+1

[1,n] + Byk – b
∥∥2 –

τ

2
∥∥�yk+1∥∥2.

Adding up the above mentioned formulas from j = 1, . . . , n, we have

n∑

i=1

fi
(
xk+1

i
)

+ g
(
uk+1) –

〈
λk , rk+1

〉
+

β

2
‖rk+1‖2

≤
n∑

i=1

fi
(
xk

i
)

+ g
(
xk+1

[1,n], yk) –
〈
λk , rk

〉
+

β

2
‖rk‖2
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–
n∑

i=1

〈
�xk+1

i ,∇xi g
(
xk+1

[1,i–1], xk
[i,n], yk)〉 +

τ

2

n∑

i=1

∥∥xk
i – zk

i
∥∥2

–
τ

2

n∑

i=1

∥∥xk+1
i – zk

i
∥∥2 –

τ

2
∥∥yk+1 – yk∥∥2,

hence

n∑

i=1

fi
(
xk+1

i
)

+ g
(
uk+1) –

〈
λk , rk+1

〉
+

β

2
‖rk+1‖2

≤
n∑

i=1

fi
(
xk

i
)

+ g
(
uk) –

〈
λk , rk

〉
+

β

2
‖rk‖2

+ g
(
xk+1

[1,n], yk) – g
(
uk) –

n∑

i=1

〈
�xk+1

i ,∇xi g
(
xk+1

[1,i–1], xk
[i,n], yk)〉

︸ ︷︷ ︸
A

+
τ

2

n∑

i=1

∥∥xk
i – zk

i
∥∥2 –

τ

2

n∑

i=1

∥∥xk+1
i – zk

i
∥∥2

︸ ︷︷ ︸
B

–
τ

2
∥∥�yk+1∥∥2.

One the one hand, from Lemma 2.2, part A can be written as

g
(
xk+1

[1,n], yk) – g
(
uk) –

n∑

i=1

〈
�xk+1

i ,∇xi g
(
xk+1

[1,i–1], xk
[i,n], yk)〉

=
n∑

i=1

{
g
(
xk+1

[1,i], xk
[i+1,n], yk)

– g
(
xk+1

[1,i–1], xk
[i,n], yk) –

〈
�xk+1

i ,∇xi g
(
xk+1

[1,i–1], xk
[i,n], yk)〉}

≤ lg

2
∥∥�xk+1

[1,n]
∥∥2.

(3.15)

On the other hand, by the definitions of zk
i , i = 1, 2, . . . , n, we have

∥∥xk
i – zk

i
∥∥2 –

∥∥xk+1
i – zk

i
∥∥2

= θ2
k
∥∥xk–1

i – xk
i
∥∥2 –

∥∥xk+1
i – xk

i + θk
(
xk

i – xk–1
i

)∥∥2

= –
∥∥xk+1

i – xk
i
∥∥2 – 2θk

〈
xk

i – xk+1
i , xk

i – xk–1
i

〉

≤ –
∥∥xk+1

i – xk
i
∥∥2 + θk

∥∥xk+1
i – xk

i
∥∥2 + θk

∥∥xk
i – xk–1

i
∥∥2

= –(1 – θk)
∥∥xk+1

i – xk
i
∥∥2 + θk

∥∥xk
i – xk–1

i
∥∥2.

Thus, it can be inferred from part B that

n∑

i=1

∥∥xk
i – zk

i
∥∥2 –

n∑

i=1

∥∥xk+1
i – zk

i
∥∥2 ≤ –(1 – θk)

∥∥�xk+1
[1,n]

∥∥2 + θk
∥∥�xk

[1,n]
∥∥2. (3.16)
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From Lemma 2.2, (3.15) and (3.16), we obtain

Lβ

(
xk+1

[1,n], yk+1,λk) ≤ Lβ

(
wk) +

lg

2
∥∥�xk+1

[1,n]
∥∥2 –

τ (1 – θk)
2

∥∥�xk+1
[1,n]

∥∥2

–
τ

2
∥∥�yk+1∥∥2 +

τθk

2
∥∥�xk+1

[1,n]
∥∥2.

(3.17)

Recall that

Lβ

(
wk+1) = Lβ

(
xk+1

[1,n], yk+1,λk) +
〈
�λk+1, rk+1

〉

= Lβ

(
xk+1

[1,n], yk+1,λk) +
1
β

〈
�λk+1,�λk+1〉

≤ Lβ

(
xk+1

[1,n], yk+1,λk) +
1
β

∥∥�λk+1∥∥2.

(3.18)

Submitting (3.9) and (3.17) into (3.18), we have

Lβ

(
wk+1)

≤ Lβ

(
wk) +

lg

2
∥∥�xk+1

[1,n]
∥∥2 –

τ (1 – θk)
2

∥∥�xk+1
[1,n]

∥∥2 –
τ

2
∥∥�yk+1∥∥2 +

τ

2
θk

∥∥�xk
[1,n]

∥∥2

+
3l2

g

βρmin(BTB)

∥∥�xk
[1,n]

∥∥2 +
3(l2

g + τ 2)
βρmin(BTB)

∥∥�yk+1∥∥2 +
3τ 2

βρmin(BTB)

∥∥�yk∥∥2

= Lβ

(
wk) –

(
τ (1 – θk)

2
–

lg

2
–

3l2
g

βρmin(BTB)

)∥∥�xk+1
[1,n]

∥∥2

–
(

τ

2
–

3(τ 2 + l2
g )

βρmin(BTB)

)∥∥�yk+1∥∥2 +
τθk

2
∥∥�xk

[1,n]
∥∥2 +

3τ 2

βρmin(BTB)

∥∥�yk∥∥2.

