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Abstract
The current study focuses on exploring the stability of solution sets pertaining to set
optimization problems, particularly with regard to the set order relation outlined by
Karaman et al. 2018. Sufficient conditions are provided for the lower semicontinuity,
upper semicontinuity, and compactness ofm-minimal solution mappings in
parametric set optimization, where the involved set-valued mapping is Lipschitz
continuous.
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1 Introduction
Over the past few decades, set optimization has garnered considerable attention from nu-
merous researchers, primarily due to its widespread applications across various fields of
applied mathematics, including vector optimization, interval optimization, game theory,
mathematical economics, control system field, mathematical finance, and numerous oth-
ers, see [2–11].

As we know, the stability of solutions holds great importance and serves as an intrigu-
ing subject in the field of set-valued optimization, see [12–20]. Xu and Li [13] introduced
the notion of a lower-level mapping and established the semicontinuity of minimal so-
lution mappings for a parametric set optimization problem. Han and Huang [7] delved
into the convexity and semicontinuity of solution mappings in parametric set optimiza-
tion problems, leveraging level mappings in their analysis. Karuna and Lalitha [14] pri-
marily investigated the semicontinuity of approximate efficient solution mappings in the
context of parametric set-valued optimization problems. Anh et al. [18] established the
internal and external stability of the solutions sequence of perturbed problems, demon-
strating their convergence towards a solution of the original problem. Li and Wei [16]
conducted a thorough examination of the compactness and semicontinuity of E-minimal
solution sets in parametric set optimization problems, utilizing improvement sets, and
doing so under various pertinent conditions. Zhang and Huang [17] examined the semi-
continuity and compactness of minimal solution mappings in parametric set optimization
problems, taking into account the local Lipschitz continuity condition.
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Lately, Karaman et al. [1] introduced a novel set order relations within the family of
bounded sets, utilizing the Minkowski difference as a foundation. These new relations en-
dow the family of bounded sets with a partial order, thus offering a fresh approach to the
study of set optimization problems. Employing these novel set order relations, set opti-
mization problems have been examined in [1, 20–22]. Nevertheless, to our knowledge,
no research has been conducted on the continuity of solution maps for parametric set
optimization problems using Karaman’s set order relations so far. Therefore, it is of sig-
nificant interest and importance to delve into the semicontinuity and compactness of so-
lution maps for the parametric set optimization problem, leveraging Karaman’s set order
relations.

The rest of this paper is organized as follows. In Sect. 2, we introduce essential con-
cepts, notations, and outcomes that are used throughout the paper. Section 3 delves into
the lower semicontinuity, upper semicontinuity, and compactness of m-minimal solution
mappings for parametric set optimization, specifically focusing on locally Lipschitz con-
tinuous set-valued mappings.

2 Preliminaries
Let (X,‖ · ‖X), (�,‖ · ‖�) and (Y ,‖ · ‖Y ) be three real normed vector spaces. We denote the
closed unit ball centered at origin in X (respectively, Y ) by BX (respectively, BY ), and an
open ball centered at y with radius r > 0 in Y by BY (y, r). Let K ⊆ Y be a convex, pointed
and closed cone with nonempty interior. Additionally, we use P(Y ) to denote the family
of nonempty proper subsets of Y , and B(Y ) to represent the family of nonempty proper
bounded subsets of Y . Then we denote by int A, cl A the topological interior, and the topo-
logical closure of A ⊆ Y , respectively.

For A, B ∈ P(Y ), the Minkowski (Pontryagin) difference of A and B, considered in [11],
is given as

A–̇B := {y ∈ Y : y + B ⊆ A}.

In [8], for any A, B ∈ P(Y ), the lower set less order relation ≤l
K and the strict lower set

less order relation �l
K on P(Y ) are defined by

A ≤l
K B ⇔ B ⊆ A + K ;

A �l
K B ⇔ B ⊆ A + intK .

