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Abstract
In this paper, we obtain several results on the global existence, uniqueness and
attractivity for fractional evolution equations involving the Riemann-Liouville type by
exploiting some results on weakly singular integral inequalities in Banach spaces.
Some boundedness conditions of the nonlinear term are considered to obtain the
main results that generalize and improve some well-known works.
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1 Introduction
The aim of this paper is to present several results on the global existence, uniqueness and
attractivity of the following fractional differential equation:

⎧
⎨

⎩

R
0 Dβ

t x(t) = Ax(t) + f (t, x(t)), t ∈ (0, +∞),

0I1–β
t x(t)|t=0 = x0,

(1.1)

where R
0 Dβ

t is the Riemann-Liouville fractional derivative with the order β ∈ (0, 1), A :
D(A) ⊆ X → X is the infinitesimal generator of a compact C0-semigroup {S(t)}t≥0.

The attractivity of solutions plays a significant role in describing the properties of differ-
ential equations. Many researchers have investigated the attractivity of solutions of frac-
tional differential equations. For instance, Furati and Tatar [5] proved that solutions of
fractional differential equations with weighted initial data exist globally and decay as a
power function. Kassim, Furati, and Tatar [10] studied the asymptotic behavior of so-
lutions for a class of nonlinear fractional differential equations involving two Riemann-
Liouville fractional derivatives of different orders. Gallegos and Duarte-Mermoud [6]
studied the asymptotic behavior of solutions to Riemann-Liouville fractional systems.
Zhou [26] studied the attractivity of solutions for fractional evolution equation with al-
most sectorial operators. Tuan, Czornik, Nieto and Niezabitowski [22] presented some
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results for existence of global solutions and attractivity for multidimensional fractional dif-
ferential equations involving Riemann-Liouville fractional derivative. Sousa, Benchohra,
and N’Guérékata [18] considered the attractivity of solutions of the fractional differen-
tial equation involving the ψ-Hilfer fractional derivative. For more references, we refer to
[1, 15, 19, 20].

Since weakly singular integral inequalities are well-known tools for proving the exis-
tence, uniqueness, stability and attractivity of integral evolution equations and fractional
differential equations, many scholars have begun to study weakly singular integral in-
equalities and have obtained several versions of weakly singular integral inequalities. See
[3, 8, 9, 12, 13, 16, 21, 23, 28] for more details. Especially, Zhu [28–31] studied several
results on the existence and attractivity for the following fractional differential equations
with Riemann-Liouville fractional derivative in R:

⎧
⎨

⎩

R
0 Dβ

t x(t) = f (t, x(t)), t ∈ (0, +∞),

limt→0+ t1–βx(t) = x0.
(1.2)

Zhu presented some weakly singular integral inequalities to prove the main results under
the following boundedness conditions

∣
∣f (t, x)

∣
∣ ≤ l(t)|x| + k(t), (1.3)

∣
∣f (t, x)

∣
∣ ≤ l(t)|x|μ, (1.4)

∣
∣f (t, x)

∣
∣ ≤ l(t)|x|μ + k(t), (1.5)

∣
∣f (t, x)

∣
∣ ≤ l(t)ω

(
t1–β |x|), (1.6)

where μ ∈ (0, 1], l, k ∈ C((0, +∞),R+) ∩ Lp
Loc,1–β ([0, +∞),R+) (p > 1

β
) and nonnegative non-

decreasing function ω ∈ C([0, +∞),R+) with limt→+∞ t
ω(t) = K(0 < K ≤ +∞).

In this paper, by exploiting the Leray-Schauder alternative fixed point theorem and some
weakly singular integral inequalities in Banach spaces, we first prove the existence of global
mild solutions of problem (1.1). We also prove that there exists a unique mild solution of
problem (1.1). Furthermore, we show that the mild solutions of problem (1.1) are globally
attractive. Our results generalize and improve the results existing in literature. Finally, we
provide several examples to illustrate the applicability of our results.

Below we will describe some of the new features. First, our problem is the natural gener-
alization of many well-known works on the existence and global attractivity for fractional
differential equations in finite-dimensional spaces. Second, some boundedness conditions
of the nonlinear term are considered to obtain the main results that generalize and im-
prove some well-know works. Instead of conditions (1.3)–(1.6), we deal with more general
conditions in the Banach space:

∥
∥f (t, x)

∥
∥ ≤ l(t)ω

(
t1–q‖x‖), (1.7)

∥
∥f (t, x)

∥
∥ ≤ l(t)ω

(
t1–q‖x‖) + k(t), (1.8)

where l, k ∈ C1–β ((0, +∞),R+) ∩ Lp
Loc,1–β([0, +∞),R+)(p > 1

β
). Third, we obtain several use-

ful nonlinear weakly singular integral inequalities in Banach spaces, which can also be used
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to control some problems. Fourth, problem (1.1) reduces the problems of first-order and
Caputo fractional semilinear evolution equations and can be generalized to more com-
plex forms, for instance, fractional impulsive evolution equations and fractional evolution
inclusions.

The outline of this paper is as follows. In Sect. 2, we introduce some notations, defini-
tions, and useful lemmas. In Sect. 3, we present several nonlinear weakly singular integral
inequalities useful to prove the main results. In Sects. 4 and 5, we give some sufficient
conditions on the global existence and attractivity of mild solutions of problem (1.1). In
Sect. 6, some deduced results are given to illustrate our main results.

2 Preliminaries
In this section, we introduce some notations, definitions and lemmas which will be needed
later.

The norm of a Banach space X will be denoted by ‖ · ‖X . For an interval J , let C(J , X)
denote the Banach space of all continuous functions from J into X equipped with the
norm ‖x‖C = supt∈J ‖x(t)‖X and Lp(J , X)(p > 1) denote the Banach space of p-th in-
tegral functions from J into X equipped with the norm ‖x‖Lp = (

∫

J ‖x(t)‖p
X dt)

1
p . Let

Cβ (J , X) = {x : y(t) = tβx(t), y ∈ C(J , X)} equipped with the norm ‖x‖Cβ
= sup{tβ‖x(t)‖X :

t ∈ J} and let Lp
β (J , X) = {x : y(t) = tβx(t), y ∈ Lβ (J , X)} equipped with the norm ‖x‖Lp

β
=

(
∫

J tβ‖x(t)‖p
X dt)

1
p : t ∈ J}. Obviously, the space Cβ (J , X), Lp

β (J , X) is Banach spaces. For a ≥
0, let C0([a, +∞), X) = {x ∈ C([a, +∞), X) : limt→+∞ x(t) = 0}. It is clear that C0([a, +∞), X)
is a Banach space equipped with the norm ‖x‖0 = supa≤t<+∞ ‖x(t)‖.

Definition 2.1 ([4, 11, 14, 17]) The Riemann-Liouville fractional integral of order β ∈
(0, 1) for a function f : R+ → X is defined by

0Iβ
t f (t) =

1
�(β)

∫ t

0
(t – s)β–1f (s) ds,

where � is the gamma function.

