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Abstract
The coronavirus disease 2019 (COVID-19) remains serious around the world and
causes huge deaths and economic losses. Understanding the transmission dynamics
of diseases and providing effective control strategies play important roles in the
prevention of epidemic diseases. In this paper, to investigate the effect of delays on
the transmission of COVID-19, we propose a delayed SEIR model to describe
COVID-19 virus transmission, where two delays indicating the incubation and
recovery periods are introduced. For this system, we prove its solutions are
nonnegative and ultimately bounded with the nonnegative initial conditions.
Furthermore, we calculate the disease-free and endemic equilibrium points and
analyze the asymptotical stability and the existence of Hopf bifurcations at these
equilibrium points. Then, by taking the weighted sum of the opposite number of
recovered individuals at the terminal time, the number of exposed and infected
individuals during the time horizon, and the system cost of control measures as the
cost function, we present a delay optimal control problem, where two controls
represent the social contact and the pharmaceutical intervention. Necessary
optimality conditions of this optimal control problem are exploited to characterize
the optimal control strategies. Finally, numerical simulations are performed to verify
the theoretical analysis of the stability and Hopf bifurcations at the equilibrium points
and to illustrate the effectiveness of the obtained optimal strategies in controlling the
COVID-19 epidemic.

Keywords: Delayed SEIR; Stability; Hopf bifurcation; Optimal control; Necessary
optimality conditions; Numerical simulation

1 Introduction
The coronavirus disease 2019 (COVID-19) is an epidemic caused by the SARS-CoV-2
virus, which affects mostly the human respiratory system. Due to the strong infectivity, fast
transmission speed, and long incubation period, it has brought significant losses to human
life and the global economy [1, 2]. Although many prevention and control measures have
been taken to mitigate the disease spread, the world is still suffering from the infection
and death cases of COVID-19. According to the World Health Organization report, as of
2 November 2023, the total number of infections caused by the COVID-19 epidemic has
reached 697,318,367, with more than 6,934,066 deaths [3]. Thus, there is an urgent need to

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-024-03140-2
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-024-03140-2&domain=pdf
mailto:chongyangliu@aliyun.com
http://creativecommons.org/licenses/by/4.0/


Liu et al. Journal of Inequalities and Applications         (2024) 2024:66 Page 2 of 37

study the COVID-19 virus transmission behavior and provide effective control measures
to prevent the spread of the disease.

Mathematical models have been proven effective means in describing and understand-
ing the complex transmission dynamics of epidemics [4–6]. In this regard, several mathe-
matical models have been investigated to formulate and control COVID-19 spread [7–9].
SIR (Susceptible, Infectious, Removed) models have been proposed to simulate and pre-
dict the COVID-19 pandemic in [10, 11]. The stability of the SEIR (Susceptible, Exposed,
Infectious, Removed) model is analyzed in [12]. Stability analysis of a spatial extension
of the SEIR model is carried out in [13]. Optimal control of both non-pharmacological
and pharmacological interventions for a modified SEIR epidemiological model is stud-
ied in [14]. Optimal control of COVID-19 spread considering quarantine effect on people
with diabetes is investigated in [15]. Stability analysis and optimal control of a COVID-19
system, including susceptible, exposed, symptomatically infected, asymptomatically in-
fected, hospitalized, and recovered individuals, are discussed in [16]. Bifurcation analysis
and optimal control of a discrete SIR system are studied in [17]. Optimal control of the
Omicron and Delta strains in COVID-19 is investigated in [18]. Although the aforemen-
tioned results are certainly valid and interesting, time delays are ignored in the dynamics
analysis and optimal control problems. In fact, time delays exist in COVID-19 virus trans-
mission since there is an incubation period for the exposed individual to manifest COVID-
19 symptoms and signs, and a recovery period is required for the infected individual to
become a recovered individual [19, 20].

Motivated by the above issue, in the current paper, we propose a delayed SEIR model to
describe COVID-19 virus transmission in which two delays representing the incubation
period and the recovery period are introduced. For this delayed SEIR system, we prove
that its solutions with the nonnegative initial conditions are nonnegative and ultimately
bounded. Furthermore, we calculate the disease-free and endemic equilibrium points and
analyze the locally asymptotical stability and Hopf bifurcations of these two equilibrium
points. Then, by taking the weighted sum of the opposite number of recovered individu-
als at the terminal time, the number of exposed and infected individuals during the time
horizon, and the system cost of control measures as the cost function, we present a delay
optimal control problem, where two controls denote the social contact and the pharma-
ceutical intervention. We also derive the necessary optimality conditions to characterize
the optimal controls. Based on the necessary optimality conditions, we develop a numer-
ical approach for solving the delay optimal control problem, which is different from the
reported methods in [21–26]. Finally, numerical simulations are performed to verify the
theoretical analysis of the stability and the existence of Hopf bifurcations at equilibrium
points and demonstrate the effectiveness of computed optimal strategies in controlling the
COVID-19 epidemic. Compared with the existing literature, the main contributions and
innovations of this paper include: (i) a novel SEIR system with incubation and recovery de-
lays is proposed for COVID-19 virus transmission; (ii) the stability and Hopf bifurcation
of the equilibria in the delayed SEIR model are thoroughly analyzed; and (iii) an effective
solution approach is developed for solving the delayed optimal control problem with both
the terminal and integral costs.

The paper is organized as follows: In Sect. 2, the delayed SEIR system is proposed, and
some important properties are proved. In Sect. 3, the stability and existence of Hopf bi-
furcations at the disease-free and endemic equilibrium points are analyzed. In Sect. 4, we
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present the delay optimal control problem and derive the corresponding necessary opti-
mality conditions. In Sect. 5, we illustrate the numerical simulation results. In Sect. 6, we
provide conclusions.

2 Delayed SEIR model
In the COVID-19 virus transmission process, the primary source of transmission is so-
cial contact between susceptible and exposed individuals who are usually asymptomatic.
Another transmission source is direct contact between frontline workers and infected in-
dividuals. Some exposed individuals usually recover due to their strong natural immune
systems or use over-the-counter medications, while others require hospitalization after
a certain incubation period. Many infected individuals recover from the disease after ex-
tensive treatment, but unfortunately, for some, the infection costs their lives. As is well-
known, a susceptible individual does not show the corresponding symptoms quickly after
infection with the virus; that is, there is an incubation period for the exposed individual
to be an infective individual. Besides, it is required for the infected individual to spend
some time to be a recovered individual. Thus, time delays must be incorporated into the
COVID-19 virus transmission process. Based on SEIR system [14], we propose the follow-
ing delayed SEIR system to describe the COVID-19 virus transmission:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ṡ(t) = � – β1S(t)E(t)
N(t) – β2S(t)I(t)

N(t) – dS(t),

Ė(t) = β1S(t)E(t)
N(t) + β2S(t)I(t)

N(t) – εE(t – τ1) – (γ2 + d)E(t),

İ(t) = εE(t – τ1) – γ1I(t – τ2) – (μ + d)I(t), t ≥ 0,

Ṙ(t) = γ1I(t – τ2) + γ2E(t) – dR(t),

(1)

where t is the time of process; S(t), E(t), I(t), and R(t) are, respectively, the susceptible,
exposed, infected, and recovered individuals; N(t) = S(t) + E(t) + I(t) + R(t) is the total
number of individuals affected by the outbreak; � is the recruitment in the human pop-
ulation; d is the natural mortality rate; β1 is the transmission rate due to social contact;
β2 is the transmission rate due to frontline contact; ε is the infection rate; γ1 is the recov-
ery rate of infectious individuals; γ2 is the immune recovery rate; μ is the probability of
death due to COVID-19; τ1 and τ2 are two delay arguments that indicate the incubation
and recovery periods, respectively. A flow chart of the delayed SEIR system (1) is shown
in Fig. 1.

For system (1), the initial conditions are given by

S(t) = ϕ1(t), E(t) = ϕ2(t), I(t) = ϕ3(t), R(t) = ϕ4(t), (2)

where t ∈ [–τ , 0] with τ = max{τ1, τ2}; and ϕi, i = 1, 2, 3, 4, are given functions. For system
(1) with the initial conditions (2), we have the following theorem:

Theorem 1 If the initial conditions are as follows ϕi ≥ 0, i = 1, 2, 3, 4, then the solutions of
system (1) are nonnegative and ultimately bounded.

Proof It is easy to show by Theorem 5.2.1 [27] that S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0 and R(t) ≥ 0
for t ≥ 0. Hence, the nonnegative cone R

4
+ is invariant for system (1) with nonnegative
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Figure 1 Flow chart of delayed SEIR model

initial conditions ϕi ≥ 0, i = 1, 2, 3, 4. Furthermore, from (1), we have

� – (d + μ)N(t) ≤ dN(t)
dt

= � – dN(t) – μI(t) ≤ � – dN(t),

which gives

�

d + μ
≤ lim inf

t→∞ N(t) ≤ lim sup
t→∞

N(t) ≤ �

d
.

Then, the delayed SEIR system (1) has a biologically feasible range as indicated below:

{
(
S(t), E(t), I(t), R(t)

) ∈R
4
+ :

�

d + μ
≤ S(t) + E(t) + I(t) + R(t) ≤ �

d
, t ≥ 0

}

,

which implies the ultimate boundedness of the solutions. �

3 Equilibrium points, stability and Hopf bifurcation
In this section, we will analyze the local stability of system (1) at the equilibrium points
and establish the existence of Hopf bifurcations at the equilibrium points.