Lately, Karaman et al. [1] introduced the following order relations on P(Y ).

A ≤m B ⇔ (A–̇B) ∩ (–K) 	= ∅,

and

A �m B ⇔ (A–̇B) ∩ (–intK) 	= ∅.

Obviously, ≤m is a partial order relation on B(Y ).

Lemma 2.1 [6] Let A and B be nonempty subsets of Y . If 0 < λ < δ, B is convex, and A +
δBY ⊆ B + λBY , then A ⊆ intB.
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For any nonempty subset S of X, let F : X → 2Y be a set-valued mapping. We consider
the constrained set optimization problem:

(SOP) min F(x)

s.t. x ∈ S.

Throughout the paper, it is assumed that F(x) 	= ∅ for all x ∈ S, and that F(S) :=
⋃

x∈S F(x).
We recall the concept of the optimal solutions for the problem (SOP) with regard to the

set order relation ≤l
K .

Definition 2.1 [8] An element x̄ ∈ S is said to be
(i) a K-l-minimal solution of (SOP) if x ∈ S such that F(x) ≤l

K F(x̄) imply F(x̄) ≤l
K F(x);

(ii) a weak K-l-minimal solution of (SOP) if x ∈ S such that F(x) �l
K F(x̄) imply F(x̄) �l

K
F(x).

Let El(S) and Wl(S) represent the K-l-minimal solution set and the weak K-l-minimal
solution set of (SOP), respectively. It is evident that El(S) ⊆ Wl(S).

We now recall the notion of the minimal and weak minimal solutions of (SOP) with
respect to the relation ≤m. To define solution concepts, we assume that F(x) ∈ B(Y ), for
all x ∈ S.

Definition 2.2 [1] An element x̄ ∈ S is said to be
(i) a m-minimal solution of (SOP) if there is no x ∈ S such that F(x) ≤m F(x̄) and F(x) 	=

F(x̄), that is, either F(x) �m F(x̄) or F(x) = F(x̄), for any x ∈ S.
(ii) a weak m-minimal solution of (SOP) if there is no x ∈ S such that F(x) �m F(x̄).
Let Em(S) and Wm(S) represent the m-minimal solution set and the weak m-minimal

solution set of (SOP), respectively.

Lemma 2.2 [21] If K is a closed convex pointed cone with nonempty interior, then

El(S) ⊆ Wl(S) ⊆ Wm(S).

A subset S of a topological space is said to be arcwise connected if, for every pair of points
x, y ∈ S, there exists a continuous function ϕ : [0, 1] → S such that ϕ(0) = x and ϕ(1) = y.

Definition 2.3 [22] Let S be an arcwise connected subset of X. A set-valued mapping
F : X → 2Y is said to be strictly m-quasiconnected on S if for any A ∈ P(Y ) and for any
x, y ∈ S with x 	= y, F(x) ≤m A and F(y) ≤m A, there exists a continuous path ϕ : [0, 1] → S
with ϕ(0) = x and ϕ(1) = y such that

F
(
ϕ(t)

) �m A, ∀t ∈ (0, 1).

Lemma 2.3 [22] If S is an arcwise connected subset of X and F : X → 2Y is strictly m-
quasiconnected on S with nonempty values, then Em(S) = Wm(S).

Definition 2.4 [2] Let F : X → 2Y be a set-valued mapping. Then, F is said to be
(i) upper semicontinuous (u.s.c.) at x̄ if, for any open neighborhood U of F(x̄), there is a

neighborhood N(x̄) of x̄ such that for every x ∈ N(x̄), F(x) ⊆ U .
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(ii) lower semicontinuous (l.s.c.) at x̄ if, for any open subset U of Y with F(x̄) ∩ U 	= ∅,
there is a neighborhood N(x̄) of x̄ such that F(x) ∩ U 	= ∅ for all x ∈ N(x̄).