Definition 2.2 ([4, 11, 14, 17]) The Riemann-Liouville fractional derivative of order β ∈
(0, 1) for a function f : R+ → X is defined by

R
0 Dβ

t f (t) =
1

�(1 – β)
d
dt

∫ t

0
(t – s)–β f (s) ds.

Definition 2.3 ([4, 11, 14, 17]) The Caputo fractional derivative of order β ∈ (0, 1) for a
function f : R+ → X is defined by

C
0 Dβ

t f (t) = R
0 Dβ

t
(
f (t) – f (0)

)
.

Lemma 2.4 ([2], Corollary 5.3) Let u, φ, ψ and k be nonnegative continuous functions
on [a, b]. Let ω be a continuous, nonnegative and nondecreasing function on [0, +∞), with
ω(r) > 0 for r > 0, and let �(t) = maxa≤s≤t φ(s) and �(t) = maxa≤s≤t ψ(s). Assume that

u(t) ≤ φ(t) + ψ(t)
∫ t

a
k(s)ω

(
u(s)

)
ds, ∀t ∈ [a, b]. (2.1)
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Then

u(t) ≤ W –1
[

W
(
�(t)

)
+ �(t)

∫ t

a
k(s) ds

]

, ∀t ∈ [a, T), (2.2)

where W (u) =
∫ u

u0
1

ω(τ ) dτ , u0, u > 0, W –1 is the inverse of W and

T = sup

{

τ ∈ [a, b] : W
(
�(t)

)
+ �(t)

∫ t

a
k(s) ds ∈ Dom

(
W –1), a ≤ t ≤ τ

}

.

Lemma 2.5 ([28]) Let 1 ≤ p < ∞, ϕ and φ be continuous and nonnegative functions on
[0,∞), function l ∈ Lp

Loc([0, +∞),R+), and u be a continuous and nonnegative function with

u(t) ≤ M(t) + φ(t)
(∫ t

0
lp(s)up(s) ds

) 1
p

, ∀t ∈ [0,∞). (2.3)

Then

u(t) ≤ M(t) + φ(t)
{

M(t) exp

(∫ t

0
L(s) ds

)} 1
p

, ∀t ∈ [0,∞), (2.4)

where M(t) =
∫ t

0 2p–1lp(s)ϕp(s) ds and L(t) = 2p–1lp(t)φp(t).

Lemma 2.6 ([28]) Let 0 < β < 1, p > 1
β

, q = p
p–1 , ρ ∈ Lp

1–β ([0, 1],R). Then

∣
∣
∣
∣

∫ t

0

(
t

t – s

)1–β

ρ(s) ds
∣
∣
∣
∣ ≤ 2

1
q tβ– 1

p

(qβ – q + 1)
1
q

(∫ t

0
sp(1–β)∣∣ρ(s)

∣
∣p ds

) 1
p

, ∀t ∈ [0, 1]. (2.5)

Lemma 2.7 ([29]) Let 0 < β < 1, p > 1
β

, q = p
p–1 , ρ ∈ Lp

1–β ([0, 1],R). Then

∣
∣
∣
∣

∫ t

0

(
t

t – s

)1–β

ρ(s) ds
∣
∣
∣
∣ ≤ 2

1
q tβ–1+ 1

q

(qβ – q + 1)
1
q

(∫ t

0
sp(1–β)∣∣ρ(s)

∣
∣p ds

) 1
p

, ∀t ∈ [0, 1], (2.6)

and if 0 < t1 ≤ t2 ≤ 1, then

∣
∣
∣
∣

∫ t2

0

(
t2

t2 – s

)1–β

ρ(s) ds –
∫ t1

0

(
t1

t1 – s

)1–β

ρ(s) ds
∣
∣
∣
∣

≤ 2
1
q (t2 – t1)β–1+ 1

q

(qq – q + 1)
1
q

(∫ t2

t1

sp(1–β)∣∣ρ(s)
∣
∣p ds

) 1
p

+
(

(t2 – t1)1+q(β–1) + t1+q(β–1)
1 – t1+q(β–1)

2
qq – q + 1

) 1
q

×
(∫ t1

0
sp(1–β)∣∣ρ(s)

∣
∣p ds

) 1
p

.

Lemma 2.8 ([31]) Let 0 < β < 1, p > 1
β

, ρ ∈ Lp
Loc,1–β ([1, +∞),R) and

y(t) =
∫ t

1
(t – s)β–1ρ(s) ds.

Then y ∈ C([1, +∞),R).
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Lemma 2.9 ([31]) Let 0 < β < 1, p > 1
β

, ρ ∈ Lp
1–β ([0, 1],R) and

y(t) =
∫ 1

0
(t – s)β–1ρ(s) ds.

Then y ∈ C([1, +∞),R).

3 Nonlinear weakly singular integral inequalities
In this section, we study some nonlinear weakly singular integral inequalities that will be
useful to prove the main results.

Lemma 3.1 Let a, b ≥ 0, 1 > α ≥ δ ≥ 0 and 0 < β < 1, p > max{ 1
β

, 1
1–α+δ

} and q = p
p–1 . Let

f : (0, T) × X → X be a continuous function, and there exists a function l ∈ C((0, T),R+) ∩
Lp

Loc,α–δ([0, T),R+) and a nondecreasing function ω ∈ C([0, +∞),R+) such that

∥
∥f (t, x)

∥
∥ ≤ l(t)ω

(
tα‖x‖), ∀(t, x) ∈ (0, T) × X.

Let u ∈ Cα([0, T),R+) with

∥
∥u(t)

∥
∥ ≤ at–α + bt–δ

∫ t

0
(t – s)β–1∥∥f

(
s, u(s)

)∥
∥ds, ∀t ∈ (0, T). (3.1)

Then

∥
∥u(t)

∥
∥ ≤ t–α

{

W –1
[

W
(
2p–1ap) + 2p–1cptpβ–1

∫ t

0
sp(α–δ)lp(s) ds

]} 1
p

, ∀t ∈ (0, T1), (3.2)

where c = b�
1
q (q(β–1)+1)�

1
q (q(δ–α)+1)

�
1
q (q(β–1)+q(δ–α)+2)

, W (u) =
∫ u

u0
1

ωp(τ1/p) dτ , u0, u > 0 and

T1 = sup

{

τ ∈ (0, T) : W
(
2p–1ap) + 2p–1cptpβ–1

×
∫ t

0
sp(α–δ)lp(s) ds ∈ Dom

(
W –1), 0 < t ≤ τ

}

.