3.1 Equilibrium points
For system (1), the disease-free and the endemic equilibrium points are defined as

E0 =
(

�

d
, 0, 0, 0

)

and E1 =
(
S∗, E∗, I∗, R∗), (3)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = �(ε+γ2+d)(μ+γ1+d)
d[β1(μ+γ1+d)+εβ2] ,

E∗ = –�(ε+γ2+d)(μ+γ1+d)+�β1(μ+γ1+d)+�εβ2
εβ2(ε+γ2+d)+β1(ε+γ2+d)(μ+γ1+d) ,

I∗ = ε[�β1(μ+γ1+d)+�εβ2–�(ε+γ2+d)(μ+γ1+d)]
β1(μ+γ1+d)2(ε+γ2+d)+εβ2(μ+γ1+d)(ε+γ2+d) ,

R∗ = γ1I∗+γ2E∗
d .

(4)
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Now, we consider the basic reproduction number R0 [28], which can be used to deter-
mine whether a disease is an epidemic. To begin with, we rewrite system (1) as ẋ = f – v,
where

x =

⎛

⎜
⎜
⎜
⎝

S
E
I
R

⎞

⎟
⎟
⎟
⎠

, f =

⎛

⎜
⎜
⎜
⎝

0
β1SE

N + β2SI
N

0
0

⎞

⎟
⎟
⎟
⎠

, v =

⎛

⎜
⎜
⎜
⎝

–� + β1SE
N + β2SI

N + dS
εE(t – τ1) + (γ2 + d)E

–εE(t – τ1) + μI + γ1I(t – τ2) + dI
–γ1I(t – τ2) – γ2E + dR

⎞

⎟
⎟
⎟
⎠

.

Then, by taking E and I as the infection compartments, we obtain the following Jacobian
matrices F and V at the disease-free equilibrium point E0:

F =

(
β1 β2

0 0

)

, V =

(
ε + γ2 + d 0

–ε μ + γ1 + d

)

.

Thus, R0 can be defined as

R0 = ρ
(
FV –1) =

β1

ε + γ2 + d
+

β2ε

(ε + γ2 + d)(μ + γ1 + d)
. (5)

Furthermore, the endemic equilibrium point E1 defined in (3) can be rewritten as
(

�

dR0
,

�

ε + γ2 + d

(

1 –
1

R0

)

,
�ε

(μ + γ1 + d)(ε + γ2 + d)

(

1 –
1

R0

)

,
γ1I∗ + γ2E∗

d

)

.

Therefore, system (1) has a positive endemic equilibrium point when R0 > 1.

3.2 Stability and Hopf bifurcation of disease-free equilibrium point
The Jacobian matrix of system (1) at E0 is given by

JE0 =

⎛

⎜
⎜
⎜
⎝

–d –β1 –β2 0
0 –(εe–λτ1 + γ2 + d) + β1 β2 0
0 εe–λτ1 –(μ + d + γ1e–λτ2 ) 0
0 γ2 γ1e–λτ2 –d

⎞

⎟
⎟
⎟
⎠

. (6)

For (6), two negative eigenvalues are given by λ1 = λ2 = –d. The other two eigenvalues are
determined by the following characteristic equation:

λ2 + A1
1λ + A1

2 +
(
B1

0λ + B1
1
)
e–λτ1 +

(
C1

0λ + C1
1
)
e–λτ2 + D1

0e–λ(τ1+τ2) = 0, (7)

where A1
1 = γ2 + d – β1 + μ + d; A1

2 = (γ2 + d – β1)(μ + d); B1
0 = ε; B1

1 = ε(μ + d – β2); C1
0 = γ1;

C1
1 = γ1(γ2 + d – β1); and D1

0 = εγ1.
Now, we study the following cases for delay arguments τ1 and τ2 at E0.
Case 3.2.1 If τ1 = τ2 = 0, then equation (7) becomes

λ2 +
(
A1

1 + B1
0 + C1

0
)
λ + A1

2 + B1
1 + C1

1 + D1
0 = 0. (8)

It follows from (5) that

R0 = R1 + R2, (9)
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where R1 = β1
ε+γ2+d ; and R2 = β2ε

(ε+γ2+d)(μ+γ1+d) . Obviously, R1 > 0, and R2 > 0. Let

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1
0 = 1,

a1
1 = A1

1 + B1
0 + C1

0 = μ + γ1 + ε + γ2 + 2d – β1

= (1 – R1)(ε + γ2 + d) + μ + γ1 + d,

a1
2 = A1

2 + B1
1 + C1

1 + D1
0 = (ε + γ2 + d – β1)(μ + γ1 + d) – β2ε

= (1 – R0)(ε + γ2 + d)(μ + γ1 + d),

a1
3 = 0.

Then, we have

a1
1a1

2 > a1
0a1

3, and a1
i > 0, i = 0, 1, 2, for R0 < 1,

and

a1
2 < 0 for R0 > 1.

By the Routh-Hurwitz theorem [29], we obtain the following theorem:

Theorem 2 Suppose that τ1 = τ2 = 0.
(i) If R0 < 1, then E0 is locally asymptotically stable;
(ii) If R0 > 1, then E0 is unstable.

Case 3.2.2 If τ1 = 0, and τ2 > 0, then equation (7) turns to

λ2 +
(
A1

1 + B1
0
)
λ + A1

2 + B1
1 +

[
C1

0λ +
(
C1

1 + D1
0
)]

e–λτ2 = 0. (10)

Next, we will discuss the Hopf bifurcation of (10). Obviously, λ = iω (ω > 0) is a pure imag-
inary root of the equation (10) if and only if

–ω2 +
(
A1

1 + B1
0
)
iω + A1

2 + B1
1 +

[
C1

0 iω +
(
C1

1 + D1
0
)][

cos(ωτ2) – i sin(ωτ2)
]

= 0. (11)

Separating the real part from the imaginary part in (11) gives

⎧
⎨

⎩

ω2 – (A1
2 + B1

1) = C1
0ω sin(ωτ2) + (C1

1 + D1
0) cos(ωτ2),

–(A1
1 + B1

0)ω = C1
0ω cos(ωτ2) – (C1

1 + D1
0) sin(ωτ2).

(12)

By adding the squares of two equations in (12), we obtain

ω4 +
[(

A1
1 + B1

0
)2 – 2

(
A1

2 + B1
1
)

–
(
C1

0
)2]

ω2 +
(
A1

2 + B1
1
)2 –

(
C1

1 + D1
0
)2 = 0. (13)

Let z = ω2, h01 = (A1
2 + B1

1)2 – (C1
1 + D1

0)2 and h11 = (A1
1 + B1

0)2 – 2(A1
2 + B1

1) – (C1
0)2. Then,

equation (13) can be rewritten as

z2 + h11z + h01 = 0. (14)
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Without loss of generality, we assume that equation (14) has two positive roots, denoted
by z1 and z2. Then, two positive roots of equation (13) are

ω1
2 =

√
z1 and ω2

2 =
√

z2. (15)

Furthermore, substituting (15) into (12) and solving the resulting equations, we have

τ
j,k
2 =

1
ω

j
2

(

arccos

[
M1M3(ωj

2) + M2M4(ωj
2)

M2
1 + M2

2

]

+ 2kπ

)

, j = 1, 2; k = 0, 1, . . . ,

where M1 = C1
1 + D1

0; M2 = C1
0 ; M3(ωj

2) = (ωj
2)2 – (A1

2 + B1
1); and M4(ωj

2) = –(A1
1 + B1

0)ωj
2.

Clearly,

lim
k→∞

τ
j,k
2 = ∞, j = 1, 2.

Thus, we can define

τ 0
2 = min

j∈{1,2}
{
τ

j,0
2

}
, and ω0

2 = arg min
j∈{1,2}

{
τ

j,0
2

}
. (16)

Now, we consider the roots of equation (10) as a function of τ2 and the root λ1(τ2) = ξ1(τ2)+
iω1(τ2) of equation (10) such that

ξ1
(
τ 0

2
)

= 0, and ω1
(
τ 0

2
)

= ω0
2,

where τ 0
2 and ω0

2 are as defined in (16). Substituting λ1(τ2) into equation (10) and taking
the derivative with respect to τ2, we have

(
dλ1

dτ2

)–1

=
2λ1 + A1

1 + B1
0

–λ1[(λ1)2 + (A1
1 + B1

0)λ1 + A1
2 + B1

1]
+

C1
0

λ1(C1
0λ1 + C1

1 + D1
0)

–
τ2

λ1
.