Hence,

Lβ

(
wk+1) +

(
τ (1 – θk)

2
–

lg

2
–

3l2
g

βρmin(BTB)

)∥∥�xk+1
[1,n]

∥∥2 +
(

τ

2
–

3(τ 2 + l2
g )

βρmin(BTB)

)∥∥�yk+1∥∥2

≤ Lβ

(
wk) +

τθk

2
∥∥�xk

[1,n]
∥∥2 +

3τ 2

βρmin(BTB)

∥∥�yk∥∥2

≤ Lβ

(
wk) +

τθk

2
∥∥�xk

[1,n]
∥∥2 +

3(l2
g + τ 2)

βρmin(BTB)

∥∥�yk∥∥2.

Since β > max{ 3(l2g +τ2)
ρmin(BTB)

, 3(τ2+l2g )
τθkρmin(BTB)

}, which further implies 6(l2g +τ2)
βρmin(BTB)

< 1 and τθk
2 > 3(τ2+l2g )

βρmin(BTB)
,

then have

Lβ

(
wk+1) +

(
τ (1 – θk)

2
–

lg

2
– 1

)∥∥�xk+1
[1,n]

∥∥2 +
(

τ

2
– 1

)∥∥�yk+1∥∥2

≤ Lβ

(
wk) +

τθk

2
∥∥�xk

[1,n]
∥∥2 +

3(τ 2 + l2
g )

βρmin(BTB)

∥∥�yk∥∥2

≤ Lβ

(
wk) +

τθk

2
∥∥�xk

[1,n]
∥∥2 +

τθk

2
∥∥�yk∥∥2.
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Let δ2 = τ (1–θk )
2 – lg

2 – 1, δ1 = τ
2 θk . We get

Lβ

(
wk+1) + δ2

(∥∥�xk+1
[1,n]

∥∥2 +
∥∥�yk+1∥∥2) ≤ Lβ

(
wk) + δ1

(∥∥�xk
[1,n]

∥∥2 +
∥∥yk∥∥2). (3.19)

Since τ> 2+lg
1–2θk

, which further implies that τ (1–θk )
2 – lg

2 – 1 > τθk
2 , we obtain δ2 > δ1 > 0. That

is, (3.14) holds.
Similarly, for Algorithm 2, we obtain

Lβ

(
wk+1) +

(
τ (1 – θk)

2
–

lg

2
–

3l2
g

βρmin(BTB)

)∥∥�xk+1
[1,n]

∥∥2

+
(

τ

2
–

lg

2
–

3τ 2

βρmin(BTB)

)∥∥�yk+1∥∥2

≤ Lβ

(
wk) +

τθk

2
∥∥�xk

[1,n]
∥∥2 +

3(l2
g + τ 2)

βρmin(BTB)

∥∥�yk∥∥2.

Since β> max{ 3(l2g +τ2)
ρmin(BTB)

, 6(τ2+l2g )
τθkρmin(BTB)

}, which further implies 3(l2g +τ2)
βρmin(BTB)

<1 and τθk
2 > 3(τ2+l2g )

βρmin(BTB)
, it

follows that

Lβ

(
wk+1) +

(
τ (1 – θk)

2
–

lg

2
– 1

)∥∥�xk+1
[1,n]

∥∥2 +
(

τ (1 – θk)
2

–
lg

2
– 1

)∥∥�yk+1∥∥2

≤ Lβ

(
wk) +

τθk

2
∥∥�xk

[1,n]
∥∥2 +

τθk

2
∥∥�yk∥∥2.

Let δ2 = τ (1–θk )
2 – lg

2 – 1, δ1 = τ
2 θk . We have

Lβ

(
wk+1) + δ2

(∥∥�xk+1
[1,n]

∥∥2 +
∥∥�yk+1∥∥2) ≤ Lβ

(
wk) + δ1

(∥∥�xk
[1,n]

∥∥2 +
∥∥�yk∥∥2).

Since τ> 2+lg
1–2θk

, which further implies that τ (1–θk )
2 – lg

2 – 1 > τθk
2 , then we get δ′

2 > δ′
1 > 0. That

is, (3.14) holds. The lemma is proved. �

Remark 2 Based on Lemma 3.2, we can define the following function

L̂β (ŵ) = L̂β (u,λ, v) = Lβ (u,λ) + δ1‖u – v‖2, (3.20)

where

u = (x[1,n], y), v = (x̃[1,n], ỹ), ŵ = (u,λ, v) = (x[1,n], y,λ, x̃[1,n], ỹ)

and

‖u – v‖2 = ‖x[1,n] – x̃[1,n]‖2 + ‖y – ỹ‖2.

Set ω̂k+1 = (xk+1
[1,n], yk+1,λk+1, xk

[1,n], yk), uk+1 = (xk+1
[1,n], yk+1). Thus,

L̂β

(
ω̂k+1) = L̂β

(
uk+1,λk+1, uk) = Lβ

(
uk+1,λk+1) + δ1

(∥∥�uk+1∥∥2). (3.21)
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The following lemma implies that the sequence L̂β (uk ,λk , uk–1) is decreasing monoton-
ically.