Proof For t ∈ (0, T), let v(t) = tαu(t). We get

∥
∥v(t)

∥
∥ ≤ a + btα–δ

∫ t

0
(t – s)β–1∥∥f

(
s, s–αv(s)

)∥
∥ds. (3.3)

Using the Hölder inequality, we obtain

∥
∥v(t)

∥
∥ ≤ a + btα–δ

∫ t

0
(t – s)β–1l(s)ω

(∥
∥v(s)

∥
∥
)

ds

= a + btα–δ

∫ t

0
(t – s)β–1sδ–αsα–δl(s)ω

(∥
∥v(s)

∥
∥
)

dsr

≤ a + btα–δ

(∫ t

0
(t – s)q(β–1)+1–1sq(δ–α) ds

) 1
q

×
(∫ t

0
sp(α–δ)lp(s)ωp(∥∥v(s)

∥
∥
)

ds
) 1

p

≤ a + ctq– 1
p

(∫ t

0
sp(α–δ)lp(s)ωp(∥∥v(s)

∥
∥
)

ds
) 1

p
.

(3.4)
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Then

∥
∥v(t)

∥
∥p ≤ 2p–1ap + 2p–1cptpβ–1

∫ t

0
sp(α–δ)lp(s)ωp(∥∥v(s)

∥
∥
)

ds. (3.5)

Let μ(t) = ‖v(t)‖p. Then

μ(t) ≤ 2p–1ap + 2p–1cptpβ–1
∫ t

0
sp(α–δ)lp(s)ωp(μ

1
p (s)

)
ds. (3.6)

Using Lemma 2.4, we obtain

μ(t) ≤ W –1
[

W
(
2p–1ap) + 2p–1cptpβ–1

∫ t

0
sp(α–δ)lp(s) ds

]

, (3.7)

and

∥
∥u(t)

∥
∥ ≤ t–α

{

W –1
[

W
(
2p–1ap) + 2p–1cptpβ–1

∫ t

0
sp(α–δ)lp(s) ds

]} 1
p

. (3.8)

Thus, we complete the proof. �

The following conclusion is a consequence of Lemma 3.1 when α = 1 – β and δ = 0.

Corollary 3.2 Let a, b ≥ 0 and 0 < β < 1, p > 1
β

and q = p
p–1 . Let f : (0, T) × X → X be a

continuous function, and there exists a function l ∈ C((0, T),R+)) ∩ Lp
Loc,1–β ([0, T),R+) and

a nondecreasing function ω ∈ C([0, +∞),R+) such that

∥
∥f (t, x)

∥
∥ ≤ l(t)ω

(
t1–β‖x‖), ∀(t, x) ∈ (0, T) × X.

Let t1–βu(t) be a continuous, nonnegative function on [0, T) with

∥
∥u(t)

∥
∥ ≤ atβ–1 + b

∫ t

0
(t – s)β–1∥∥f

(
s, u(s)

)∥
∥ds, ∀t ∈ (0, T). (3.9)

Then

∥
∥u(t)

∥
∥ ≤ tβ–1

{

W –1
[

W
(
2p–1ap) + 2p–1cptpβ–1 ×

∫ t

0
sp(1–β)lp(s) ds

]} 1
p

,

∀t ∈ (0, T1),

(3.10)

where c = b�
2
q (q(β–1)+1)

�
1
q (2q(β–1)+2)

, W (u) =
∫ u

u0
1

ωp(τ1/p) dτ , u0, u > 0 and

T1 = sup

{

τ ∈ (0, T) : W
(
2p–1ap) + 2p–1cptpβ–1

×
∫ t

0
sp(1–β)lp(s) ds ∈ Dom

(
W –1), 0 < t ≤ τ

}

.

We can also obtain the following results.
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Lemma 3.3 Let a, b ≥ 0, 1 > α ≥ δ ≥ 0 and 0 < β < 1, p > max{ 1
β

, 1
1–α+δ

} and q = p
p–1 . Let l

be a nondecreasing continuous function on (0, +∞) with l ∈ Lp
Loc,–δ([0, +∞),R+)). Let tαu(t)

be a continuous, nonnegative function on [0, +∞) with

∥
∥u(t)

∥
∥ ≤ at–α + bt–δ

∫ t

0
(t – s)β–1l(s)

∥
∥u(s)

∥
∥ds, ∀t ∈ (0, +∞). (3.11)

Then

∥
∥u(t)

∥
∥ ≤ at–α + ctq–α– 1

p

{

M(t) exp

(∫ t

0
L(s) ds

)} 1
p

, ∀t ∈ (0, +∞), (3.12)

where M(t) = 2p–1ap ∫ t
0 s–pδlp(s) ds, L(t) = 2p–1cptpq–pδ–1lp(t), and c is defined as in

Lemma 3.1.

Proof Let v(t) = tαu(t). Using (3.11) and the same procedure as in (3.4), we get

∥
∥v(t)

∥
∥ ≤ a + btα–δ

∫ t

0
(t – s)β–1l(s)s–α

∥
∥v(s)

∥
∥ds, (3.13)

and

∥
∥v(t)

∥
∥ ≤ a + ctq– 1

p

(∫ t

0
s–pδlp(s)

∥
∥v(s)

∥
∥p ds

) 1
p

. (3.14)

It follows from Lemma 2.5 that

∥
∥v(t)

∥
∥ ≤ a + ctq– 1

p

{

M(t) exp

(∫ t

0
L(s) ds

)} 1
p

, ∀t ∈ [0, +∞), (3.15)

which completes the proof. �

Lemma 3.4 Let a, b ≥ 0, 1 > α ≥ δ ≥ 0, 0 < γ < 1 and 0 < β < 1, p > max{ 1
β

, 1
1–α+δ

}
and q = p

p–1 . Let l be a nonnegative nondecreasing continuous function on (0, +∞) with
l ∈ Lp

Loc,(1–γ )α–δ
[0, +∞). Let tαu(t) be a continuous, nonnegative function on [0, +∞) with

∥
∥u(t)

∥
∥ ≤ at–α + bt–δ

∫ t

0
(t – s)β–1l(s)

∥
∥u(s)

∥
∥γ ds, ∀t ∈ (0, +∞). (3.16)

Then

∥
∥u(t)

∥
∥ ≤ t–α

[

2(p–1)(1–γ )ap(1–γ ) + (1 – γ )2p–1cptpβ–1 ×
∫ t

0
sp(1–γ )α–pδlp(s) ds

] 1
p(1–γ )

, (3.17)

for all t ∈ (0, +∞), where c is defined as in Lemma 3.1.