Then,

Re

[(
dλ1

dτ2

∣
∣
∣
∣
τ2=τ0

2

)–1]

=
(M1

1N1
1 + S1

1T1
1 )[(P1

1)2 + (O1
1)2] + (Q1

1P1
1)[(N1

1 )2 + (T1
1 )2]

[(N1
1 )2 + (T1

1 )2][(P1
1)2 + (O1

1)2]
,

where M1
1 = A1

1 + B1
0; S1

1 = 2ω0
2; N1

1 = (A1
1 + B1

0)(ω0
2)2; T1

1 = (ω0
2)3 – (A1

2 + B1
1)ω0

2; Q1
1 = C1

0 ;
P1

1 = –C1
0(ω0

2)2; and O1
1 = (C1

1 + D1
0)ω0

2. It follows that if the condition

(
M1

1N1
1 + S1

1T1
1
)[(

P1
1
)2 +

(
O1

1
)2] +

(
Q1

1P1
1
)[(

N1
1
)2 +

(
T1

1
)2] 	= 0 (17)

is satisfied, then

Re

[(
dλ1

dτ2

∣
∣
∣
∣
τ2=τ0

2

)–1]

	= 0.

Therefore, by Lemma 2.2 in [30] and Hopf bifurcation theory [31], we obtain the following
theorem:
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Theorem 3 Suppose that τ1 = 0, and τ2 > 0. If equation (14) has positive roots and condi-
tion (17) is met, then

(i) when τ2 ∈ (0, τ 0
2 ), E0 is locally asymptotically stable;

(ii) when τ2 > τ 0
2 , E0 is unstable;

(iii) when τ2 = τ 0
2 , system (1) has a Hopf bifurcation at E0.

Case 3.2.3 If τ1 > 0, and τ2 = 0, then equations (7) and (13) become

λ2 +
(
A1

1 + C1
0
)
λ + A1

2 + C1
1 +

[
B1

0λ +
(
B1

1 + D1
0
)]

e–λτ1 = 0, (18)

and

ω4 +
[(

A1
1 + C1

0
)2 – 2

(
A1

2 + C1
1
)

–
(
B1

0
)2]

ω2 +
(
A1

2 + C1
1
)2 –

(
B1

1 + D1
0
)2 = 0, (19)

respectively, where A1
1, A1

2, B1
0, B1

1, C1
0 , C1

1 , and D1
0 are as defined in (7). Using similar argu-

ment as for Case 3.2.2, we have

τ
j
1 =

1
ω

j
1

(

arccos

[
M̄1M̄3(ωj

1) + M̄2M̄4(ωj
1)

M̄2
1 + M̄2

2

])

, j = 1, 2,

τ 0
1 = min

j∈{1,2}
{
τ

j
1
}

, ω0
1 = arg min

j∈{1,2}
{
τ

j
1
}

,

where ω1
1 and ω2

1 are two positive roots of (19); M̄1 = B1
1 + D1

0; M̄2 = B1
0; M̄3(ωj

1) = (ωj
1)2 –

(A1
2 + C1

1); and M̄4(ωj
1) = –(A1

1 + C1
0)ωj

1. Moreover, we consider the root of equation (18) as
λ2(τ1) = ξ2(τ1) + iω2(τ1) with ξ2(τ 0

1 ) = 0 and ω2(τ 0
1 ) = ω0

1. Then, we have

Re

[(
dλ2

dτ1

∣
∣
∣
∣
τ1=τ0

1

)–1]

=
(M̄1

1N̄1
1 + S̄1

1T̄1
1 )[(P̄1

1)2 + (Ō1
1)2] + (Q̄1

1P̄1
1)[(N̄1

1 )2 + (T̄1
1 )2]

[(N̄1
1 )2 + (T̄1

1 )2][(P̄1
1)2 + (Ō1

1)2]
,

where M̄1
1 = A1

1 + C1
0 ; S̄1

1 = 2ω0
1; N̄1

1 = (A1
1 + C1

0)(ω0
1)2; T̄1

1 = (ω0
1)3 – (A1

2 + C1
1)ω0

1; Q̄1
1 = B1

0;
P̄1

1 = –B1
0(ω0

1)2; and Ō1
1 = (B1

1 + D1
0)ω0

1. Obviously, if condition

(
M̄1

1N̄1
1 + S̄1

1T̄1
1
)[(

P̄1
1
)2 +

(
Ō1

1
)2] +

(
Q̄1

1P̄1
1
)[(

N̄1
1
)2 +

(
T̄1

1
)2] 	= 0 (20)

is satisfied, then

Re

[(
dλ2

dτ1

∣
∣
∣
∣
τ1=τ0

1

)–1]

	= 0.

Thus, we have the following theorem:

Theorem 4 Suppose that τ2 = 0, and τ1 > 0. If equation (19) has positive roots and condi-
tion (20) is met, then

(i) when τ1 ∈ (0, τ 0
1 ), E0 is locally asymptotically stable;

(ii) when τ1 > τ 0
1 , E0 is unstable;

(iii) when τ1 = τ 0
1 , system (1) has a Hopf bifurcation at E0.
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Case 3.2.4 If τ1 > 0, and τ2 > 0, then as shown in [32], it is difficult to directly analyze
the Hopf bifurcation with two delays. Thus, further, we only discuss the Hopf bifurcation
of equilibrium point for system (1) with one delay and the other delay lying in its stability
region. Without loss of generality, we investigate the Hopf bifurcation at E0 for system (1)
with τ1 > 0 and τ2 ∈ (0, τ 0

2 ), where τ 0
2 is as given in Case 3.2.2. Let τ2 ∈ (0, τ 0

2 ) be arbitrary
but fixed. Then, λ = iω (ω > 0) is a pure imaginary root of equation (7) if and only if

– ω2 + A1
1iω + A1

2 +
(
B1

0iω + B1
1
)(

cos(ωτ1) – i sin(ωτ1)
)

+
(
C1

0 iω + C1
1
)

× [
cos(ωτ2) – i sin(ωτ2)

]
+ D1

0
[
cos

(
ω(τ1 + τ2)

)
– i sin

(
ω(τ1 + τ2)

)]
= 0.

(21)

Separating the real part from the imaginary part in (21) gives

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(B1
0ω – D1

0 sin(ωτ2)) sin(ωτ1) + (B1
1 + D1

0 cos(ωτ2)) cos(ωτ1)

= –[(–ω2 + A1
2) + C1

0ω sin(ωτ2) + C1
1 cos(ωτ2)],

(B1
0ω – D1

0 sin(ωτ2)) cos(ωτ1) – (B1
1 + D1

0 cos(ωτ2)) sin(ωτ1)

= –(A1
1ω + C1

0ω cos(ωτ2) – C1
1 sin(ωτ2)).

(22)

By adding the squares of two equations in (22), we obtain

ω4 + l1(ω)ω3 + l2(ω)ω2 + l3(ω)ω + l4(ω) = 0, (23)

where l1(ω) = –2C1
0 sin(ωτ2); l2(ω) = (A1

1)2 – 2A1
2 + (C1

0)2 – (B1
0)2 + 2(–C1

1 + A1
1C1

0) cosωτ2;
l3(ω) = 2(A1

2C1
0 + B1

0D1
0 – A1

1C1
1) sin(ωτ2); and l4(ω) = (A1

2)2 + (C1
1)2 – (B1

1)2 – (D1
0)2 + 2(A1

2C1
1 –

B1
1D1

0) cosωτ2. Let

G1(ω) = ω4 + l1(ω)ω3 + l2(ω)ω2 + l3(ω)ω + l4(ω). (24)

Clearly, if l4(0) < 0, then G1(0) < 0. Besides, limω→+∞ G1(ω) = +∞. Hence, equation (23)
has at least one positive root denoted by ω̃1. Furthermore, substituting ω̃1 into (22) and
solving the resulting equations, we have

τ̃ k
1 =

1
ω̃1

(

arccos

[
M5(ω̃1)M7(ω̃1) + M6(ω̃1)M8(ω̃1)

M5
2(ω̃1) + M6

2(ω̃1)

]

+ 2kπ

)

, k = 0, 1, 2, . . . ,

where M5(ω̃1) = (B1
1 + D1

0 cos(ω̃1τ2)); M6(ω̃1) = (B1
0ω̃1 – D1

0 sin(ω̃1τ2)); M7(ω̃1) = –[(–ω̃2
1 +

A1
2)+C1

0ω̃1 sin(ω̃1τ2)+C1
1 cos(ω̃1τ2)]; and M8(ω̃1) = –(A1

1ω̃1 +C1
0ω̃1 cos(ω̃1τ2)–C1

1 sin(ω̃1τ2)).
Obviously,

lim
k→∞

τ̃ k
1 = ∞.

Thus, we can define

ω̃0
1 = arg min

{
τ̃ 0

1
}

. (25)

As discussed in Case 3.2.3, we consider the roots of equation (7) as a function of τ1 and
the root λ3(τ1) = ξ3(τ1) + iω3(τ1) of equation (7) such that

ξ3
(
τ̃ 0

1
)

= 0, and ω3
(
τ̃ 0

1
)

= ω̃0
1.



Liu et al. Journal of Inequalities and Applications         (2024) 2024:66 Page 10 of 37

Substituting λ3(τ1) into equation (7) and taking the derivative with respect to τ1, we have

(
dλ3

dτ1

)–1

=
2λ3 + A1

1 + C1
0 e–λ3τ2 + (C1

0λ3 + C1
1 )e–λ3τ2 (–τ2)

–λ3[(λ3)2 + A1
1λ3 + A1

2 + (C1
0λ3 + C1

1 )e–λ3τ2 ]
+

B1
0 + D1

0e–λ3τ2 (–τ2)
λ3[(B1

0λ3 + B1
1) + D1

0e–λ3τ2 ]

–
τ1

λ3
.