Lemma 3.3 Suppose L̂β (ω̂k+1) is defined as (3.20). Then, under Assumption A, for Algo-
rithm 1 and Algorithm 2, we have:

L̂β

(
ω̂k+1) + δ

(∥∥�uk+1∥∥2) ≤ L̂β

(
ŵk). (3.22)

That is, the sequence {L̂β (ω̂k+1)} is decreasing.

Proof Set δ = δ2 – δ1 > 0. Then the result follows directly from Lemma 3.2. �

3.3 The cluster points of {ωk} are contained in critL
In this subsection, together with the closeness of the limiting subdifferential mentioned
above, we prove the subsequential convergence of the sequence {ωk}. The proof of Algo-
rithm 2 is similar to that of Algorithm 1, so we omit the proof of Algorithm 2 here.

Lemma 3.4 Suppose {ωk} is the sequence generated by Algorithm 1. If Assumption A holds,
then the following statements are true:

(I) The sequence {ωk} is bounded. (II) L̂β (ω̂k) is bounded from below and convergent,
additionally,

∑

k≥0

∥∥ωk+1 – ωk∥∥2 < +∞. (3.23)

(III) The sequences L̂β (ω̂k) and Lβ (ωk) have the same limit L̂∗.

Proof (I) Because of the decreasing property of {L̂β (ω̂k)}, we get

Lβ

(
ωk) ≤ L̂β

(
ω̂k) ≤ L̂β

(
ω̂0) = Lβ

(
ω0) + δ

(∥∥u0 – u–1∥∥2) = Lβ

(
ω0),

where ‖u0 –u–1‖2 is due to the Initialization parameters x0
i = x–1

i , i = 1, . . . , n and y0 = y–1 in
Algorithm 1. Hence, {ωk} ⊆ {ωk ∈ X : Lβ (ω) ≤ Lβ (ω0)}. By Assumption A(V), the sequence
{ωk} is bounded.

(II) Since {ωk} is bounded, {ω̂k} is also bounded, and it has at least one cluster point. Let
ω̂∗ be a cluster point of {ω̂k}, and limj→+∞ ω̂kj = ω̂∗. Because of the fact that fi(i = 1, 2, . . . , n)
are proper lower semicontinuous, and g is continuously differentiable, then L̂β (·) is proper
lower semicontinuous. Hence, we have

lim
j→+∞ inf L̂β

(
ω̂kj

) ≥ L̂β

(
ω̂∗).

According to the boundedness of fi, g , {ωk}k≥0 and the definition of L̂β (ω̂k), we have L̂β (ωk)
is bounded from below. Thus, L̂β (ω̂kj ) is also bounded from below. From Lemma 3.3,
L̂β (ω̂k) is monotonically decreasing, and we obtain that L̂β (ω̂kj ) is convergent. Since L̂β (ω̂k)
is monotonically decreasing, L̂β (ω̂k) is also convergent and L̂β (ω̂∗) ≤ L̂β (ω̂k). It follows
from (3.22) that

δ
(∥∥�uk+1∥∥2) ≤ L̂β

(
ŵk) – L̂β

(
ŵk+1).
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Summing up the above inequality for k = 0, . . . , N and letting N → ∞, we have

δ

+∞∑

k=1

(∥∥�xk+1
[1,n]

∥∥2 +
∥∥�yk+1∥∥2) ≤ L̂β

(
ŵ0) – L̂β

(
ŵ∗) < +∞.

Since δ > 0, it follows that

+∞∑

k=1

∥∥�xk+1
[1,n]

∥∥2 < +∞,
+∞∑

k=1

∥∥�yk+1∥∥2 < +∞. (3.24)

Consequently, due to (3.9), we have

+∞∑

k=1

∥∥λk+1 – λk∥∥2 < +∞. (3.25)

Then,
∑∞

k=1 ‖ωk+1 – ωk‖2< + ∞.
(III) From (3.24), we have ‖�xk+1

[1,n]‖2 → 0 and ‖�yk+1‖2 → 0. Combining with the def-
inition of L̂β (ŵk) in (3.21) yields L̂∗ = limk→+∞ L̂β (ω̂k) = limk→+∞ Lβ (ωk). The lemma is
proved. �

The following lemma provides upper estimates for the limiting subgradients of L̂β (·),
which is important for the convergence analysis of the sequence generated by Algorithm 1
and Algorithm 2.

Lemma 3.5 Let {ωk} be a sequence generated by Algorithm 1. Then, there exists C > 0 such
that

d
(
0, ∂Lβ

(
ωk+1)) ≤ C

( n∑

i=1

∥∥�xk+1
i

∥∥ +
∥∥�yk+1∥∥ +

n∑

i=1

∥∥�xk
i
∥∥ +

∥∥�yk∥∥
)

. (3.26)

Proof By the definition of the augmented Lagrangian function Lβ (·), we have

⎧
⎪⎪⎨

⎪⎪⎩

∂xj Lβ (uk+1,λk+1) = ∂fj(xk+1
j ) + ∇xj g(xk+1

[1,n], yk+1) – AT
j (λk+1 – βrk+1),

∂yLβ (uk+1,λk+1) = ∇yg(xk+1
[1,n], yk+1) – BTλk+1 + βBT rk+1,

∂λLβ (uk+1,λk+1) = 1
β

(λk – λk+1).