Proof Let v(t) = tαu(t). Using (3.16) and the same procedure as in (3.4), we get

∥
∥v(t)

∥
∥ ≤ a + btα–δ

∫ t

0
(t – s)β–1l(s)s–γ α

∥
∥v(s)

∥
∥γ ds, (3.18)
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and

∥
∥v(t)

∥
∥ ≤ a + ctq– 1

p

(∫ t

0
sp(1–γ )α–pδlp(s)

∥
∥v(s)

∥
∥pγ ds

) 1
p

. (3.19)

Then from (3.19), we know

∥
∥v(t)

∥
∥p ≤ 2p–1ap + 2p–1cptpβ–1

∫ t

0
sp(1–γ )α–pδlp(s)

∥
∥v(s)

∥
∥pγ ds. (3.20)

Using Lemma 2.4, we get

∥
∥v(t)

∥
∥p ≤

[

2(p–1)(1–γ )ap(1–γ ) + (1 – γ )2p–1cptpβ–1
∫ t

0
sp(1–γ )α–pδlp(s) ds

] 1
1–γ

. (3.21)

Thus, we complete the proof. �

4 Global existence
In this section, we present the existence and uniqueness results for problem (1.1).

Definition 4.1 A function x ∈ C1–β ((0, T], X) is called a mild solution of problem (1.1) if
it satisfies the following fractional integral equation

x(t) = tβ–1Sβ (t)x0 +
∫ t

0
(t – s)β–1Sβ (t – s)f

(
s, x(s)

)
ds, ∀t ∈ [0, T],

where

Sβ (t) = β

∫ ∞

0
θξβ (θ )S

(
tβθ

)
dθ , ξβ (θ ) =

1
β

θ
–1– 1

β �β

(
θ

– 1
β
)
,

�β (θ ) =
1
π

∞∑

n=1

(–1)n–1θ–nβ–1 �(nβ + 1)
n!

sin(nπq), θ ∈ (0,∞),

ξβ (θ ) ≥ 0, θ ∈ (0,∞),
∫ ∞

0
ξβ (θ ) dθ = 1.

Lemma 4.2 ([16, 27]) If the C0-semigroup T(t)(t ≥ 0) is uniformly bounded, then the op-
erator Sβ (t) has the following properties:

(i)

∥
∥Sβ (t)x

∥
∥ ≤ M

�(q)
‖x‖, ∀x ∈ X, t ≥ 0,

where supt∈[0,∞) ‖T(t)‖ ≤ M < ∞;
(ii) Sβ (t)(t ≥ 0) is strongly continuous;
(iii) Sβ (t)(t > 0) is compact if S(t)(t > 0) is compact.

Theorem 4.3 Let p > 1
β

and q = p
p–1 . Suppose f : (0, T] × X → X is a continuous func-

tion, and there exists a function l ∈ C1–β ((0, T],R+) ∩ Lp
1–β ([0, T],R+) and a nondecreasing

function ω ∈ C([0, +∞),R+) such that

∥
∥f (t, x)

∥
∥ ≤ l(t)ω

(
t1–β‖x‖), ∀(t, x) ∈ (0, T] × X.
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Then problem (1.1) has at least one mild solution in C1–β((0, T], X) provided that

W
(
2p–1‖x0‖p) + 2p–1cptpβ–1

∫ t

0
sp(1–β)lp(s) ds ∈ Dom

(
W –1), ∀t ∈ (0, T],

where c = M�
2
q (q(β–1)+1)

�(q)�
1
q (2q(β–1)+2)

, W (u) =
∫ u

u0
1

ωp(τ1/p) dτ , u0, u > 0.

Proof Define the operator G : C1–β((0, T], X) → C1–β((0, T], X) by

Gx(t) = tβ–1Sβ (t)x0 +
∫ t

0
(t – s)β–1Sβ (t – s)f

(
s, x(s)

)
ds. (4.1)

Step 1. We will prove that G is compact. To see this, let � ∈ C1–β((0, T], X) be bounded
and ‖x‖1–β ≤ R for each x ∈ � with some R > 0. We will show that t1–βG(�) is uni-
formly bounded and equicontinuous on [0, T]. First, we prove that t1–βG(�) is uniformly
bounded. For x ∈ �, we have

∥
∥t1–βGx(t)

∥
∥ ≤ M

�(q)
‖x0‖ +

Mt1–β

�(q)

∥
∥
∥
∥

∫ t

0
(t – s)β–1f

(
s, x(s)

)
ds

∥
∥
∥
∥

≤ M
�(q)

‖x0‖ +
M

�(q)

(∫ t

0

(
1

t – s
+

1
s

)q(1–β)

ds
) 1

q

×
(∫ t

0
sp(1–β)lp(s)ωp(s1–β

∥
∥x(s)

∥
∥
)

ds
) 1

p

≤ M
�(q)

‖x0‖ +
2

1
q M

ω(R)tβ–1+ 1
q

�(q)(q(β – 1) + 1)
1
q

(∫ t

0
sp(1–β)lp(s) ds

) 1
p

≤ M
�(q)

‖x0‖ +
2

1
q M

ω(R)Tβ–1+ 1
q

�(q)(q(β – 1) + 1)
1
q

(∫ T

0
sp(1–β)lp(s) ds

) 1
p

.

This proves that the set t1–βG(�) is uniformly bounded. Second, we prove that t1–βG(�)
is an equicontinuous family. For any x ∈ �, let 0 ≤ t1 < t2 ≤ T , we get

∥
∥t1–β

2 Gx(t2) – t1–β
1 Gx(t1)

∥
∥

=
M

�(q)

∥
∥
∥
∥

∫ t2

0

(
t2

t2 – s

)1–β

f
(
s, x(s)

)
ds –

∫ t1

0

(
t1

t1 – s

)1–β

f
(
s, x(s)

)
ds

∥
∥
∥
∥

≤ M
�(q)

∥
∥
∥
∥

∫ t1

0

((
t2

t2 – s

)1–β

–
(

t1

t1 – s

)1–β)

f
(
s, x(s)

)
ds

∥
∥
∥
∥

+
M

�(q)

∥
∥
∥
∥

∫ t2

t1

(
t2

t2 – s

)1–β

f
(
s, x(s)

)
ds

∥
∥
∥
∥.

(4.2)

Since ‖f (t, x(t))‖ ≤ l(t)ω(t1–β‖x(t)‖) ≤ l(t)ω(R) and l ∈ C1–β ((0, T],R+) ∩ Lp
1–β ([0, T],R+).

By Lemma 2.7, we know that the right-hand side of (4.2) tends to zero as t2 → t1. There-
fore, t1–βG(�) is an equicontinuous family. From Lemma 4.2, it follows that t1–βG(�) is
relatively compact for each t ∈ [0, T].
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Step 2. We now show that G is continuous. Let xn → x in C1–β((0, T], X). Then there
exists r > 0 such that ‖xn‖1–β ≤ r and ‖x‖1–β ≤ r. For every s ∈ (0, T], we have

f
(
s, xn(s)

) → f
(
s, x(s)

)
as n → +∞

and

(
t

t – s

)1–β∥
∥f

(
s, xn(s)

)
– f

(
s, x(s)

)∥
∥ ≤ 2ω(r)

(
t

t – s

)1–β

l(s). (4.3)

Since l ∈ C1–β((0, T],R)∩Lp
1–β([0, T],R), using (2.6) in Lemma 2.7, we know that the func-

tion

s → 2ω(r)
(

t
t – s

)1–β

l(s)

is integrable for s ∈ (0, t). Then we deduce that

∥
∥
∥
∥

∫ t

0

(
t

t – s

)1–β[
f
(
s, xn(s)

)
– f

(
s, x(s)

)]
ds

∥
∥
∥
∥ → 0 as n → +∞.