Then,

Re

[(
dλ3

dτ1

∣
∣
∣
∣
τ=τ̃0

1

)–1]

=
(M1

3N1
3 + S1

3T1
3 )[(P1

3)2 + (O1
3)2] + (Q1

3P1
3 + R1

3O1
3)[(N1

3 )2 + (T1
3 )2]

[(N1
3 )2 + (T1

3 )2][(P1
3)2 + (O1

3)2]
,

where M1
3 = A1

1 +C1
0 cos(ω̃0

1τ2)–τ2C1
0 ω̃

0
1 sin(ω̃0

1τ2)–τ2C1
1 cos(ω̃0

1τ2); S1
3 = 2ω̃0

1 –C1
0 sin(ω̃0

1τ2)–
τ2C1

0 ω̃
0
1 cos(ω̃0

1τ2) + τ2C1
1 sin(ω̃0

1τ2); N1
3 = –A1

1(ω̃0
1)2 – C1

0(ω̃0
1)2 cos(ω̃0

1τ2) + C1
1ω̃

0
1 sin(ω̃0

1τ2);
T1

3 = –(ω̃0
1)3 + A1

2ω̃
0
1 + C1

0(ω̃0
1)2 sin(ω̃0

1τ2) + C1
1 ω̃

0
1 cos(ω̃0

1τ2); Q1
3 = B1

0 – τ 0
2 D1

0 cos(ω̃0
1τ

0
2 ); R1

3 =
τ 0

2 D1
0 sin(ω̃0

1τ
0
2 ); P1

3 = –B1
0(ω̃0

1)2 + D1
0 cos(ω̃0

1τ
0
2 ); and O1

3 = B1
1ω̃

0
1 – D1

0 sin(ω̃0
1τ

0
2 ). It follows that

if the condition

(
M1

3N1
3 + S1

3T1
3
)[(

P1
3
)2 +

(
O1

3
)2] +

(
Q1

3P1
3 + R1

3O1
3
)[(

N1
3
)2 +

(
T1

3
)2] 	= 0 (26)

is satisfied, then

Re

[(
dλ3

dτ1

∣
∣
∣
∣
τ1=τ̃0

1

)–1]

	= 0.

As a result, by the Hopf bifurcation theory [31], we obtain the following theorem:

Theorem 5 Suppose that τ1 > 0, and τ2 ∈ (0, τ 0
2 ) with τ 0

2 as defined in Case 3.2.2. If equa-
tion (23) has positive roots and condition (26) is met, then

(i) when τ1 ∈ (0, τ̃ 0
1 ), E0 is locally asymptotically stable;

(ii) when τ1 > τ̃ 0
1 , E0 is unstable;

(iii) when τ1 = τ̃ 0
1 , system (1) has a Hopf bifurcation at E0.

3.3 Stability and Hopf bifurcation of endemic equilibrium point
The Jacobian matrix of the system (1) at E1 is given by

JE1 =

⎛

⎜
⎜
⎜
⎜
⎝

–(Y + d) –Y1 –Y2 – –β1S∗E∗–β2S∗I∗
(N∗)2

Y –(Y3 – Y1) Y2 – β1S∗E∗+β2S∗I∗
(N∗)2

0 εe–λτ1 Y4 0
0 γ2 γ1e–λτ2 –d

⎞

⎟
⎟
⎟
⎟
⎠

, (27)

where N∗ = S∗ + E∗ + I∗ + R∗; Y = β1(N∗–S∗)E∗
(N∗)2 + β2(N∗–S∗)I∗

(N∗)2 ; Y1 = β1S∗N∗–β1S∗E∗–β2S∗I∗
(N∗)2 ; Y2 =

β2S∗N∗–β2S∗I∗–β1S∗E∗
(N∗)2 ; Y3 = εe–λτ1 + γ2 + d; and Y4 = –(μ + d + γ1e–λτ2 ). For (27), one negative

eigenvalue is given by λ1 = –d. The other eigenvalues are determined by the following
characteristic equation:

λ3 + A2
1λ

2 + A2
2λ + A2

3 +
(
B2

0λ
2 + B2

1λ + B2
2
)
e–λτ1 +

(
C2

0λ
2 + C2

1λ

+ C2
2
)
e–λτ2 +

(
D2

0λ + D2
1
)
e–λ(τ1+τ2) = 0,

(28)
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where A2
1 = (Y + d) + (γ2 + d) + (μ+ d) – Y1; A2

2 = (Y + d)(γ2 + d) + (Y + d)(μ+ d) + (γ2 + d)(μ+
d) – (μ+ 2d)Y1 +γ2

β1S∗E∗+β2S∗I∗
(N∗)2 ; A2

3 = (Y + d)(γ2 + d)(μ+ d) – Y1(μ+ d)d + β1S∗E∗+β2S∗I∗
(N∗)2 (μ+

d)γ2; B2
0 = ε; B2

1 = (Y + d)ε + (μ + d)ε – Y2ε; B2
2 = (Y + d)(μ + d)ε – εdY2; C2

0 = γ1; C2
1 =

(Y + d)γ1 + (γ2 + d)γ1 – Y1γ1; C2
2 = (Y + d)(γ2 + d)γ1 + γ1γ2

β1S∗E∗+β2S∗I∗
(N∗)2 – γ1 dY1; D2

0 = εγ1;
and D2

1 = β1S∗E∗+β2S∗I∗
(N∗)2 εγ1 + (Y + d)εγ1.

Now, we investigate the following cases for τ1 and τ2 at the endemic equilibrium point
E1.

Case 3.3.1 If τ1 = τ2 = 0, then equation (28) turns to

λ3 +
(
A2

1 + B2
0 + C2

0
)
λ2 +

(
A2

2 + B2
1 + C2

1 + D2
0
)
λ + A2

3 + B2
2 + C2

2 + D2
1 = 0. (29)

Let
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2
0 = 1,

a2
1 = A2

1 + B2
0 + C2

0

= Y + γ2 + μ + 3d + ε + γ1 + β1S∗E∗+β2S∗I∗
(N∗)2 – β1S∗N∗

(N∗)2 ,

a2
2 = A2

2 + B2
1 + C2

1 + D2
0 = (Y + d)(ε + γ2 + d) + (Y + d)(μ + γ1 + d)

+ (ε + γ2 + d)(μ + γ1 + d) + (ε + γ2 + μ + γ1 + 2d)

+ (ε + γ2 + γ1 + μ + 2d) β1S∗E∗+β2S∗I∗
(N∗)2 – (γ1 + μ + 2d)

× β1S∗N∗
(N∗)2 – ε

β2S∗N∗
(N∗)2 ,

a2
3 = A2

3 + B2
2 + C2

2 + D2
1 = Y (ε + γ2 + d)(μ + γ1 + d) + [d(ε + μ

+ γ1 + d) + εγ1 + (μ + γ1 + d)γ2] β1S∗E∗+β2S∗I∗
(N∗)2 .

Obviously,

a2
1 > Y + d + μ + γ1 + d +

β1S∗E∗ + β2S∗I∗

(N∗)2 ,

and

a2
2 > Y (ε + γ2 + d) + (Y + d)(μ + γ1 + d) + (ε + γ2 + d + μ + γ1 + d)

× β1S∗E∗ + β2S∗I∗

(N∗)2 .

Then, we have

a2
1a2

2 > a2
0a2

3, and a2
i > 0, i = 0, 1, 2, 3.

Recall that the positive endemic equilibrium point E1 exists if and only if R0 > 1. Thus, by
the Routh-Hurwitz theorem [29], we have the following theorem:

Theorem 6 Suppose that τ1 = τ2 = 0. If R0 > 1, then E1 is locally asymptotically stable.

Case 3.3.2 If τ1 = 0, and τ2 > 0, then equation (28) turns to

λ3 +
(
A2

1 + B2
0
)
λ2 +

(
A2

2 + B2
1
)
λ + A2

3 + B2
2

+
[
C2

0λ
2 +

(
C2

1 + D2
0
)
λ + C2

2 + D2
1
]
e–λτ2 = 0.

(30)
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To discuss the Hopf bifurcation of (30), we observe that λ = iω (ω > 0) is a pure imaginary
root of the equation (30) if and only if

– iω3 –
(
A2

1 + B2
0
)
ω2 +

(
A2

2 + B2
1
)
iω + A2

3 + B2
2

+
[
–C2

0ω
2 +

(
C2

1 + D2
0
)
iω + C2

2 + D2
1
](

cos(ωτ2) – i sin(ωτ2)
)

= 0.
(31)

Separating the real part from the imaginary part in (31) gives

⎧
⎨

⎩

(A2
1 + B2

0)ω2 – (A2
3 + B2

2) = (–C2
0ω

2 + C2
2 + D2

1) cos(ωτ2) + (C2
1 + D2

0)ω sin(ωτ2),

ω3 – (A2
2 + B2

1)ω = –(–C2
0ω

2 + C2
2 + D2

1) sin(ωτ2) + (C2
1 + D2

0)ω cos(ωτ2).