We say that F is u.s.c. and l.s.c. on X if it is u.s.c. and l.s.c. at each point x ∈ X, respectively.
We call that F is continuous on X if it is both u.s.c. and l.s.c. on X.

Lemma 2.4 [2] A set-valued mapping F : X → 2Y is l.s.c. at x̄ ∈ X if and only if for any se-
quence {xn} ⊆ X with xn → x̄ and for any ȳ ∈ F(x̄), there exists yn ∈ F(xn) such that yn → ȳ.

Lemma 2.5 [2] Let F : X → 2Y be a set-valued mapping. For any given x̄ ∈ X, if F(x̄) is
compact, then F is u.s.c. at x̄ ∈ X if and only if for any sequence {xn} ⊆ X with xn → x̄ and
for any yn ∈ F(xn), there exist ȳ ∈ F(x̄) and a subsequence {ynk } of {yn} such that ynk → ȳ.

Definition 2.5 [17] Let S be a nonempty subset of X. A set-valued mapping F : X → 2Y

is said to be locally Lipschitz continuous at x̄ ∈ S if and only if there exist a constant L > 0
and a neighborhood N(x̄) of x̄ in X such that

F(x1) ⊆ F(x2) + L‖x1 – x2‖XBY , ∀x1, x2 ∈ N(x̄) ∩ S.

We say that F is locally Lipschitz continuous on S if and only if F is locally Lipschitz
continuous at every x̄ ∈ S.

Definition 2.6 [22] Let S be a nonempty subset of X. A set-valued mapping F : X → 2Y is
said to be weak locally K-Lipschitz continuous at x̄ ∈ S if and only if there exist a constant
L > 0 and a neighborhood N(x̄) of x̄ in X such that

F(x1) ∩ {
z + L‖x1 – x2‖XBY + K

} 	= ∅, ∀x1, x2 ∈ N(x̄) ∩ S,∀z ∈ F(x2).

We say that F is weak locally K-Lipschitz continuous on S if and only if F is weak locally
K-Lipschitz continuous at every x̄ ∈ S.

Remark 2.1 The following examples demonstrate that the concept of continuity differs
from the concept of locally Lipschitz continuity for a set-valued mapping.

Example 2.1 [17] Let X = R, Y = R
2, S = {x ∈ R : x > 0}, and K = R

2
+. Let F : X → 2Y be a

set-valued mapping defined as

F(x) = (ln x, ln x) + R
2
+, ∀x ∈ S.

Then it is easy to see that F is continuous on S, while it is not locally Lipschitz continous
on S.

Example 2.2 [22] Let S = X = R, and Y = R. Consider F : X → 2Y defined as

F(x) =

⎧
⎨

⎩

[–1, 1], if x = 0,

{0}, if x 	= 0.

Then one can easily see that F is locally Lipschitz at 0, but it is not l.s.c. at 0.
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Example 2.3 [22] Let S = X = R, and Y = R. Consider F : X → 2Y defined as

F(x) =

⎧
⎨

⎩

[–1, 1], if x 	= 0,

{0}, if x = 0.

Then one can easily see that F is locally Lipschitz at 0, but it is not u.s.c. at 0.

Proposition 2.1 We assume that F : S → 2Y is a locally Lipschitz continuous set-valued
mapping at x0 ∈ S and at y0 ∈ S, respectively. Furthermore, S ⊆ X is a nonempty, and F(x0)
is closed. If, for any sequences {xn} and {yn} satisfying the conditions xn → x0 and yn → y0,
it holds that F(xn) ≤m F(yn) for sufficiently large n, then it follows that F(x0) ≤m F(y0).

Proof Since F is locally Lipschitz continuous at x0 ∈ S, there exists a constant L > 0 such
that, for n sufficiently large, we have

F(xn) ⊆ F(x0) + L‖xn – x0‖XBY . (1)

Moreover, as F is locally Lipschitz continuous at y0 ∈ S, there exists a constant L1 > 0 such
that, for n sufficiently large, we have

F(y0) ⊆ F(yn) + L1‖yn – y0‖XBY . (2)

It follows from (1), (2), and F(xn) ≤m F(yn) for n sufficiently large that, there exists kn ∈ K
such that

–kn + F(y0) ⊆ F(x0) + L‖xn – x0‖XBY + L1‖yn – y0‖XBY .