(3.27)

From the optimality conditions of (3.1)–(3.2), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–∇xj g(xk+1
[1,j–1], xk

[j,n], yk) + AT
j λk+1 – βAT

j �Axk+1
[j+1,n] – βAT

j B(yk – yk+1)

– τ (xk+1
j – zk

j ) ∈ ∂fj(xk+1
j ),

BTλk+1 – τ (yk+1 – yk) = ∇yg(uk+1),

λk+1 = λk – β(Axk+1
[1,n] + Byk+1 – b),

(3.28)

where �Axk+1
[j+1,n] = Axk+1

[j+1,n] – Axk
[j+1,n]. Putting (3.28) into (3.27), we have

(
ρk+1

1 ,ρk+1
2 , . . . ,ρk+1

n ,ρk+1
n+1,ρk+1

n+2
)T ∈ ∂Lβ

(
xk+1

1 , xk+1
2 , . . . , xk+1

n , yk+1,λk+1),
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where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρk+1
j = ∇xj g(xk+1

[1,n], yk+1) – ∇xj g(xk+1
[1,j–1], xk

[j,n], yk) + AT
j (λk – λk+1)

+ βAT
j �Axk+1

[j+1,n] + βAT
j B(yk – yk+1) – τ (xk+1

j – zk
j ), (j = 1, . . . , n),

ρk+1
n+1 = βBT(λk – λk+1) – τ (yk+1 – yk),

ρk+1
n+2 = 1

β
(λk – λk+1).

(3.29)

Since ∇g is Lipschitz continuous on bounded subsets and {ωk} is bounded, by (III) of
Assumption A, combining (3.14), there exists C > 0 such that

d
(
0, ∂Lβ

(
ωk+1)) ≤ C

( n∑

i=1

∥∥�xk+1
i

∥∥ +
∥∥�yk+1∥∥ +

n∑

i=1

∥∥�xk
i
∥∥ +

∥∥�yk∥∥
)

.

Similarly, we can derive the same conclusion for Algorithm 2. We omit the proof here. �

Theorem 3.1 Denote the set of the cluster points of the sequence {ωk} and {ω̂k} by 
 and

̂, respectively. We have that:

(I) If ω∗ is a cluster of {ωk}, then it has a convergent subsequence {ωkj}j≥0 such that
limj→+∞ wkj = w∗, then

lim
j→∞ Lβ

(
ωkj

)
= Lβ

(
ω∗).

(II) 
 ⊆ critLβ .
(III) limk→+∞ d(ωk ,
).
(IV) {ωk} is non-empty compact and connected sets.

Proof (I) Since xkj+1
i is the minimizer of xi-subproblem, we have

fi
(
xkj+1

i
)

+
〈
xkj+1

i – xkj
i ,∇xi g

(
xkj+1

[1,i–1], xkj
[i,n], ykj

)〉
–

〈
λkj , Axkj+1

[1,i] + Axkj
[i+1,n] + Bykj – b

〉

+
β

2
∥∥Axkj+1

[1,i] + Axkj
[i+1,n] + Bykj – b

∥∥2

≤ fi
(
x∗

i
)

+
〈
x∗

i – xkj
i ,∇xi g

(
xkj+1

[1,i–1], xkj
[i,n], ykj

)〉

–
〈
λkj , Axkj+1

[1,i–1] + Aix∗
i + Axkj

[i+1,n] + Bykj – b
〉

+
β

2
∥∥Axkj+1

[1,i–1] + Aix∗
i + Axkj

[i+1,n] + Bykj – b
∥∥2 +

τ

2
∥∥x∗

i – zkj
i
∥∥2 –

τ

2
∥∥xkj+1

i – zkj
i
∥∥2.

Combing the inequality above with limj→∞ ωkj+1 = ω∗, we have

lim sup
j→∞

fi
(
xkj+1

i
) ≤ fi

(
x∗).

Since fi(i = 1, . . . , n) is lower semicontinous, fi(x∗
i ) ≤ lim infj→∞ fi(x

kj+1
i ). It follows that

lim
j→∞ fi

(
xkj+1

i
)

= fi
(
x∗).
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Since g is continuous, we further obtain

lim
j→+∞ Lβ

(
ωkj

)

= lim
j→+∞

( n∑

i=1

fi
(
xi

kj
)

+ g
(
xkj

[1,n], ykj
)

–
〈
λkj , Axkj

[1,n] + Bykj – b
〉

+
β

2
∥∥Axkj

[1,n] + Bykj – b
∥∥2

)

=
n∑

i=1

fi
(
xi

∗) + g
(
x∗

[1,n], y∗) –
〈
λ∗, Ax∗

[1,n] + By∗ – b
〉
+

β

2
∥∥Ax∗

[1,n] + By∗ – b
∥∥2

= Lβ

(
ω∗).

(II) From Lemma 3.4, we have that xk+1
i – ık → 0, yk+1 – yk → 0 and λk+1 – λk → 0.