(32)

By adding the squares of two equations in (32), we obtain

ω6 +
[(

A2
1 + B2

0
)2 – 2

(
A2

2 + B2
1
)

–
(
C2

0
)2]

ω4 +
[(

A2
2 + B2

1
)2 – 2

(
A2

1 + B2
0
)(

A2
3

+ B2
2
)

–
(
C2

1 + D2
0
)2 + 2C2

0
(
C2

2 + D2
1
)]

ω2 +
(
A2

3 + B2
2
)2 –

(
C2

2 + D2
1
)2 = 0.

(33)

Let z = ω2, h03 = (A2
3 + B2

2)2 – (C2
2 + D2

1)2, h13 = (A2
2 + B2

1)2 – 2(A2
1 + B2

0)(A2
3 + B2

2) – (C2
1 + D2

0)2 +
2C2

0(C2
2 + D2

1) and h23 = (A2
1 + B2

0)2 – 2(A2
2 + B2

1) – (C2
0)2. Then, (33) can be rewritten as

z3 + h23z2 + h13z + h03 = 0. (34)

Without loss of generality, we assume that equation (34) has three positive roots denoted
by z̄j, j = 1, 2, 3. Then, three positive roots of equation (33) are

ω̄
j
2 =

√
z̄j, j = 1, 2, 3. (35)

Furthermore, substituting (35) into (32) and solving the resulting equations, we have

τ̄
j,k
2 =

1
ω̄

j
2

(

arccos

[
(Ĵ – F̂C2

0)(ω̄j
2)4 + (C2

0 Î + F̂K̂ – ĤĴ)(ω̄j
2)2 – ÎK̂

Ĵ2(ω̄j
2)2 + (K̂ – C2

0(ω̄j
2)2)2

]

+ 2kπ

)

,

j = 1, 2, 3; k = 0, 1, . . . ,

where F̂ = A2
1 + B2

0; Ĥ = A2
2 + B2

1; Î = A2
3 + B2

2; Ĵ = C2
1 + D2

0; and K̂ = C2
2 + D2

1. Clearly,

lim
k→∞

τ̄
j,k
2 = ∞, j = 1, 2, 3.

Thus, we can define

τ̄ 0
2 = min

j∈{1,2,3}
{
τ̄

j,0
2

}
, and ω̄0

2 = arg min
j∈{1,2,3}

{
τ̄

j,0
2

}
. (36)

Now, we consider the roots of equation (30) as a function of τ2 and the root λ̃1(τ2) =
α1(τ2) + iω̃1(τ2) of equation (30) such that

α1
(
τ̄ 0

2
)

= 0, and ω̃1
(
τ̄ 0

2
)

= ω̄0
2,



Liu et al. Journal of Inequalities and Applications         (2024) 2024:66 Page 13 of 37

where τ̄ 0
2 and ω̄0

2 are as defined in (36). Substituting λ̃1(τ2) into equation (30) and taking
the derivative with respect to τ2, we have

(
dλ̃1

dτ2

)–1

=
3λ̃2

1 + 2(A2
1 + B2

0)λ̃1 + (A2
2 + B2

1)
–λ̃1[λ̃3

1 + (A2
1 + B2

0)λ̃2
1 + (A2

2 + B2
1)λ̃1 + A2

3 + B2
2]

+
2C2

0 λ̃1 + C2
1 + D2

0

λ̃1[C2
0 λ̃

2
1 + (C2

1 + D2
0)λ̃1 + C2

2 + D2
1]

–
τ2

λ̃1
.

Then,

Re

[(
dλ̃1

dτ2

∣
∣
∣
∣
τ2=τ̄0

2

)–1]

=
(M2

1N2
1 + S2

1T2
1 )[(P2

1)2 + (O2
1)2] + (Q2

1P2
1 + R2

1O2
1)[(N2

1 )2 + (T2
1 )2]

[(N2
1 )2 + (T2

1 )2][(P2
1)2 + (O2

1)2]
,

where M2
1 = –3(ω̄0

2)2 + (A2
2 + B2

1), S2
1 = 2(A2

1 + B2
0)ω̄0

2, N2
1 = –(ω̄0

2)4 + (A2
2 + B2

1)(ω̄0
2)2, T2

1 =
(A2

1 + B2
0)(ω̄0

2)3 – (A2
3 + B2

2)ω̄0
2, Q2

1 = C2
1 + D2

0, R2
1 = 2C2

0ω̄
0
2, P2

1 = –(C2
1 + D2

0)(ω̄0
2)2, and O2

1 =
–C2

0(ω̄0
2)3 + (C2

2 + D2
1)ω̄0

2. It follows that if the condition

(
M2

1N2
1 + S2

1T2
1
)[(

P2
1
)2 +

(
O2

1
)2] +

(
Q2

1P2
1 + R2

1O2
1
)[(

N2
1
)2 +

(
T2

1
)2] 	= 0 (37)

is satisfied, then

Re

[(
dλ̃1

dτ2

∣
∣
∣
∣
τ2=τ̄0

2

)–1]

	= 0.

Hence, by the Hopf bifurcation theory [31] and Lemma 2.1 in [33], we can obtain the
following theorem:

Theorem 7 Suppose that τ1 = 0, and τ2 > 0. If equation (34) has positive roots and condi-
tion (37) is met, then

(i) when τ2 ∈ (0, τ̄ 0
2 ), E1 is locally asymptotically stable;

(ii) when τ2 > τ̄ 0
2 , E1 is unstable;

(iii) when τ2 = τ̄ 0
2 , system (1) has a Hopf bifurcation at E1.

Case 3.3.3 If τ1 > 0, and τ2 = 0, then equations (28) and (33) become

λ3 +
(
A2

1 + C2
0
)
λ2 +

(
A2

2 + C2
1
)
λ + A2

3 + C2
2

+
[
B2

0λ
2 +

(
B2

1 + D2
0
)
λ + B2

2 + D2
1
]
e–λτ1 = 0.

(38)

and

ω6 +
[(

A2
1 + C2

0
)2 – 2

(
A2

2 + C2
1
)

–
(
B2

0
)2]

ω4 +
[(

A2
2 + C2

1
)2 – 2

(
A2

1 + C2
0
)(

A2
3

+ C2
2
)

–
(
B2

1 + D2
0
)2 + 2B2

0
(
B2

2 + D2
1
)]

ω2 +
(
A2

3 + C2
2
)2 –

(
B2

2 + D2
1
)2 = 0, (39)
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respectively, where A2
1, A2

2, A2
3, B2

0, B2
1, B2

2, C2
0 , C2

1 , C2
2 , D2

0, and D2
1 are as defined in (28).

Using similar argument as given for Case 2.2.3, we have

τ̄
j
1 =

1
ω̄

j
2

(

arccos

[
(J̄ – F̄B2

0)(ω̄j
1)4 + (B2

0 Ī + F̄K̄ – H̄J̄)(ω̄j
1)2 – ĪK̄

J̄2(ω̄j
1)2 + (K̄ – B2

0(ω̄j
1)2)2

])

,

j = 1, 2, 3,

τ̄ 0
1 = min

j∈{1,2,3}
{
τ̄

j
1
}

, ω̄0
1 = arg min

j∈{1,2,3}
{
τ̄

j
1
}

,

where ω̄1
1, ω̄2

1, and ω̄3
1 are three positive roots of (39); F̄ = A2

1 + C2
0 ; H̄ = A2

2 + C2
1 ; Ī = A2

3 + C2
2 ;

J̄ = B2
1 + D2

0; and K̄ = B2
2 + D2

1. Furthermore, we consider the root of equation (38) as
λ̃2(τ1) = α2(τ1) + iω̃2(τ1) with α2(τ̄ 0

1 ) = 0 and ω̃2(τ̄ 0
1 ) = ω̄0

1. Then, we have

Re

[(
dλ̃2

dτ1

∣
∣
∣
∣
τ1=τ̄0

1

)–1]

=
(M̄2

1N̄2
1 + S̄2

1T̄2
1 )[(P̄2

1)2 + (Ō2
1)2] + (Q̄2

1P̄2
1 + R̄2

1Ō2
1)[(N̄2

1 )2 + (T̄2
1 )2]

[(N̄2
1 )2 + (T̄2

1 )2][(P̄2
1)2 + (Ō2

1)2]
,

where M̄2
1 = –3(ω̄0

1)2 + (A2
2 + C2

1), S̄2
1 = 2(A2

1 + C2
0)ω̄0

1, N̄2
1 = –(ω̄0

1)4 + (A2
2 + C2

1)(ω̄0
1)2, T̄2

1 =
(A2

1 + C2
0)(ω̄0

1)3 – (A2
3 + C2

2)ω̄0
1, Q̄2

1 = B2
1 + D2

0, R̄2
1 = 2B2

0ω̄
0
1, P̄2

1 = –(B2
1 + D2

0)(ω̄0
1)2, and Ō2

1 =
–B2

0(ω̄0
1)3 + (B2

2 + D2
1)ω̄0

1. Clearly, if condition

(
M̄2

1N̄2
1 + S̄2

1T̄2
1
)[(

P̄2
1
)2 +

(
Ō2

1
)2] +

(
Q̄2

1P̄2
1 + R̄2

1Ō2
1
)[(

N̄2
1
)2 +

(
T̄2

1
)2] 	= 0 (40)

is satisfied, then

Re

[(
dλ̃2

dτ1

∣
∣
∣
∣
τ1=τ̄0

1

)–1]

	= 0.