We conclude that F(x0) ≤m F(y0). In other words, there exists a vector k ∈ K such that
–k + F(y0) ⊆ F(x0). Suppose, on the contrary, that for any k ∈ K there exists u0 ∈ F(y0)
such that –k + u0 /∈ F(x0). Since F(x0) is closed, there exists ε > 0 such that ((–k + u0) +
εBY ) ∩ F(x0) = ∅, and as a result

–k + u0 /∈ F(x0) + εBY . (3)

Because BY is a closed unit ball and xn → x0, yn → y0, as n → ∞, L‖xn – x0‖XBY + L1‖yn –
y0‖XBY is reduced to the origin 0 as n → ∞. Then, we get –kn + F(y0) ⊆ F(x0) + εBY for
n sufficiently large, which is a contradition to (3). Therefore, –k + F(y0) ⊆ F(x0), and so
F(x0) ≤m F(y0). �

Proposition 2.2 Suppose that F : S → 2Y is locally Lipschitz continuous at x0 ∈ S and
weak locally –K-Lipschitz continuous at y0 ∈ S, respectively. Furthermore, S ⊆ X is a
nonempty, and F(x0) is compact. If for any sequences {xn} and {yn} satisfying xn → x0,
yn → y0, such that F(y0) �m F(x0) and F(yn) are convex subsets of Y , then F(yn) �m F(xn)
for n sufficiently large.
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Proof Since F(y0) �m F(x0), there exists k0 ∈ intK such that –k0 + F(x0) ⊆ F(y0). Then,
–k0 + F(x0) ⊆ F(y0) ⊆ ⋃

z∈F(y0) BY (z, r), for any r > 0. Since F(x0) is compact, there is a
finite set {z1, z2, . . . , zn} ⊆ F(y0) such that

–k0 + F(x0) ⊆
n⋃

i=1

BY (zi, r).

Since –k0 + F(x0) is compact, we notice that there exists ε > 0 such that

–k0 + F(x0) + 3εBY ⊆
n⋃

i=1

BY (zi, r). (4)

Since F is locally Lipschitz at x0 ∈ S, there exist a neighbourhood N(x0) of x0 and a constant
L > 0 such that

F(x) ⊆ F(x0) + L‖x – x0‖XBY , ∀x ∈ N(x0). (5)

Since F is weak locally –K-Lipschitz continuous at y0 ∈ S, there exist a neighborhood
N(y0) of y0 and a constant L1 > 0 such that

F(y) ∩ {
z + L1‖y – y0‖XBY – K

} 	= ∅, ∀y ∈ N(y0) ∀z ∈ F(y0). (6)

Since xn → x0, yn → y0, there are n1, n2 ∈ N such that xn ∈ N(x0) for any n > n1 and
yn ∈ N(y0) for any n > n2. Let n0 = max{n1, n1}, then, for any n > n0, it follows from (5) that

2εBY + F(xn) ⊆ F(x0) + L‖xn – x0‖XBY + 2εBY . (7)

Since xn → x0 as n → ∞ and BY is a closed unit ball, the radius of the closed ball L‖xn –
x0‖XBY will be close to zero as n → ∞. Therefore, it follows from (4) and (7), that

–k0 + 2εBY + F(xn) ⊆ –k0 + F(x0) + 3εBY

⊆
n⋃

i=1

BY (zi, r) = {z1, z2, . . . , zn} + BY (0, r). (8)

For any u ∈ –k0 + 2εBY + F(xn), we make a conclusion from (8) that there is i0 ∈ {1, 2, . . . , n}
and b1 ∈ BY (0, r) such that

u = zi0 + b1. (9)