Thus, according to Lemma 3.5, it follows that ∂L(ω
kj ) → 0 as j → ∞, while ωkj → ω∗

and Lβ (ωkj ) → Lβ (ω∗) as j → ∞. Because of the closeness of ∂fi, the continuity of ∇g and
the relation above, we take limit k = kj → ∞ in (3.28), and then we have

⎧
⎪⎪⎨

⎪⎪⎩

–∇xj g(x∗
[1,n], y∗) + AT

j λ∗ ∈ ∂fj(x∗
j ), j = 1, . . . , n,

∇yg(x∗
[1,n], y∗) = BTλ∗,

Ax∗
[1,n] + By∗ – b = 0,

which implies that ω∗ is a critial point of Lβ (·). According to (3.23), {ωk} is convergent.
Thus, ω∗ is a cluster point of {ωk}, i.e., 
 ⊆ critLβ .

(III), (IV) The proof follows a similar approach to that of [Theorems 5(ii) and (iii) in Bolte
et al. [19]], while incorporating the insights from Remark 5 within the same reference. This
remark establishes that the properties detailed in (III) and (IV) are inherent to sequences
satisfying the convergence condition wk+1 – wk → 0 as k → +∞. Such generic nature is
indeed applicable in our context, as demonstrated by (3.23). �

3.4 Global convergence under the Kurdyka–Łojasiewicz property
In this subsection, we prove the global convergence of {(x[1,n], yk ,λk)} generated by Algo-
rithm 1 and Algorithm 2 with the help of the Kurdyka–Łojasiewicz property. Since the
proofs of two algorithms are identical, in this subsection, we only prove the global conver-
gence of Algorithm 1.

Theorem 3.2 (Global convergence) Suppose that Assumption A holds, and L̂(ω̂) satisfies
the KŁ property at each point of 
̂, then

(I)
∑∞

k=1 ‖ωk – ωk–1‖ < ∞.
(II) {ωk} converges to a critical point of L(·).

Proof From Theorem 3.1, we have limk→+∞ L̂(ω̂k) = L̂(ω̂∗) for all ω̂∗ ∈ 
̂. We consider two
cases.
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(i) If there exists an integer k0 such that L̂β (ω̂k0 ) = L̂β (ω̂∗). From Lemma 3.3, for all k > k0,
we have

δ
(‖�x[1,n]‖2 +

∥∥�yk+1∥∥2) ≤ L̂β

(
ω̂k) – L̂β

(
ω̂k+1) ≤ L̂β

(
ω̂k0

)
– L̂β

(
ω̂∗) = 0. (3.30)

Thus, for any k > k0, we have xk+1
i = xk

i , i = 1, 2, . . . , n, yk+1 = yk . Hence, for any k > k0 + 1,
one has ω̂k+1 = ω̂k , and the assertion holds.

(ii) Since {L̂β (ω̂k)} is nonincreasing, it holds that L̂β (ω̂k) > L̂β (ω̂∗) for all k > 1. Since
limk→+∞ d(ω̂k , 
̂) = 0, for any given ε > 0, there exists k1 > 0, such that for any k >
k1, d(ω̂k , 
̂) < ε. Since limkj→+∞ L̂β (ω̂k) = L̂β (ω̂∗), for any given η > 0, there exists k2 >
0,L̂β(ω̂k) < L̂β (ω̂∗) + η, for all k > k2. Consequently, when k > k̃ := max{k1, k2},

d
(
ω̂k , 
̂

)
< ε, L̂β

(
ω̂∗) < L̂β

(
ω̂k) < L̂β

(
ω̂∗) + η. (3.31)

Since {ω̂k} is non-empty compact set, and L̂β (·) is constant on 
̂, applying Lemma 2.1, we
have

ϕ′(L̂β

(
ω̂k) – L̂βω̂∗)d

(
0, ∂L̂β

(
ω̂k)) ≥ 1, ∀k > k̃. (3.32)

Let ak :=
∑n

i=1 ‖�xk
i ‖ + ‖�yk‖. ∀k > k̃. From Lemma (3.5), one has

1
ϕ′(L̂β (ω̂k) – L̂β (ω̂∗))

≤ d
(
0, ∂L̂β

(
ω̂k)) ≤ C2(ak + ak+1). (3.33)

From the concavity of ϕ, we have

ϕ
(
L̂β

(
ω̂k) – L̂β

(
ω̂∗)) – ϕ

(
L̂β

(
ω̂k+1) – L̂β

(
ω̂∗))

≥ ϕ′(L̂β

(
ω̂k) – L̂β

(
ω̂∗))(L̂β

(
ω̂k) – L̂β

(
ω̂k+1))

≥ L̂β (ω̂k) – L̂β (ω̂k+1)
d(0, ∂L̂β (ω̂k))

≥ L̂β (ω̂k) – L̂β (ω̂k+1)
C(ak + ak+1)

.

(3.34)

From Lemma 3.3, we have

δ
(∥∥�xk+1

[1,n]
∥∥2 +

∥∥�yk+1∥∥2)

≤ (
ϕ
(
L̂β

(
ω̂k) – L̂β

(
ω̂∗)) – ϕ

(
L̂β

(
ω̂k+1) – L̂β

(
ω̂∗)))C(ak + ak+1).