Therefore, t1–βGxn(t) → t1–βGx(t) pointwise on [0, T ] as n → +∞. With the fact that G
is compact, we get that G : C1–β ((0, T], X) → C1–β ((0, T], X) is continuous.

Step 3. We shall prove that the set � = {x ∈ C1–β((0, T], X) : x = λGx for some 0 < λ < 1}
is bounded. Indeed, for x ∈ �, one has

∥
∥x(t)

∥
∥ ≤ M

�(q)
tβ–1‖x0‖ +

M
�(q)

∫ t

0
(t – s)β–1∥∥f

(
s, x(s)

)∥
∥ds

≤ M
�(q)

tβ–1‖x0‖ +
M

�(q)

∫ t

0
(t – s)β–1l(s)ω

(
s1–β

∥
∥x(s)

∥
∥
)

ds.

Using Corollary 3.2, we obtain

∥
∥x(t)

∥
∥ ≤ M

�(q)
tβ–1

{

W –1
[

W
(
2p–1‖x0‖p) + 2p–1cptpβ–1

∫ t

0
sp(1–β)lp(s) ds

]} 1
p

,

∀t ∈ (0, T],

(4.4)

and

‖x‖1–β ≤ M
�(q)

{

W –1
[

W
(
2p–1‖x0‖p) + 2p–1cpTpβ–1

∫ T

0
sp(1–β)lp(s) ds

]} 1
p

. (4.5)

Then the set � is bounded.
Finally, by applying the fixed point theorem in Theorem 6.5.4 in [7], the operator G has

a fixed point x ∈ C1–β ((0, T], X), which is the mild solution of problem (1.1). �

Now we investigate the existence of global mild solutions of problem (1.1).
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Theorem 4.4 Let p > 1
β

and q = p
p–1 . Suppose f : (0, +∞) × X → X is a continuous func-

tion, and there exists a nonnegative function l ∈ C((0, +∞),R+) ∩ Lp
Loc,1–β ([0, +∞),R+) and

a nonnegative nondecreasing function ω ∈ C([0, +∞),R+) with limt→+∞ t
ω(t) = K(0 < K ≤

+∞) such that

∥
∥f (t, x)

∥
∥ ≤ l(t)ω

(
t1–β‖x‖), ∀(t, x) ∈ (0, +∞) × X.

Then problem (1.1) has at least one global mild solution in C1–β ((0, +∞), X).

Proof Letting μ(t) = ωp(t
1
p ), we know

lim
t→+∞

t
μ(t)

= lim
t→+∞

t

ωp(t
1
p )

= Kp. (4.6)

Since
∫ +∞

u0
1
τ

dτ is divergent (u0 > 0), from (4.6), we get that
∫ +∞

u0
1

μ(τ ) dτ is also divergent.
Since W (u) =

∫ u
u0

1
μ(τ ) dτ =

∫ u
u0

1
ωp(τ1/p) dτ , then we get [0, +∞) ∈ Dom(W –1) and

W
(
2p–1‖x0‖p) + 2p–1cptpβ–1

∫ t

0
sp(1–β)lp(s) ds ∈ Dom

(
W –1), ∀t ∈ [0, +∞),

where c is defined as in Theorem 4.3.
For any T > 0, from Theorem 4.3, we know that problem (1.1) has at least one mild so-

lution in C1–β ((0, T], X). Since T can be chosen arbitrarily large, then problem (1.1) has at
least one global mild solution in C1–β((0, +∞), X). Thus, we complete the proof of Theo-
rem 4.4. �

From Theorem 4.4, we can immediately obtain the following conclusion.

Corollary 4.5 Let 0 < γ ≤ 1, p > 1
β

and q = p
p–1 . Suppose f : (0, +∞) × X → X is

a continuous function, and there exist nonnegative functions l, k ∈ C1–β ((0, +∞),R+) ∩
Lp

Loc,1–β ([0, +∞),R+) such that

∥
∥f (t, x)

∥
∥ ≤ l(t)‖x‖γ + k(t), ∀(t, x) ∈ (0, +∞) × X.

Then problem (1.1) has at least one mild solution in C1–β((0, +∞), X).

Proof Since

∥
∥f (t, x)

∥
∥ ≤ tγ (β–1)l(t)

(
t1–β‖x‖)γ + k(t) ≤ (

tγ (β–1)l(t) + k(t)
)((

t1–β‖x‖)γ + 1
)
, (4.7)

then we know

l1(t) := t1–β
(
tγ (β–1)l(t) + k(t)

)
= t(1–γ )(1–β)l(t) + t1–βk(t), l1 ∈ Lp

Loc
(
[0, +∞),R+

)
,

and if 0 < γ < 1, then

lim
t→+∞

t
tγ + 1

= +∞; (4.8)
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if γ = 1, then

lim
t→+∞

t
tγ + 1

= 1. (4.9)

Applying Theorem 4.4, we know that problem (1.1) has at least one mild solution in
C1–β (0, +∞). Thus, the proof is complete. �

Theorem 4.6 Let p > 1
β

and q = p
p–1 . If f : (0, +∞) × X → R is a continuous func-

tion with and f (·, 0) ∈ Lp
1–β ,Loc[0, +∞), and there exists a function l ∈ C1–β ((0, +∞),R+) ∩

Lp
Loc,1–β ([0, +∞),R+) such that

∥
∥f (t, x) – f (t, y)

∥
∥ ≤ l(t)‖x – y‖, ∀x, y ∈R, t ∈ (0, +∞).

Then problem (1.1) has a unique mild solution on (0, +∞).

Proof We know

∥
∥f (t, x)

∥
∥ ≤ ∥

∥f (t, x) – f (t, 0)
∥
∥ +

∥
∥f (t, 0)

∥
∥ ≤ l(t)‖x‖ +

∥
∥f (t, 0)

∥
∥. (4.10)

Since f (·, 0) ∈ Lp
Loc,1–β ([0, +∞), X) and l ∈ C1–β ((0, +∞),R+) ∩ Lp

Loc,1–β ([0, +∞),R+), ap-
plying Corollary 4.5, we know that problem (1.1) has at least one mild solution in
C1–β ((0, +∞), X). We suppose that x1, x2 are two global mild solutions of problem (1.1).
Then

∥
∥x1(t) – x2(t)

∥
∥ =

∥
∥
∥
∥

1
�(q)

∫ t

0
(t – s)β–1(f

(
s, x1(s)

)
– f

(
s, x2(s)

))
ds

∥
∥
∥
∥

≤ 1
�(q)

∫ t

0
(t – s)β–1l(s)

∥
∥x1(s) – x2(s)

∥
∥ds.