From (6), we get F(yn)∩{z +L1‖yn –y0‖XBY –K} 	= ∅, ∀yn ∈ N(y0) ∀z ∈ F(y0). Since yn → y0

as n → ∞, the radius of the closed ball L1‖yn – y0‖XBY will be close to zero as n → ∞.
Therefore, F(yn) ∩ {z + εBY – K} 	= ∅, ∀yn ∈ N(y0) ∀z ∈ F(y0). Then there exist tn ∈ F(yn),
b2 ∈ BY and k1 ∈ K such that tn = zi0 + εb2 – k1, and so zi0 = tn – εb2 + k1. Combining it
with (9), we obtain u = zi0 + b1 = tn – εb2 + k1 + b1, namely,

–k1 + u = tn – εb2 + b1 ∈ F(yn) + εBY + BY (0, r). (10)
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Because u ∈ –k0 +2εBY +F(xn), we get –k1 +u ∈ –k0 –k1 +2εBY +F(xn). From this and (10),
we have

–k0 – k1 + 2εBY + F(xn) ⊆ F(yn) + εBY + BY (0, r) ⊆ F(yn) + εBY + rBY . (11)

Let k0 + k1 = k2. Since k0 ∈ intK , k1 ∈ K , we have k2 ∈ intK .

–k2 + 2εBY + F(xn) ⊆ F(yn) + εBY + rBY . (12)

Let r → 0, then r + ε → ε < 2ε, and hence, by Lemma 2.1, we obtain

–k2 + F(xn) ⊆ intF(yn) ⊆ F(yn).

This indicates that

F(yn) �m F(xn),

for n sufficiently large. This finishes the proof. �

For any λ ∈ �, we consider the following constrained parametric set-valued optimiza-
tion problem (for short, PSOP):

(PSOP) min F(x)

s.t. x ∈ S(λ),

where S : � → 2X and F : X → 2Y are two set-valued mappings.
We denote the solution mappings Em : � → 2X , Wm : � → 2X for (PSOP) as follows:

Em(λ) = Em(S(λ)), Wm(λ) = Wm(S(λ)).

Remark 2.2 Clearly, for any λ ∈ �, Em(λ) ⊆ Wm(λ).

Definition 2.7 Let S : � → 2X and F : X → 2Y are two set-valued mappings with
nonempty values. The level mapping L : � × X → 2X is defined by

L(λ, x) =
{

y ∈ S(λ) : F(y) ≤m F(x)
}

, (λ, x) ∈ � × X.

Remark 2.3 Clearly, for any λ ∈ �, x ∈ S(λ), Em(L(λ, x)) ⊆ Em(λ) = Em(S(λ)).

Proposition 2.3 Let S : � → 2X be a nonempty closed-valued. F : S → 2Y is locally Lips-
chitz continuous and closed-valued on S(λ), then L(λ, x) is closed for all (λ, x) ∈ � × X.

Proof For any (λ, x) ∈ � × X, let {yn} ⊆ L(λ, x) be a sequence with yn → y0, then y0 ∈ S(λ)
and F(yn) ≤m F(x). Since F is locally Lipschitz continuous and closed-valued on S(λ), it
follows from Proposition 2.1 that F(y0) ≤m F(x) and as a result y0 ∈ L(λ, x). �

From Theorem 5.1 in [10], Proposition 2.3, and Lemma 2.2, we can get the following
Lemma.
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Lemma 2.6 Let S be a nonempty and compact subset of X and F : S → 2Y is locally Lips-
chitz continuous and closed-valued on S, then (SOP) has a m-minimal solution.

Lemma 2.7 [22] If S(λ) is an arcwise connected subset of X and F : X → 2Y is strictly m-
quasiconnected on S(λ) with nonempty values and x0 ∈ Em(λ), then L(λ, x0) = x0.