From the inequality
∑n

i=1 ai ≤
√

n
∑n

i=1 a2
i and

√
ab ≤ a + 1

4 b, we obtain

ak+1 ≤ (
(n + 1)

∥∥�xk+1
[1,n]

∥∥2 + (n + 1)
∥∥�yk+1∥∥2) 1

2

≤
√

C(n + 1)
δ

(
ϕ
(
L̂β

(
ω̂k

)
– L̂β

(
ω̂∗)) – ϕ

(
L̂β

(
ω̂k+1

)
– L̂β

(
ω̂∗)))(ak + ak+1)

≤
√

C(n + 1)
δ

(
ϕ
(
L̂β

(
ω̂k) – L̂β

(
ω̂∗)) – ϕ

(
L̂β

(
ω̂k+1) – L̂β

(
ω̂∗)))

︸ ︷︷ ︸
a

+
1
4

(ak + ak+1)︸ ︷︷ ︸
b

.
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Summing up the above inequality from k = k′ + 2, . . . , M yields

M∑

k=k′+2

ak+1 ≤
√

C(n + 1)
δ

(
ϕ
(
L̂β

(
ω̂k′+2) – L̂β

(
ω̂∗)) – ϕ

(
L̂β

(
ω̂M)

– L̂β

(
ω̂∗)))

+
1
4

M∑

k=k′+1

(ak + ak+1).

Letting M → ∞, we get

∞∑

k=k′+2

ak+1 ≤ 2
√

C(n + 1)
δ

(
ϕ
(
L̂β

(
ω̂k′+2) – L̂β

(
ω̂∗))) –

1
2

ak′+1.

Since δ, C > 0 and ak′+1 is a constant,
∑∞

k=k′+2 ak+1 < ∞. Therefore,
∑∞

k=1 ‖ωk+1 – ωk‖ < ∞.
(I) is proved.

(II) {ωk} is a Cauchy sequence, and thus it is convergent. Combining (I) with Theorem
3.1, we obtain that {ωk} converges to a critical point of Lβ (·). �

4 Numerical experiments
This section presents the numerical experiment outcomes of applying Algorithm 1 and
Algorithm 2 to l 1

2
-regularization problem and matrix decomposition problem. All ex-

perimental computations were executed using Matlab 2020b running on a Windows 11
system-equipped laptop with an AMD Ryzen 5 3550H CPU operating at 3.5 GHz and
backed by 16 GB of RAM.

4.1 l 1
2

-regularization problem
In compressed sensing, we consider the following optimization problem

min
x

‖Mx – b‖2 + ϕ‖x‖0, (4.1)

where M ∈R
m×n is the measuring matrix, b ∈R

n is the observation vector, ϕ is the regular
parameter. ‖x‖0 denotes the number of nonzero components of x. However, the problem
(4.1) is NP-hard, some scholars relax l0 norm to l 1

2
norm in practical applications [28],

then the problem is exported to the following nonconvex problem:

minϕ‖x‖(1/2)
(1/2) +

1
2
‖y‖2

s.t. Mx – y = b,
(4.2)

where ‖x‖ 1
2

= (
∑n

i=1 ‖xi‖ 1
2 )2.

Based on (4.2), we construct the following problem:

min
x1,x2,y

c‖x1‖(1/2)
(1/2) +

1
2
‖x2‖2 +

1
2
‖B1x1 + B2x2 + y‖2

s.t.A1x1 + A2x2 + y = b.
(4.3)
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To verify the validity of Algorithm 1 and Algorithm 2, we test them and compare them
with LADMM.1

Applying Algorithm 1 to problem (4.3) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
k+1 = H

(
1

μ1

[
τzk

1 – B1
T(

B1xk + B2xk
2 + yk)

– βA1
T
(

A2x2
k + yk – b – λk

β

)]
, 2c

μ1

)
,

x2
k+1 = 1

μ2

[
τzk

2 – BT
2
(
B1xk

1 + B2xk
2 + yk) – βAT

2

(
A1xk+1

1 + yk – b – λk
β

)]
,

yk+1 = 1
μ3

[
τyk –

(
B1xk+1 + B2x2

k+1) – β

(
A1x1

k+1 + A2xk+1
2 – b – λk

β

)]
,

λk+1 = λk – β
(
Axk+1 + Byk+1 – b

)
,

where μ1 = τ + βρmax(AT
1 A1),μ2 = 1 + τ + βρmax(AT

2 A2),μ3 = 1 + τ + β , and H(·, ·) is the half
shrinkage operator [29] defined as H(x,α) = {h1

α , h2
α , . . . hn

α} with

x1(i) =

⎧
⎨

⎩

2xi
3 (1 + cos( 2

3 (π – φ(|hi
α|)))) |hi

α| >
3√54

4 α2/3;

0 otherwise;
(4.4)

where

φ
(∣∣hi

α

∣∣) = arccos

(
α

8

( |hi
α|

3

)–(3/2))
.

Applying Algorithm 2 to problem (4.3) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1
k+1 = H( 1

μ1
[τzk

1 – B1
T (B1xk + B2xk

2 + yk) – βA1
T (A2x2

k – b – λk

β
)], 2c

μ1
),

x2
k+1 = 1

μ2
[τzk

2 – BT
2 (B1xk

1 + B2xk
2 + yk) – βAT

2 (A1xk+1
1 + Byk – b – λk

β
)],

yk+1 = 1
μ4

[τyk – (B1xk+1 + B2x2
k+1 + yk) – β(A1x1

k+1 + A2xk+1
2 – b – λk

β
)],

λk+1 = λk – β(Axk+1 + Byk+1 – b),

where μ4 = τ + β . Applying LADMM to problem (4.3), we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1
k+1 = H( 1

μ1
[τxk

1 – B1
T (B1xk + B2xk

2 + yk) – βA1
T (A2x2

k – b – λk

β
)], 2c

μ1
),

x2
k+1 = 1

μ2
[τxk

2 – BT
2 (B1xk

1 + B2xk
2 + yk) – βAT

2 (A1xk+1
1 + Byk – b – λk

β
)],

yk+1 = 1
μ3

[τyk – (B1xk+1 + B2x2
k+1) – β(A1x1

k+1 + A2xk+1
2 – b – λk

β
)],

λk+1 = λk – β(Axk+1 + Byk+1 – b).