Thus, we have the following theorem:

Theorem 8 Suppose that τ1 > 0, and τ2 = 0. If equation (39) has positive roots and condi-
tion (40) is met, then

(i) when τ1 ∈ (0, τ̄ 0
1 ), E1 is locally asymptotically stable;

(ii) when τ1 > τ̄ 0
1 , E1 is unstable;

(iii) when τ1 = τ̄ 0
1 , system (1) has a Hopf bifurcation at E1.

Case 3.3.4 If τ1 > 0, and τ2 > 0, then using the similar discussion as for Case 3.2.4, we
consider the Hopf bifurcation of E1 for the system (1) with τ1 > 0 and τ2 ∈ (0, τ̄ 0

2 ), where
τ̄ 0

2 as given in Case 3.3.2. Let τ2 ∈ (0, τ̄ 0
2 ) be arbitrary but fixed. Then, λ = iω (ω > 0) is a

pure imaginary root of the equation (28) if and only if

– iω3 – A2
1ω

2 + A2
2iω + A2

3 +
(
–B2

0ω
2 + B2

1iω + B2
2
)[

cos(ωτ1)

– i sin(ωτ1)
]

+
(
–C2

0ω
2 + C2

1 iω + C2
2
)[

cos(ωτ2) – i sin(ωτ2)
]

+
(
D2

0iω + D2
1
)[

cos
(
ω(τ1 + τ2)

)
– i sin

(
ω(τ1 + τ2)

)]
= 0.

(41)
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Separating the real part from the imaginary part in (41) gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2
1ω

2 – A2
3 – (–C2

0ω
2 + C2

2) cos(ωτ2) – C2
1ω sin(ωτ2)

= (–B2
0ω

2 + B2
2 + D2

1 cos(ωτ2) + D2
0ω sin(ωτ2)) cos(ωτ1)

+ (B2
1ω – D2

1 sin(ωτ2) + D2
0ω cos(ωτ2)) sin(ωτ1),

ω3 – A2
2ω + (–C2

0ω
2 + C2

2) sin(ωτ2) – C2
1ω cos(ωτ2)

= –(–B2
0ω

2 + B2
2 + D2

1 cos(ωτ2) + D2
0ω sin(ωτ2)) sin(ωτ1)

+ (B2
1ω – D2

1 sin(ωτ2) + D2
0ω cos(ωτ2)) cos(ωτ1).

(42)

By adding the squares of two equations in (42), we obtain

ω6 + l̄1(ω)ω5 + l̄2(ω)ω4 + l̄3(ω)ω3 + l̄4(ω)ω2 + l̄5(ω)ω + l̄6(ω) = 0, (43)

where l̄1(ω) = –2C2
0 sin(ωτ2); l̄2(ω) = (A2

1)2 – 2A2
2 + (C2

0)2 – (B2
0)2 + 2(A2

1C2
0 – C2

1) cos(ωτ2);
l̄3(ω) = 2(C2

2 + A2
2C2

0 – A2
1C2

1 + B2
0D2

0) sin(ωτ2); l̄4(ω) = (A2
2)2 + (C2

1)2 + 2B2
0B2

2 – 2A2
1A2

3 –
2C2

0C2
2 – (B2

1)2 – (D2
0)2 – 2(A2

1C2
2 – A2

2C2
1 + A2

3C2
0 + B2

1D2
0 – B2

0D2
1) cos(ωτ2); l̄5(ω) = 2(A2

3C2
1 –

A2
2C2

2 – B2
2D2

0 + B2
1D2

1) sin(ωτ2); and l̄6(ω) = (C2
2)2 + (A2

3)2 – (B2
2)2 – (D2

1)2 + (2A2
3C2

2 –
2B2

2D2
1) cos(ωτ2). Let

G2(ω) = ω6 + l̄1(ω)ω5 + l̄2(ω)ω4 + l̄3(ω)ω3 + l̄4(ω)ω2 + l̄5(ω)ω + l̄6(ω). (44)

Obviously, if l̄6(0) < 0, then G2(0) < 0. In addition, limω→+∞ G2(ω) = +∞. Hence, equation
(43) has at least one positive root denoted by ω̂1. Furthermore, substituting ω̂1 into (43)
and solving the resulting equations, we have

τ̂ k
1 =

1
ω̂1

(

arccos

[
M9(ω̂1)M11(ω̂1) + M10(ω̂1)M12(ω̂1)

M9
2(ω̂1) + M10

2(ω̂1)

]

+ 2kπ

)

, k = 0, 1, . . . ,

where M9(ω̂1) = –B2
0(ω̂1)2 + B2

2 + D2
1 cos(ω̂1τ2) + D2

0ω̂1 sin(ω̂1τ2); M10(ω̂1) = B2
1ω̂1 –

D2
1 sin(ω̂1τ2) + D2

0ω̂1 cos(ω̂1τ2); M11(ω̂1) = A2
1(ω̂1)2 – A2

3 – (–C2
0(ω̂1)2 + C2

2) cos(ω̂1τ2) –
C2

1 ω̂1 sin(ω̂1τ2); and M12(ω̂1) = (ω̂1)3 – A2
2ω̂1 + (–C2

0(ω̂1)2 + C2
2) sin(ω̂1τ2) – C2

1ω̂1 cos(ω̂1τ2).
Clearly,

lim
k→∞

τ̂ k
1 = ∞.

Thus, we can define

ω̂0
1 = arg min

{
τ̂ 0

1
}

. (45)

Next, we consider the roots of equation (28) as a function of τ1 and the root λ̃3(τ1) =
α3(τ1) + iω̃3(τ1) of equation (28) such that

α3
(
τ̂ 0

1
)

= 0, and ω̃3
(
τ̂ 0

1
)

= ω̂0
1.
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Substituting λ̃3(τ1) into equation (28) and taking the derivative with respect to τ1, we have

(
dλ̃3

dτ1

)–1

=
3(λ̃3)2 + 2A2

1λ̃3 + A2
2 + (2C2

0 λ̃3 + C2
1)e–λ̃3τ2 – τ2(C2

0(λ̃3)2 + C2
1 λ̃3 + C2

2)e–λ̃3τ2

–λ̃3[(λ̃3)3 + A2
1(λ̃3)2 + A2

2λ̃3 + A2
3 + (C2

0(λ̃3)2 + C2
1 λ̃3 + C2

2)e–λ̃3τ2 ]

+
2B2

0λ̃3 + B2
1 + D2

0e–λ̃3τ2 – τ2(D2
0λ̃3 + D2

1)e–λ̃3τ2

λ̃3[B2
0(λ̃3)2 + B2

1λ̃3 + B2
2 + (D2

0λ̃3 + D2
1)e–λ̃3τ2 ]

–
τ1

λ̃3
.

Then,

Re

[(
dλ̃3

dτ1

∣
∣
∣
∣
τ1=τ̂0

1

)–1]

=
(M2

3N2
3 + S2

3T2
3 )[(P2

3)2 + (O2
3)2] + (Q2

3P2
3 + R2

3O2
3)[(N2

3 )2 + (T2
3 )2]

[(N2
3 )2 + (T2

3 )2][(P2
3)2 + (O2

3)2]
,

where M2
3 = –3(ω̂0

1)2 + A2
2 + 2C2

0 ω̂
0
1 sin(ω̂0

1τ2) + C2
1 cos(ω̂0

1τ2) – τ2(–C2
0(ω̂0

1)2 + C2
2) cos(ω̂0

1τ2) –
τ2C2

1 ω̂
0
1 sin(ω̂0

1τ2); S2
3 = 2A2

1ω̂
0
1 + 2C2

0 ω̂
0
1 cos(ω̂0

1τ2) – C2
1 sin(ω̂0

1τ2) + τ2(–C2
0(ω̂0

1)2 + C2
2) ×

sin(ω̂0
1τ2) – τ2C2

1 ω̂
0
1 cos(ω̂0

1τ2); N2
3 = –(ω̂0

1)4 + A2
2(ω̂0

1)2 + (C2
0(ω̂0

1)3 – C2
2ω̂

0
1) sin(ω̂0

1τ2) +
C2

1(ω̂0
1)2 cos(ω̂0

1τ2); T2
3 = A2

1(ω̂0
1)3 – A2

3ω̂
0
1 + (C2

0(ω̂0
1)3 – C2

2 ω̂
0
1) cos(ω̂0

1τ2) – C2
1(ω̂0

1)2 sin(ω̂0
1τ2);

Q2
3 = B2

1 + D2
0 cos(ω̂0

1τ2) – τ2D2
0ω̂

0
1 sin(ω̂0

1τ2) – τ2D2
1 cos(ω̂0

1τ2); R2
3 = 2B2

0ω̂
0
1 – D2

0 sin(ω̂0
1τ2) –

τ2D2
0ω̂

0
1 cos(ω̂0

1τ2)+τ2D2
1 sin(ω̂0

1τ2); P2
3 = –B2

1(ω̂0
1)2 –D2

0(ω̂0
1)2 cos(ω̂0

1τ2)+D2
1ω̂

0
1 sin(ω̂0

1τ2); and
O2

3 = –B2
0(ω̂0

1)3 + B2
2ω̂

0
1 + D2

0(ω̂0
1)2 sin(ω̂0

1τ2) + D2
1ω̂

0
1 cos(ω̂0

1τ2). Furthermore, if condition

(
M2

3N2
3 + S2

3T2
3
)[(

P2
3
)2 +

(
O2

3
)2] +

(
Q2

3P2
3 + R2

3O2
3
)[(

N2
3
)2 +

(
T2

3
)2] 	= 0 (46)

is satisfied, then

Re

[(
dλ̃3

dτ1

∣
∣
∣
∣
τ1=τ̂0

1

)–1]

	= 0.