3 Stability of solutions of (PSOP)
In this section, we undertake an analysis of the continuity properties of solution mappings
for (PSOP). Initially, we establish the upper semi-continuity and compactness of the weak
m-minimal solution mapping associated with (PSOP).

Theorem 3.1 Let λ0 ∈ �. Suppose that
(i) S is continuous at λ0, and S(λ0) is compact;
(ii) F is locally Lipschitz continuous and weak locally –K-Lipschitz continuous on S(λ0)

with nonempty and convex compact values.
Then, Wm(λ) is u.s.c. at λ0 and Wm(λ0) is compact.

Proof Since Em(S) ⊆ Wm(S). It follows from Lemma 2.6 that Wm(λ0) 	= ∅. Now, we claim
that Wm(λ) is u.s.c. at λ0. By the contrary, we suppose that Wm(λ) is not u.s.c. at λ0, then
there is at least a neighborhood U with Wm(λ0) ⊆ U , a sequence {λn} with λn → λ0, and
xn ∈ Wm(λn) such that

xn /∈ U , ∀n ∈ N . (13)

Since S is u.s.c. at λ0 and S(λ0) is compact, by Lemma 2.5, there exists x0 ∈ S(λ0) such that
xn → x0. (Of course, if necessary, we can extract a subsequence).

We now assert that x0 ∈ Wm(λ0). If x0 /∈ Wm(λ0), then there is y0 ∈ S(λ0) such that
F(y0) �m F(x0). It follows from the l.s.c. of S at λ0 and Lemma 2.4, there exists a sequence
{yn} with yn ∈ S(λn) such that yn → y0. Since F is locally Lipschitz continuous and weak
locally –K-Lipschitz continuous on S(λ0) with nonempty and convex compact values. By
Proposition 2.2 we get F(yn) �m F(xn) for large enough n, which is a contradiction to
xn ∈ Wm(λn), therefore x0 ∈ Wm(λ0). Based on the assumption that xn → x0, it follows
that xn ∈ U for n sufficiently large. However, this contradicts (13). Consequently, Wm(λ)
is u.s.c. at λ0.

Next, we claim that Wm(λ0) is compact. Given that Wm(λ0) ⊆ S(λ0) and S(λ0) is compact,
it suffices to demonstrate that Wm(λ0) is closed. Let {zn} ⊆ Wm(λ0) be a sequence with
zn → z0. Assuming z0 /∈ Wm(λ0), there exists an element z∗ ∈ S(λ0) satisfying F(z∗) �m

F(z0). By employing the same reasoning as previously demonstrated, we can conclude that
for large enough n, F(z∗) �m F(zn) holds. However, this contradicts {zn} ⊆ Wm(λ0), there-
fore z0 ∈ Wm(λ0). We can deduce that Wm(λ0) is also compact. �

Now, we present an example to demonstrate Theorem 3.1.

Example 3.1 Let X = Y = R
2, � = [0, 1], and K = R

2
+. Assume that S(λ) = [0,λ] × [0,λ]

for all λ ∈ �. Define a set-valued mapping F : X → 2Y as F(x, y) = (x2y2, x2y2) + BY for all
(x, y) ∈R

2. Let λ0 = 1. It is straightforward to verify that all the conditions of Theorem 3.1
are satisfied. Through a simple computation, we can determine that Wm(λ) = [0,λ]×{0}∪
{0} × [0,λ] for all λ ∈ �. Evidently, we observe that Wm(λ) is u.s.c. at 1.
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Theorem 3.2 Let λ0 ∈ �. Suppose that
(i) S is continuous at λ0, and S(λ0) is compact;
(ii) F is locally Lipschitz continuous and weak locally –K-Lipschitz continuous on S(λ0)

with nonempty and convex compact values;
(iii) F is strictly m-quasiconnected on S(λ0).
Then, Em(λ) is u.s.c. at λ0 and Em(λ0) is compact.