In experiment, we configure the parameter as follows: the dimensions are set to m =
5000, n = 1000, the regularization parameter is chosen as β = 1000. b = 0, c = 1, and the
inertial parameter is fixed at θ = 0.15. The initial points are selected as x–1

1 = x0
1 = 0, x–1

2 =
x0

2 = 0, y0 = 0, and λ0 = 0. A1, A2, B1, B2 are random matrices. The stopping criterion of all

1LADMM is a special case of SPLI-ADMM that the inertial parameter θk = 0.
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Table 1 Numerical results under different τ

SPLI-ADMM SCLI-ADMM LADMM

times(s) Iter log(Crit) times(s) Iter log(Crit) times(s) Iter log(Crit)

τ = 30 14.84 222 –8.99 14.37 229 –9.60 16.03 235 –9.67
τ = 35 15.57 211 –9.26 16.49 220 –9.97 17.10 239 –9.84
τ = 40 14.86 228 –9.57 15.09 218 –9.24 17.00 256 –9.97
τ = 45 15.24 217 –9.72 16.27 220 –9.62 17.38 235 –9.97

Figure 1 m = 5000,n = 1000,τ = 45,β = 1000, the convergence results for LADMM (θ = 0), SPLI-ADMM, and
SCLI-ADMM ( θ = 0.2)

these methods are defined as

‖rk‖ =
∥∥A1xk

1 + A2xk
2 + y – b

∥∥ ≤ 10–8.

Throughout the testing phase, we conduct experiments with four cases τ = 30, τ =
35, τ = 40 and τ = 45, respectively. The numerical results of the three algorithms are re-
ported in Table 1. We report the number of iterations required to satisfy the stopping
criterion (“Iter”), the total computing time in seconds (“times”), and the value of the stop-
ping criterion (“log(Crit)”). Moreover, to visually illustrate the convergence behavior, the
curves of the objective value and log(‖rk‖) at τ = 45· are presented in Fig. 1.

From Table 1, we can see that the two proposed algorithms have higher time efficiency
and fewer iterations in comparison with LADMM. Figure 1(a) illustrates the trends of the
objective value under the same iterations, clearly indicating that SPLIADMM and SCLI-
ADMM have better performance of convergence than LADMM. Figure 1(b) again demon-
strates the high time efficiency of our two algorithms, especially when “log(Crit)” is less
than –4.

4.2 Matrix decomposition
Now, we consider the matrix decomposition problem, which has the following form:

min‖L‖∗ + α‖S‖1 +
ω

2
‖T – M‖2 s.t. L + S = T , (4.5)

where M ∈ R
p×n is the observed matrix, and L, S, T ∈R

p×n are the decision variables. The
nuclear norm ‖L‖∗ :=

∑min(p,n)
i=1 |σi(L)| 1

2 , the spares term ‖S‖1 :=
∑n

i=1
∑p

i=1 |Sij|, ω is the
penalty factor, and α is the trade-off parameter between the nuclear norm ‖L‖∗ and the
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l1-norm ‖S‖1. The ALF of problem (4.5) is defined as

Lβ (L, S, T ,λ) = ‖L‖∗ + α‖S‖1 +
ω

2
‖T – M‖2 – 〈λ, L + S – T〉 +

β

2
‖L + S – T‖2,

where λ is the Lagrange multiplier.
Applying SPLI-ADMM to problem (4.5), we get the closed-form iterative formulas:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk
L = Lk + θ (Lk – Lk–1), zk

S = Sk + θ (Sk – Sk–1),

Lk+1 = V ( β(Tk –Sk )+λk +τzk
L

β+τ
, 1

β+τ
),

Sk+1 = S( β(Tk–Lk+1)+λk +τzk
S

β+τ
, α

β+τ
),

Tk+1 = τTk +β(Lk+1+Sk+1)+ωM–λk

β+ω+τ
,

λk+1 = λk – β(Lk+1 + Sk+1 – Tk+1),

where V (·,μ) is the singular value thresholding operator [30], S(·,μ) is the softshrinkage
operator [31]. Applying SCLI-ADMM to problem (4.5), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk
L = Lk + θ (Lk – Lk–1), zk

S = Sk + θ (Sk – Sk–1),

Lk+1 = V ( β(Tk –Sk )+λk +τzk
L

β+τ
, 1

β+τ
),

Sk+1 = S( β(Tk–Lk+1)+λk +τzk
S

β+τ
, α

β+τ
),

Tk+1 = τTk +β(Lk+1+Sk+1)+ω(M–Tk )–λk

β+τ
,

λk+1 = λk – β(Lk+1 + Sk+1 – Tk+1),

Applying LADMM to problem (4.5), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Lk+1 = V ( β(Tk –Sk )+λk +τLk

β+τ
, 1

β+τ
),

Sk+1 = S( β(Tk–Lk+1)+λk +τSk

β+τ
, α

β+τ
),

Tk+1 = β(Lk+1+Sk+1)+ωM–λk

β+ω
,

λk+1 = λk – β(Lk+1 + Sk+1 – Tk+1).