Thus, by the Hopf bifurcation theory [31], we can obtain the following theorem:

Theorem 9 Suppose that τ1 > 0, and τ2 ∈ (0, τ̄ 0
2 ) with τ̄ 0

2 as defined in Case 3.3.2. If equa-
tion (43) has positive roots and condition (46) is met, then

(i) when τ1 ∈ (0, τ̂ 0
1 ), E1 is locally asymptotically stable;

(ii) when τ1 > τ̂ 0
1 , E1 is unstable;

(iii) when τ1 = τ̂ 0
1 , system (1) has a Hopf bifurcation at E1.

4 Delay optimal control problem
In this section, we will consider the delay optimal control problem in the COVID-19 epi-
demic and will derive the corresponding necessary optimality conditions.

The outbreak of the COVID-19 epidemic can be controlled by two interventions: (i)
reduction and suppression of social contact through masking, home isolation, etc. and
(ii) pharmacological interventions, leading to the use of novel treatments that minimize
mortality and shorten hospital stays. Let u1(t) and u2(t) be the social contact and the phar-
maceutical intervention, respectively. Then, the controlled SEIR model in the COVID-19
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virus transmission can be formulated as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = � – β1(1–u1(t))S(t)E(t)
N(t) – β2(1–u1(t))S(t)I(t)

N(t) – dS(t),

Ė(t) = β1(1–u1(t))S(t)E(t)
N(t) + β2(1–u1(t))S(t)I(t)

N(t) – εE(t – τ1)

– (γ2 + d)E(t), t ∈ [0, T],

İ(t) = εE(t – τ1) – γ1(1 + u2(t))I(t – τ2) – (μ + d)I(t),

Ṙ(t) = γ1(1 + u2(t))I(t – τ2) + γ2E(t) – dR(t),

(47)

where T > 0 is a given terminal time. It should be noted that the suppression of social
contacts is generally costly, and it will result in economy recession. Pharmacological inter-
vention is also expensive because it requires extensive clinical trials prior to experimental
treatment. Therefore, we assume that

0 ≤ ui(t) ≤ umax
i , i = 1, 2, t ≥ 0, (48)

where umax
i (≤ 1), i = 1, 2, are the upper bounds for controls ui(t). Let U be the set of all

Borel measurable functions ui : [0, T] → R, i = 1, 2, satisfying constraint (48).
Let x(t) = (S(t), E(t), I(t), R(t))
, u(t) = (u1(t), u2(t))
, and the right-hand side of system

(47) be f̃ (x(t), x(t – τ1), x(t – τ2), u(t)). Then, system (47) with the condition (2) in a finite
time horizon [–τ , T] can be rewritten as

⎧
⎨

⎩

ẋ(t) = f̃ (x(t), x(t – τ1), x(t – τ2), u(t)), t ∈ [0, T],

x(t) = ϕ(t), t ∈ [–τ , 0],
(49)

where ϕ(t) = (ϕ1(t),ϕ2(t),ϕ3(t),ϕ4(t))
 is the initial condition.
During the COVID-19 spread, social contacts can be mitigated and suppressed by non-

pharmacological interventions, such as wearing masks, maintaining social distancing,
testing and isolation, and closing businesses, while the length of hospital stay can be mini-
mized by pharmacological interventions and using new treatment modalities. Thus, using
both non-pharmacological and pharmacological interventions as the control strategies,
our goal is to maximize the number of recovered individuals at the terminal time, as well
as to minimize the number of exposed and infected individuals during the time horizon,
and the system cost of control measures. Therefore, the cost function in controlling the
COVID-19 epidemic can be stated as

J(u) = –q1x4(T) +
1
2

∫ T

0

[
q2x2

2(t) + q3x2
3(t) + r1u2

1(t) + r2u2
2(t)

]
dt, (50)

where qi > 0, i = 1, 2, 3, r1 > 0 and r2 > 0 are weighting coefficients. As a result, we propose
the following delay optimal control problem:

(DOCP) min J(u)

s.t.

⎧
⎨

⎩

ẋ(t) = f̃ (x(t), x(t – τ1), x(t – τ2), u(t)), t ∈ [0, T],

x(t) = ϕ(t), t ∈ [–τ , 0],

u ∈ U .
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To solve Problem (DOCP), we establish the following necessary optimality conditions.

Theorem 10 Let u∗ ∈ U be the optimal control of Problem (DOCP), and let x∗ = x(·|u∗)
be the corresponding solution of system (49). Then, there exists a costate vector λ∗(t) =
(λ∗

1(t),λ∗
2(t), . . . ,λ∗

4(t))
 satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇∗
1(t) = λ∗

1(t)(W1 + W2 + d) – λ∗
2(t)(W1 + W2),

λ̇∗
2(t) = –q2x∗

2(t) + λ∗
1(t)(W3 – W5) – λ∗

2(t)(W3 – W5 – γ2 – d)

+ λ∗
2(t + τ1)ε – λ∗

3(t + τ1)ε – λ∗
4γ2, t ∈ [0, T],

λ̇∗
3(t) = –q3x∗

3(t) + λ∗
1(t)(W4 – W6) – λ∗

2(t)(W4 – W6)

+ λ∗
3(t + τ2)γ1(1 + u∗

2(t)) + λ∗
3(t)(μ + d) – λ∗

4(t + τ2)γ1(1 + u∗
2(t)),

λ̇∗
4(t) = –λ∗

1(W5 + W6) + λ∗
2(W5 + W6) + λ∗

4d,

with the conditions

λ(T) = (0, 0, 0, –q1)
,

λ(t) = (0, 0, 0, 0)
, t > T ,

where x̄∗(t) = x∗
1(t) + x∗

2(t) + x∗
3(t) + x∗

4(t); W1 = β1x∗
2(t)(1–u∗

1(t))(x̄∗(t)–x∗
1(t))

(x̄∗(t))2 ; W2 =
β2x∗

3(t)(1–u∗
1(t))(x̄∗(t)–x∗

1(t))
(x̄∗(t))2 ; W3 = β1x∗

1(t)(1–u∗
1(t))(x̄∗(t)–x∗

2(t))
(x̄∗(t))2 ; W4 = β2x∗

1(t)(1–u∗
1(t))(x̄∗(t)–x∗

3(t))
(x̄∗(t))2 ; W5 =

β2(1–u∗
1(t))x∗

1(t)x∗
3(t)

(x̄∗(t))2 ; and W6 = β1(1–u∗
1(t))x∗

1(t)x∗
2(t)

(x̄∗(t))2 . Furthermore, the optimal control u∗ can be
expressed as

⎧
⎨

⎩

u∗
1(t) = min(max( (λ∗

2(t)–λ∗
1(t))(x∗

1(t)x∗
2(t)+x∗

1(t)x∗
3(t))

x̄∗(t)r1
, 0), umax

1 ),

u∗
2(t) = min(max( (λ∗

3(t)–λ∗
4(t))x∗

3(t–τ2)
r2

, 0), umax
2 ).

Proof Using proof similar to Theorem 1 in [34], we can complete the proof. �

5 Numerical simulations
In this section, we will carry out some numerical simulations to verify the stability and
the Hopf bifurcation of equilibrium points in Sect. 3. Moreover, Problem (DOCP) will be
solved based on the derived necessary optimality conditions in Sect. 4.

5.1 Numerical simulations of stability and Hopf bifurcation
In numerical simulations, two sets of parameter values for system (1) are chosen (Table 1).
In addition, the initial condition is chosen as ϕ(t) = (99999, 1, 0, 0)
 for t ∈ [–τ , 0]. For the
first set of parameter values (i.e., the second row in Table 1), we obtain R0 = 0.7037(< 1).
In this case, system (1) has a unique disease-free equilibrium point E0 = (30, 0, 0, 0). For
τ1 = τ2 = 0, we have a1

0 = 1, a1
1 = 1.65, a1

2 = 0.32 and a1
3 = 0. Obviously, a1

1a1
2 > a1

0a1
3 and E0

Table 1 Two sets parameter values in the simulations

Parameters β1 β2 � d γ1 γ2 μ ε

First set of values 0.5 0.3 1.5 0.05 0.55 0.1 0.2 1.2
Second set of values 1 0.3 0.5 0.05 0.5 0.01 0.2 1.2
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Figure 2 When τ1 = τ2 = 0, E0 is asymptotically stable

is locally stable from Theorem 2 (Fig. 2). For τ1 = 0 and τ2 > 0, we obtain ω0
2 = 0.3820 and

τ 0
2 = 3.8658. As shown in Theorem 3, E0 is asymptotically stable when τ2 ∈ (0, 3.8658), and

the Hopf bifurcation occurs when τ2 = 3.8658, which are illustrated in Figs. 3 and 4. For
τ1 > 0 and τ2 = 0, we obtain ω0