Proof It follows from Lemma 2.6 that Em(λ0) 	= ∅. Now, we assert that Em(λ) is u.s.c. at
λ0. By the contrary, we suppose that Em(λ) is not u.s.c. at λ0, then there exists at least a
neighborhood U such that Em(λ0) ⊆ U and a sequence {λn} with λn → λ0 such that

Em(λn) � U . (14)

Since F is strictly m-quasiconnected on S(λ0), based on Lemma 2.3, we deduce that
Em(λ0) = Wm(λ0) ⊆ U . Leveraging Theorem 3.1, we can infer that Wm(λ) is u.s.c. at λ0.
Consequently, there exists a neighborhood V of λ0 such that Wm(λ) ⊆ U , for all λ ∈ V . Be-
cause λn → λ0, it follows that λn ∈ V for n large enough. Therefore, Em(λn) ⊆ Wm(λn) ⊆ U
for n large enough. However, this conclusion contradicts (14). Consequently, Em(λ) is u.s.c.
at λ0. Since Em(λ0) = Wm(λ0), as a result, by Theorem 3.1 Em(λ0) is compact. �

In the theorem that follows, we explore the lower semicontinuity of the m-minimal so-
lution for the (PSOP) problem.

Lemma 3.1 Let λ0 ∈ �. Assume that
(i) S is continuous at λ0, S is compact-valued on � and S(λ0) is an arcwise connected

subset of X;
(ii) F is locally Lipschitz continuous on S(λ0) with nonempty and closed values;
(iii) F is strictly m-quasiconnected on S(λ0).
Then, L(λ, x) is u.s.c. at λ0 × S(λ0).

Proof Assume to the contrary that there exists x0 ∈ S(λ0) such that L(λ, x) is not u.s.c. at
(λ0, x0). Then, there exist a neighborhood U with L(λ0, x0) ⊆ U and a sequence {(λn, xn)}
with (λn, xn) → (λ0, x0) such that L(λn, xn) � U . Therefore, there exists a sequence {yn}
with yn ∈ L(λn, xn) and

yn /∈ U , ∀n ∈N. (15)

Since S is u.s.c. and compact-valued at λ0, by Lemma 2.5, there exist y0 ∈ S(λ0) and a
subsequence {ynk } of {yn} such that ynk → y0. Without loss of generality, let yn → y0. It
follows from yn ∈ L(λn, xn) that

F(yn) ≤m F(xn), ∀(λn, xn) ∈ � × X.

By Proposition 2.1 we have F(y0) ≤m F(x0). and so y0 ∈ L(λ0, x0). Therefore, from yn → y0,
we have yn ∈ U for large enough n, which contradicts (15). Therefore, L(λ) is u.s.c. at
λ0 × S(λ0). �
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Theorem 3.3 Let λ0 ∈ �. Assume that
(i) S is continuous at λ0, S is compact-valued on � and S(λ0) is an arcwise connected

subset of X;
(ii) F is locally Lipschitz continuous on S(λ0) with nonempty and closed values;
(iii) F is strictly m-quasiconnected on S(λ0).
Then, Em(λ) is l.s.c. at λ0.

Proof We conclude from Lemma 2.6 that Em(λ0) 	= ∅. Now, we assert that Em(λ) is l.s.c.
at λ0. By the contrary, we suppose that Em(λ) is not l.s.c. at λ0, then there exists a point
y ∈ Em(λ0), along with a neighborhood U of 0 in X. Additionally, there is a sequence {λn}
with λn → λ0 such that

(y + U) ∩ Em(λn) = ∅, ∀n ∈ N . (16)

It follows from y ∈ Em(λ0) that y ∈ S(λ0). Because S is l.s.c. at λ0, according to Lemma 2.4,
there exists a sequence {yn} with yn ∈ S(λn) such that yn → y. By Lemma 2.7, we have that
L(λ0, y) = {y}. Then L(λ0, y) ⊆ y+U . By Lemma 3.1 we know that L(·, ·) u.s.c. at (λ0, y). Then
for large enough n,