Using Theorem 3.3, we can get x1(t) = x2(t). Thus, the proof is complete. �

5 Global attractivity
Definition 5.1 The mild solution x ∈ C1–β((0, +∞), X) of problem (1.2) is said to be glob-
ally attractive if limt→+∞ x(t) = 0.

The main result in the section reads as follows.

Theorem 5.2 Let 0 < β < γ < 1, 0 < μ ≤ 1, p > 1
β

, l, k ∈ C1–β ((0, +∞),R+) ∩
Lp

Loc,1–β ([0, +∞),R+) be such that there exists a constant K > 0 such that

tγ l(t) ≤ K , tγ k(t) ≤ K , ∀t ∈ [1, +∞).

Suppose f : (0, +∞) × X → X is a continuous function and

∥
∥f (t, x)

∥
∥ ≤ l(t)‖x‖μ + k(t), ∀(t, x) ∈ (0, +∞) × X. (5.1)

Then problem (1.2) has at least one globally attractive mild solution.
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For convenience, we first obtain several lemmas under the assumptions in Theorem 5.2,
which will be useful in the proof of the main theorem.

Lemma 5.3 Under the assumptions in Theorem 5.2, problem (1.2) has at least one mild
solution x1 ∈ C1–β((0, T], X) provided that T > 1 and M2 = KTβ–γ �(1–γ )

�(1+β–γ ) < 1.

Proof From (5.1), we have

∥
∥f (t, x)

∥
∥ ≤ tμ(β–1)l(t)

(
t1–β‖x‖)μ + k(t) ≤ (

tμ(β–1)l(t) + k(t)
)((

t1–β‖x‖)μ + 1
)
. (5.2)

Let ω(t) = tμ + 1 and W (u) =
∫ u

u0
1

ωp(t1/p) dt =
∫ u

u0
1

(tμ/p+1)p dt, where u0, u > 0, then we get
[0, +∞) ⊂ Dom(W –1). Using Theorem 4.3, we know that problem (1.2) has at least one
mild solution x1 ∈ C1–β ((0, T], X) that satisfies the following integral equation

x1(t) = tβ–1Sβ (t)x0 +
∫ t

0
(t – s)β–1Sβ (t – s)f

(
s, x1(s)

)
ds, ∀t ∈ (0, T]. (5.3)

�

Now let us define the operator F : C0([T , +∞), X) → C0([T , +∞), X) by the following
formula

(Fx)(t) = tβ–1Sβ (t)x0 +
∫ T

0
(t – s)β–1Sβ (t – s)f

(
s, x1(s)

)
ds

+
∫ t

T
(t – s)β–1Sβ (t – s)f

(
s, x1(s)

)
ds,

(5.4)

where x1 ∈ C1–β((0, T], X) is a mild solution of problem (1.2) given in Lemma 5.3, and T
is as in Lemma 5.3. For convenience, we denote R1 = ‖x1‖1–β = sup0<t≤T t1–β‖x1(t)‖.

Let R > 1 be sufficiently larger such that

M1 + M2
(
Rμ + 1

) ≤ R, (5.5)

where M2 is as defined in Lemma 5.3, and M1 is defined in the following Lemma 5.4. Define
a set U as follows

U =
{

x ∈ C0
(
[T , +∞), X

)
: ‖x‖0 = sup

T≤t<+∞

∥
∥x(t)

∥
∥ ≤ R

}
. (5.6)

It is easy to see that U is a non-empty, closed, convex and bounded subset of C0([T , +∞),
X).

Lemma 5.4 Under the assumptions in Theorem 5.2, F maps U into U .
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Proof For any x ∈ U , we have

∥
∥(Fx)(t)

∥
∥ ≤ tβ–1‖x0‖ +

M
�(β)

∫ T

0
(t – s)β–1∥∥f

(
s, x1(s)

)∥
∥ds

+
M

�(β)

∫ t

T
(t – s)β–1∥∥f

(
s, x(s)

)∥
∥ds

≤ Tβ–1‖x0‖ +
M

�(β)

∫ T

0
(T – s)β–1(l(s)

∥
∥x1(s)

∥
∥μ + k(s)

)
ds

+
M

�(β)

∫ t

T
(t – s)β–1(l(s)

∥
∥x(s)

∥
∥μ + k(s)

)
ds

≤ Tβ–1‖x0‖ +
M

�(β)

∫ T

0
(T – s)β–1[Rμ

1 sμ(β–1)l(s) + k(s)
]

ds

+
M

�(β)

∫ t

T
(t – s)β–1K

(
Rμ + 1

)
s–γ ds.

(5.7)

Using Lemma 2.6, we get

Tβ–1‖x0‖ +
M

�(β)

∫ T

0
(T – s)β–1[Rμ

1 sμ(β–1)l(s) + k(s)
]

ds

= Tβ–1‖x0‖ +
MTβ–1Rμ

1
�(β)

∫ T

0

(
T

T – s

)1–β

sμ(β–1)l(s) ds

+
MTβ–1

�(β)

∫ T

0

(
T

T – s

)1–β

k(s) ds

≤ Tβ–1‖x0‖ +
2MT2β–1– 1

p Rμ
1

�(β)(qβ – q + 1)
1
q

(∫ T

0
sp(1–μ)(1–β)lp(s) ds

) 1
p

+
2MT2β–1– 1

p

�(β)(qβ – q + 1)
1
q

(∫ T

0
sp(1–β)kp(s) ds

) 1
p

= M1.

(5.8)

Since β < λ, we get

MK(Rμ + 1)
�(β)

∫ t

T
(t – s)β–1s–γ ds ≤ MK(Rμ + 1)

�(β)

∫ t

0
(t – s)β–1s–γ ds

=
MK(Rμ + 1)�(1 – γ )

�(1 + β – γ )
tβ–γ

≤ MK(Rμ + 1)�(1 – γ )
�(1 + β – γ )

Tβ–γ

= M2
(
Rμ + 1

)
.

(5.9)

Using (5.5), (5.7), (5.8), and (5.9), we get

∥
∥(Fx)(t)

∥
∥ ≤ M1 + M2

(
Rμ + 1

) ≤ R. (5.10)

Thus, ‖Fx‖0 ≤ R for any x ∈ U .
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We now prove that Fx is a continuous function on [T , +∞). Since

t1–β
∥
∥f

(
t, x1(t)

)∥
∥ ≤ t1–β l(t)

∥
∥x1(t)

∥
∥μ + t1–βk(t) ≤ Rμ

1 t(1–μ)(1–β)l(t) + t1–βk(t),

then we have f (·, x1(·)) ∈ Lp
1–β[0, T], X). Using Lemma 2.9, we get that

∫ T
0 (· – s)β–1f (s,

x1(s)) ds is continuous on [T , +∞). Since

∥
∥f

(
t, x(t)

)∥
∥ ≤ l(t)

∥
∥x(t)

∥
∥μ + k(t) ≤ Rμl(t) + k(t),

where x ∈ U , then f (·, x(·)) is continuous on [T , +∞) and f (·, x(·)) ∈ Lp
Loc,1–β ([T , +∞), X).