1 = 0.9840 and τ 0
1 = 1.4683. The corresponding asymptotic

stability and the Hopf bifurcation of E0 are shown in Figs. 5 and 6. For τ1 > 0 and τ2 = 2 ∈
(0, 3.8658), we get ω̃0

1 = 1.2902 and τ̃ 0
1 = 1.2340. The corresponding asymptotic stability

and the Hopf bifurcation of E0 are plotted in Figs. 7 and 8.
For the second set of parameter values (i.e., the third row in Table 1), we obtain

R0 = 1.1746(> 1). In this case, system (1) has a unique endemic equilibrium point E1 =
(8.5135, 0.0787, 0.0708, 0.7236). For τ1 = τ2 = 0, we have a2

0 = 1, a2
1 = 1.16365, a2

2 = 0.4634
and a2

3 = 0.0047. Obviously, a2
1a2

2 > a2
0a2

3 and E1 is asymptotically stable from Theorem 6
(Fig. 9). For τ1 = 0, τ2 > 0, we get ω̄0

2 = 0.2881 and τ̄ 0
2 = 4.1563. Using Theorem 7, we con-
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Figure 3 When τ1 = 0, E0 is asymptotically stable for τ2 = 2.5 < τ 0
2 = 3.8658

clude that E1 is asymptotically stable when τ2 ∈ (0, 4.1563) and that the Hopf bifurcation
occurs when τ2 = 4.1563 (Figs. 10 and 11). For τ1 > 0 and τ2 = 0, we obtain ω̄0

1 = 1.0086 and
τ̄ 0

1 = 1.2326. The corresponding asymptotic stability and the Hopf bifurcation are plot-
ted in Figs. 12 and 13. For τ1 > 0 and τ2 = 3.5 ∈ (0, 4.1563), we obtain ω̂0

1 = 1.8961 and
τ̂ 0

1 = 0.5437. The corresponding asymptotic stability and the Hopf bifurcation are shown
in Figs. 14 and 15.

5.2 Numerical results of optimal control problem
In this section, we will present numerical results for solving Problem (DOCP). Here, the
delayed SEIR system (49) was solved using software package DDE23 in Matlab with delay
arguments τ1 = 0.5 and τ2 = 0.7 and the initial condition ϕ(t) = (99999, 1, 0, 0)
 [14]. The
weight coefficients in the cost functional (50) are chosen as q1 = 10–8, q2 = q3 = 10–4, r1 =
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Figure 4 When τ1 = 0, E0 is unstable for τ2 = 3.87 > τ 0
2 = 3.8658

50 and r2 = 1 [14]. In addition, we choose two sets of parameter values listed in Table 1
for calculating the optimal control strategies. As for the control boundaries, we assume
that umax

1 = 0.07 and umax
2 = 0.1. Note that Problem (DOCP) was solved using forward-

backward sweep method [35] in conjunction with the necessary optimality conditions in
Theorem 10.

To explore the effects of each control means, we set up the following control scheme.
(i) Strategy A: Social contact only (u1).
(ii) Strategy B: Pharmaceutical intervention only (u2).
(iii) Strategy C: Social contact + Pharmaceutical intervention (u1, u2).
For the first set of parameters (i.e., the second row in Table 1), we solve Problem (DOCP)

and obtain the optimal control strategies u∗
1 and u∗

2 shown in Fig. 16. The state trajectories
corresponding to different control strategies, i.e., u1 = u2 = 0, u1 = u∗

1 and u2 = 0, u1 = 0
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Figure 5 When τ2 = 0, E0 is asymptotically stable for τ1 = 0.9 < τ 0
1 = 1.4683

and u2 = u∗
2, and u1 = u∗

1 and u2 = u∗
2, are plotted in Fig. 17. Similarly, for the second set of

parameters (i.e., the third row in Table 1), we also solve Problem (DOCP) and obtain the
optimal control strategies ū∗

1 and ū∗
2 depicted in Fig. 18. The state trajectories correspond-

ing to different control strategies, i.e., u1 = u2 = 0, u1 = ū∗
1 and u2 = 0, u1 = 0 and u2 = ū∗

2,
and u1 = ū∗

1 and u2 = ū∗
2, are plotted in Fig. 19.

From Figs. 16 and 18, we can see that, for the social contact u1, it begins with the maximal
value of 0.07, keeps the maximal value for a period of time, and then decreases to zero. This
is mainly because, in the case of a sudden outbreak of COVID-19, quarantine measures
are effective in stopping the spread of the disease by cutting off the route of transmission
in the real world. As for the pharmacological intervention u2, since the pharmacological
intervention for the infected individuals is not immediately administered, it starts from
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Figure 6 When τ2 = 0, E0 is unstable for τ1 = 1.4684 > τ 0
1 = 1.4683

the minimal value of zero, rapidly increases to the maximal value of 0.1, maintains at this
maximal value for a period of time, and ultimately reduces to zero.

From Figs. 17(b), 17(c), 19(b), and 19(c), it can be seen that the number of exposed and
infected individuals under no control is the highest, while the lowest number of exposed
and infected individuals is under strategy C. Moreover, the implementation of u1 can de-
crease the number of both exposed and infectious individuals, while the implementation
of u2 is particularly effective in reducing the number of infected individuals. Neverthe-
less, relying solely on one control measure (strategies A and B) or not implementing any
control measures at all is less effective than the optimal control strategy C.

For strategy C, we also solved the optimal control problem without delay. The com-
puted optimal control strategies under two sets of parameter values are also illustrated
in Figs. 16 and 18, respectively. Under the optimal control strategies in Figs. 16 and 18,
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Figure 7 When τ2 = 2, E0 is asymptotically stable for τ1 = 0.5 < τ̃ 0
1 = 1.2340

the corresponding optimal state trajectories are depicted in Figs. 20 and 21. From Figs. 20
and 21, we observe that the peaks of infected individuals for the cases with τ1 = 0.5 and
τ2 = 0.7 are higher than those without delay. This implies that time delays could aggra-
vate the transmission of COVID-19. As a result, to minimize the number of infections,
effective control strategies should be implemented as soon as possible.

6 Conclusion
In this paper, we have studied the dynamics analysis and optimal control of the delayed
SEIR model in the COVID-19 epidemic. Two delays representing the incubation and re-
covery periods in COVID-19 virus transmission have been introduced. A key issue with
delays describing the incubation and recovery periods is whether they cause sustained os-
cillations. This was investigated through Hopf bifurcation analysis. By using the charac-
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Figure 8 When τ2 = 2, E0 is unstable for τ1 = 1.235 > τ 0
1 = 1.2340

teristic equations of delay differential equations, the existence of Hopf bifurcations at the
disease-free and endemic equilibrium points was established. It has been shown that un-
der some conditions, delays representing the incubation and recovery periods may desta-
bilize the disease-free and endemic equilibrium points and cause the population to fluctu-
ate. From Theorems 3, 4, 5, 7, 8, and 9, we see that thresholds for two delays were identified
to characterize the existence of Hopf bifurcations at the disease-free and endemic equilib-
rium points. In addition, two controls representing the social contact and pharmaceutical
intervention have also been introduced. The delay optimal control problem was formu-
lated, and its necessary optimality conditions were exploited to solve the optimal controls.
Numerical simulation results indicate that the pharmacological intervention was more ef-
fective for hospitalized patients, whereas suppression of social contact reduced the num-
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Figure 9 When τ1 = τ2 = 0, E1 is asymptotically stable

ber of exposed individuals. More importantly, the obtained optimal strategies are effective
in preventing and controlling the spread of COVID-19 infection.

We note that the effect of vaccination is ignored in systems (1) and (47). Vaccination has
played a major role in preventing the spread of COVID-19 [36–38]. Moreover, the frac-
tional derivative can be regarded as the generalization of the traditional integer derivative,
which shows many important properties that the integer derivative does not have [39–44].
Many scholars have applied fractional derivative differential equations to study the spread
of COVID-19 [45–47]. As a result, it is worthwhile to investigate the fractional optimal
control of the COVID-19 epidemic by incorporating vaccination. This will be left for fu-
ture research work.
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Figure 10 When τ1 = 0, E1 is asymptotically stable for τ2 = 3.1 < τ̄ 0
2 = 4.1563
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Figure 11 When τ1 = 0, E1 is unstable for τ2 = 4.16 > τ̄ 0
2 = 4.1563
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Figure 12 When τ2 = 0, E1 is asymptotically stable for τ1 = 1.1 < τ̄ 0
1 = 1.2326
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Figure 13 When τ2 = 0, E1 is unstable for τ1 = 1.24 > τ̄ 0
1 = 1.2326
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Figure 14 When τ2 = 3.5, E1 is asymptotically stable for τ1 = 0.05 < τ̂ 0
1 = 0.5437
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Figure 15 When τ2 = 3.5, E1 is unstable for τ1 = 0.55 > τ̂ 0
1 = 0.5437

Figure 16 The optimal control strategies under the first set of parameter values
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Figure 17 State trajectories with different control strategies under the first set of parameter values

Figure 18 The optimal control strategies under the second set of parameter values
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Figure 19 State trajectories with different control strategies under the second set of parameter values

Figure 20 Optimal state trajectories under the first set of parameter values
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Figure 21 Optimal state trajectories under the second set of parameter values
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