We set p = n = 100, and take 8 different (r., spr.). Besides, we choose α = 0.2√
m , θ = 0.3,ω =

1000, the matrix L, S and T are initialized to be zero. We take β = 5, τ = 1, M was generated
in MATLAB randomly. The stopping criterion is defined as

RelChg :=
‖(Lk+1, Sk+1, Tk+1) – (Lk , Sk , Tk)‖F

‖(Lk , Sk , Tk)‖F + 1
≤ 10–8 or k > 3000.

Let Ŝ and T̂ be a numerical solution of problem (4.5). We measure the quality of the re-
covery by the relative error, which is defined by

RelErr :=
‖(L̂, Ŝ, T̂) – (L∗, S∗, T∗)‖F

‖(L∗, S∗, T∗)‖F + 1
.

Table 2 illustrates the comparison between different (r., spr.), where “r.” represents the
rank of matrix L, “spr.” represents the sparsity of the sparse matrix S, “Iter” represents
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Table 2 Summary of three algorithms for eight different (r., spr)

(r., spr.) alg Iter Times RelErr r.(L) r.(L̂) ‖S‖0 ‖Ŝ‖0 spr.(Ŝ)

(5,0.05) SPLIADMM 358 1.213 3.34e-06 5 5 500 499 0.0499
SCLIADMM 358 0.049 3.34e-06 5 5 500 499 0.0499
LADMM 509 0.051 3.17e-06 5 5 500 501 0.0501

(5,0.1) SPLIADMM 305 1.38 3.80e-06 5 5 1000 1000 0.1
SCLIADMM 358 1.213 3.34e-06 5 5 500 999 0.0999
LADMM 434 2.15 3.68e-06 5 5 1000 999 0.0999

(10,0.05) SPLIADMM 538 2.56 2.24e-06 10 10 500 500 0.05
SCLIADMM 548 2.49 2.18e-06 10 10 500 499 0.0499
LADMM 603 5.00 2.21e-06 10 10 500 500 0.05

(10,0.1) SPLIADMM 671 3.08 2.74e-06 10 10 1000 1000 0.1
SPLIADMM 680 3.01 2.72e-06 10 10 1000 1000 0.1
LADMM 760 6.32 2.71e-06 10 10 1000 1000 0.1

(15,0.05) SPLIADMM 552 2.49 2.03e-6 15 15 500 500 0.05
SCLIADMM 531 2.38 2.11e-6 15 15 500 500 0.05
LADMM 642 5.06 2.00e-6 15 15 500 501 0.0501

(15,0.1) SPLIADMM 884 4.04 2.43e-06 15 15 1000 1000 0.1
SCLIADMM 776 3.34 2.51e-06 15 15 1000 1000 0.1
LADMM 902 7.23 2.47e-06 15 15 1000 1000 0.1

(20,0.05) SPLIADMM 640 2.93 1.91e-06 20 20 500 499 0.0499
SCLIADMM 669 3.38 1.83e-06 20 20 500 499 0.0499
LADMM 742 6.74 1.87e-06 20 20 500 498 0.0498

(20,0.1) SPLIADMM 836 3.74 2.52e-06 20 20 1000 1000 0.1
SCLIADMM 886 4.14 2.49e-06 20 20 1000 1001 0.1001
LADMM 993 8.38 2.49e-06 20 20 1000 999 0.0999

the number of iterations. ‖S‖0 denotes the number of nonzero elements of S. Besides,
the iterative curves of the stopping criterion and relative error of the three algorithms are
plotted in Fig. 2, respectively.

Table 2 shows that SPLIADMM and SCLIADMM take less time and fewer itera-
tions under the same condition, which demonstrates that our proposed two algorithms
are more efficient than LADMM for different rank and sparse ratios. In Fig. 2, the
curves of stopping criterion (see Fig. 2(a) and (c)) in two trials demonstrate that SPLI-
ADMM and SCLIADMM converge faster than LADMM. Figure 2(b) and (d) indi-
cate clearly that the matrices L and S are better recovered by SPLI-ADMM and SCLI-
ADMM because “RelErr” of LADMM is greater than that of SPLI-ADMM for the same
“Iter”.

5 Conclusion
This paper made some extensions in the field of nonconvex optimization through the de-
velopment and convergence analysis of two linearized ADMM algorithms, SPLI-ADMM
and SCLI-ADMM. By integrating inertial strategy within a linearized framework, these al-
gorithms improve the efficacy for solving linear constrained problems with nonseparable
structure. A key novelty lies in the utilization of sequential gradients of the mixed term,
which is not typically found in conventional ADMM approaches, enabling the proposed
algorithms to use the latest information to update each variable. The KŁ property has been
used to guarantee the convergence of the generated sequences. Finally, the results of nu-
merical experiments show that the proposed algorithms exhibit superior time efficiency
and validity.
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Figure 2 The performance comparison between LADMM (θ = 0) , SPLI-ADMM ( θ = 0.3), and SCLI-ADMM
(θ = 0.3) with different (r., spr.)
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