L(λn, yn) ⊆ y + U . (17)

It is clear that yn ∈ L(λn, yn) and so L(λn, yn) 	= ∅. By Proposition 2.3 we know that L(λn, yn) is
closed. Noting that S(λn) is compact and L(λn, yn) ⊆ S(λn), we get that L(λn, yn) is compact.
It follows from Lemma 2.6 that Em(L(λn, yn)) 	= ∅. Let zn ∈ Em(L(λn, yn)), it follows from (17)
that

zn ∈ Em
(
L(λn, yn)

) ⊆ L(λn, yn) ⊆ y + U , (18)

for large enough n. By Remark 2.2, we get

zn ∈ Em
(
L(λn, yn)

) ⊆ Em(λn), (19)

for large enough n. It follows from (18) and (19) that zn ∈ (y + U) ∩ Em(λn) for large
enough n, which contradicts (16). Therefore, Em(λ) is l.s.c. at λ0. �

Lastly, we demonstrate the lower semicontinuity of the weak m-minimal solution for
the (PSOP) problem, as outlined below:

Theorem 3.4 Let λ0 ∈ �. Assume that
(i) S is continuous at λ0, S is compact-valued on � and S(λ0) is an arcwise connected

subset of X;
(ii) F is locally Lipschitz continuous on S(λ0) with nonempty and closed values;
(iii) F is strictly m-quasiconnected on S(λ0).
Then, Wm(λ) is l.s.c. at λ0.

Proof Since Em(S) ⊆ Wm(S). It follows from Lemma 2.6 that Wm(λ0) 	= ∅. Now, we as-
sert that Wm(λ) is l.s.c. at λ0. By Lemma 2.3, it follows that Wm(λ0) = Em(λ0). For any
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y0 ∈ Wm(λ0), we get y0 ∈ Em(λ0). By Theorem 3.3, we know Em(λ) is l.s.c. at λ0. For any
neighborhood U of y0, there exists a neighborhood V of λ0 such that

U ∩ Em(λ) 	= ∅, ∀λ ∈ V .

Using Remark 2.1, we have Em(λ) ⊆ Wm(λ).

U ∩ Wm(λ) 	= ∅, ∀λ ∈ V .

This shows that Wm(λ) is l.s.c. at λ0. �

Now, we present an example to exemplify Theorem 3.4.

Example 3.2 Let X = R, � = [0, 1], Y = R
2, and K = R

2
+. Assume that S(λ) = [1, 2] for all

λ ∈ �. A set-valued mapping F : X → 2Y can be defined as follows:

F(x) = [1, x] × [1, x], ∀x ∈ S.

Let λ0 = 0, then it is straightforward to verify that all the conditions stated in Theorem 3.4
are met. Through a straightforward computation, we deduce that Wm(λ) = [1, 2] for all
λ ∈ �. Evidently, we observe that Wm(λ) is l.s.c. at 0.

Remark 3.1 According to Remark 2.1, it is evident that the semicontinuity exhibited by
objective set-valued mappings in [7, 12–16, 21] is distinct from the local Lipschitz conti-
nuity employed for objective set-valued mappings in Theorems 3.1 to 3.4.

Remark 3.2 The objective set-valued mappings with nonempty and closed values used
in Theorems 3.3-3.4 are weaker than the objective set-valued mappings with nonempty
and compact values used in [7, 12–16, 21]. That S(λ0) is an arcwise connected subset,
which is also used in Theorems 3.3–3.4 is weaker than S(λ0), a convex subset appearing
in [7, 12–16, 21].

Remark 3.3 By Lemma 2.2, we can know that El(S) ⊆ Wl(S) ⊆ Wm(S). Hence, we have
studied Theorems 3.1 and Theorems 3.4 for a larger set than any in [7, 12–16, 21].
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