Using Lemma 2.8, we get that
∫ ·

T (· – s)β–1f (s, x(s)) ds is continuous on [T , +∞). Therefore,
Fx is a continuous function on [T , +∞) when x ∈ U .

Now let us prove that (Fx)(t) → 0 as t → +∞. For any x ∈ U , we have

∣
∣(Fx)(t)

∣
∣ ≤ tβ–1‖x0‖ +

M
�(β)

∫ T

0
(t – s)β–1∥∥f

(
s, x1(s)

)∥
∥ds

+
M

�(β)

∫ t

T
(t – s)β–1∥∥f

(
s, x(s)

)∥
∥ds.

(5.11)

Using Lemma 2.6, we have

∫ T

0
(t – s)β–1∥∥f

(
s, x1(s)

)∥
∥ds

≤ tβ–1
∫ T

0

(
t

t – s

)1–β∥
∥f

(
s, x1(s)

)∥
∥ds

≤ tβ–1
∫ T

0

(
T

T – s

)1–β∥
∥f

(
s, x1(s)

)∥
∥ds

≤ Rμ
1 tβ–1

∫ T

0

(
T

T – s

)1–β

sμ(β–1)l(s) ds + tβ–1
∫ T

0

(
T

T – s

)1–β

k(s) ds

≤ 2Tβ– 1
p Rμ

1 tβ–1

(qβ – q + 1)
1
q

(∫ T

0
sp(1–μ)(1–β)lp(s) ds

) 1
p

+
2Tβ– 1

p tβ–1

(qβ – q + 1)
1
q

(∫ T

0
sp(1–β)kp(s) ds

) 1
p

,

(5.12)

then we get that

∫ T

0
(t – s)β–1∥∥f

(
s, x1(s)

)∥
∥ds → 0, as t → +∞. (5.13)
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Moreover, we know

∫ t

T
(t – s)β–1∥∥f

(
s, x(s)

)∥
∥ds ≤

∫ t

T
(t – s)β–1l(s)

∥
∥x(s)

∥
∥μ ds +

∫ t

T
(t – s)β–1k(s) ds

≤ KRμ

∫ t

T
(t – s)β–1s–γ ds + K

∫ t

T
(t – s)β–1s–γ ds

≤ K
(
Rμ + 1

)
∫ t

0
(t – s)β–1s–γ ds

=
K(Rμ + 1)�(β)�(1 – γ )

�(1 + β – γ )
tβ–γ .

(5.14)

Since 0 < β < γ < 1, we get that

∫ t

T
(t – s)β–1∥∥f

(
s, x(s)

)∥
∥ds → 0 as t → +∞. (5.15)

Using (5.13) and (5.15), we get (Fx)(t) → 0 as t → +∞.
Thus, F maps U into U . The proof is complete. �

Lemma 5.5 Under the assumptions in Theorem 5.2, F : U → U is completely continuous.

Proof For any T1 > T > 1 and x ∈ U , let T ≤ t1 < t2 ≤ T1, then we get

∥
∥(Fx)(t2) – (Fx)(t1)

∥
∥

≤ ∥
∥t1–β

2 (Fx)(t2) – t1–β
2 (Fx)(t1)

∥
∥

≤ ∥
∥t1–β

2 (Fx)(t2) – t1–β
1 (Fx)(t1)

∥
∥ +

∥
∥t1–β

1 (Fx)(t1) – t1–β
2 (Fx)(t1)

∥
∥

≤ 1
�(β)

∥
∥
∥
∥

∫ T

0

(
t2

t2 – s

)1–β

f
(
s, x1(s)

)
ds –

∫ T

0

(
t1

t1 – s

)1–β

f
(
s, x1(s)

)
ds

∥
∥
∥
∥

+
1

�(β)

∥
∥
∥
∥

∫ t2

T

(
t2

t2 – s

)1–β

f
(
s, x(s)

)
ds –

∫ t1

T

(
t1

t1 – s

)1–β

f
(
s, x(s)

)
ds

∥
∥
∥
∥

+ R
∣
∣t1–β

1 – t1–β
2

∣
∣.

(5.16)

Using Lemmas 2.8 and 2.9, we can obtain that FU is equicontinuous on [T , T1]. From the
inequality (5.10), we know that (Fx)(t) is relatively compact for any t ∈ [T , +∞) and x ∈ U .
Using the proof of Lemma 5.4, we can get that limt→+∞ |(Fx)(t)| = 0 is uniformly for x ∈ U .
Therefore, we get that the set FU is relatively compact.

We now show that F is continuous, that is xn → x implies Fxn → Fx. Since xn(t) → x(t),
then f (t, xn(t)) → f (t, x(t)) for t ∈ [T , +∞). Therefore, we have

(t – s)β–1f
(
s, xn(s)

) → (t – s)β–1f
(
s, x(s)

)
, ∀s ∈ [T , t). (5.17)

Since l, k ∈ C([T , +∞),R+) and

(t – s)β–1∥∥f
(
s, xn(s)

)∥
∥ ≤ (t – s)β–1(l(s)

∥
∥xn(s)

∥
∥μ + k(s)

) ≤ (t – s)β–1(Rμl(s) + k(s)
)
, (5.18)
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then we have (t – ·)β–1f (·, xn(·)) ∈ L1([T , t], X). From (5.17) and (5.18), using the Lebesgue
dominated convergence theorem, we have

∥
∥(Fxn)(t) – (Fx)(t)

∥
∥ =

1
�(β)

∥
∥
∥
∥

∫ t

T
(t – s)β–1[f

(
s, xn(s)

)
– f

(
s, x(s)

)]
ds

∥
∥
∥
∥ → 0

as n → +∞. Therefore, (Fxn)(t) → (Fx)(t) pointwise on [T , +∞) as n → +∞. With the fact
that F is compact, then ‖Fxn – Fx‖0 → 0 as n → +∞, which implies F is continuous.

Therefore, F : U → U is completely continuous. �

Lemma 5.6 Under the assumptions in Theorem 5.2, the following integral equation

x(t) = tβ–1Sβ (t)x0 +
∫ T

0
(t – s)β–1Sβ (t – s)f

(
s, x1(s)

)
ds

+
∫ t

T
(t – s)β–1Sβ (t – s)f

(
s, x(s)

)
ds

(5.19)

has at least one mild solution in C0([T , +∞), X), where x1 ∈ C1–β ((0, T], X) is the mild so-
lution of problem (5.3), and T is as in Lemma 5.3.

Proof Using Lemma 5.4, Lemma 5.5, and Theorem 4.3, we have that the integral equation
(3.21) has at least one mild solution x2 ∈ C0([T , +∞), X). �

Now we give the proof of Theorem 5.2.

Proof of Theorem 5.2 We denote

x(t) =

⎧
⎨

⎩

x1(t) t ∈ (0, T],

x2(t) t ∈ [T , +∞),

where x1 ∈ C1–β((0, T], X) is a mild solution of problem (5.3), and x2 ∈ C0([T , +∞), X) is
a mild solution of the integral equation (5.19). From (5.3) and (5.19), we know that x is
continuous on (0, +∞), and we have that x is the mild solution of the following integral
equation

x(t) = tβ–1Sβ (t)x0 +
∫ T

0
(t – s)β–1Sβ (t – s)f

(
s, x(s)

)
ds

+
∫ t

T
(t – s)β–1Sβ (t – s)f

(
s, x(s)

)
ds.

(5.20)

From Theorem 4.3, we know that x is also a global mild solution of problem (1.2) and

lim
t→+∞ x(t) = lim

t→+∞ x2(t) = 0.

Thus, the mild solution x of problem (1.2) is globally attractive. �

The following conclusion is a consequence of Theorem 5.2.
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Theorem 5.7 Under the assumptions in Theorem 5.2, problem (1.2) has at least one mild
solution x ∈ C1–β((0, +∞), X) and

∥
∥x(t)

∥
∥ = tβ–1‖x0‖ + o

(
tβ–γ1

)
as t → +∞, (5.21)

where β < γ1 < γ < 1.

Proof From Theorem 5.2, we get that x ∈ C1–β((0, +∞), X) is a globally attractive mild
solution of problem (1.2). Since 0 < β < γ1 < γ < 1, for t > T , then we have

lim
t→+∞

‖x(t) – tβ–1x0‖
tβ–γ1

≤ lim
t→+∞

∫ t
0 (t – s)β–1‖f (s, x(s))‖ds

�(β)tβ–γ1

= lim
t→+∞

∫ T
0 (t – s)β–1‖f (s, x1(s))‖ds

�(β)tβ–γ1
+ lim

t→+∞

∫ t
T (t – s)β–1‖f (s, x2(s))‖ds

�(β)tβ–γ1
.

(5.22)

Using (5.12) and (5.14), we get

lim
t→+∞

‖x(t) – tβ–1x0‖
tβ–γ1

= 0.

Thus, x(t) = tβ–1x0 + o(tβ–γ1 ) as t → +∞. �

Remark 5.8 In fact, from (5.12) and (5.14), we get that the mild solution x of problem (1.2)
satisfies

∥
∥x(t)

∥
∥ ≤ tβ–1‖x0‖ + K1tβ–1 + K2tβ–γ , ∀t ∈ [T , +∞), (5.23)

where K1 and K2 are nonnegative constants.

Theorem 5.9 Let 0 < μ ≤ 1, 0 < β < 1, γ > β , p > 1, β > 1
p > 2β – 1, l ∈ C(1–μ)(1–β)((0, +∞),

R+) ∩ Lp
Loc,(1–μ)(1–β)([0, +∞),R+). Suppose that there exists a constant K > 0 such that

tγ l(t) ≤ K , ∀t ∈ [1, +∞), (5.24)

and f : (0, +∞) × X → X is a continuous function with

∥
∥f (t, x)

∥
∥ ≤ l(t)‖x‖μ, ∀(t, x) ∈ (0, +∞) × X.

Then problem (1.2) is global attractive.

6 Deduced results
In this section, we derive some deduced results for the following first-order and Caputo
fractional semilinear evolution equations

⎧
⎨

⎩

x′(t) = Ax(t) + f (t, x(t)), t ∈ (0, +∞),

x(0) = x0.
(6.1)
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⎧
⎨

⎩

C
0 Dβ

t x(t) = Ax(t) + f (t, x(t)), t ∈ (0, +∞),

x(0) = x0.
(6.2)

Definition 6.1 A function x ∈ C([0, T], X) is called a mild solution of problem (6.1) if it
satisfies the following fractional integral equation

x(t) = S(t)x0 +
∫ t

0
S(t – s)f

(
s, x(s)

)
ds, ∀t ∈ [0, T].

Definition 6.2 A function x ∈ C([0, T], X) is called a mild solution of problem (6.2) if it
satisfies the following fractional integral equation

x(t) = tβ–1S′
β (t)x0 +

∫ t

0
(t – s)β–1Sβ (t – s)f

(
s, x(s)

)
ds, ∀t ∈ [0, T],

where

S′
β (t) =

∫ ∞

0
ξβ (θ )S

(
tβθ

)
dθ .

Theorem 6.3 Suppose f : (0, T]×X → X is a continuous function, and there exists a func-
tion l ∈ C([0, T],R+) and a nondecreasing function ω ∈ C([0, +∞),R+) such that

∥
∥f (t, x)

∥
∥ ≤ l(t)ω

(‖x‖), ∀(t, x) ∈ (0, T] × X.

Then problem (6.1) has at least one mild solution in C([0, T], X) provided that

W
(
M‖x0‖

)
+ M

∫ t

0
l(s) ds ∈ Dom

(
W –1), ∀t ∈ (0, T],

where W (u) =
∫ u

u0
1

ω(τ ) dτ , u0, u > 0.

Proof Define the operator G1 : C([0, T], X) → C([0, T], X) by

G1x(t) = S(t)x0 +
∫ t

0
S(t – s)f

(
s, x(s)

)
ds, ∀t ∈ [0, T].

Similar to the proof of Theorem 4.3, we only prove that the set �1 = {x ∈ C([0, T], X) : x =
λG1x for some 0 < λ < 1} is bounded. Indeed, for x ∈ �1 one has

∥
∥x(t)

∥
∥ ≤ M‖x0‖ + M

∫ t

0

∥
∥f

(
s, x(s)

)∥
∥ds

≤ M‖x0‖ + M
∫ t

0
l(s)ω

(∥
∥x(s)

∥
∥
)

ds

Using Lemma 2.4, we obtain

∥
∥x(t)

∥
∥ ≤ W –1

[

W
(
M‖x0‖

)
+ M

∫ t

0
l(s) ds

]

,

which shows that the set �1 is bounded. The proof is complete. �
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Theorem 6.4 Let p > 1
β

and q = p
p–1 . Suppose f : (0, T] × X → X is a continuous function,

and there exists a function l ∈ C((0, T],R+) ∩ Lp([0, T],R+) and a nondecreasing function
ω ∈ C([0, +∞),R+) such that

∥
∥f (t, x)

∥
∥ ≤ l(t)ω

(‖x‖), ∀(t, x) ∈ (0, T] × X.

Then problem (6.2) has at least one mild solution in C([0, T], X) provided that

W
(

2p–1
(

M
�(q)

)p)

+ 2p–1cptpβ–1
∫ t

0
splp(s) ds ∈ Dom

(
W –1), ∀t ∈ (0, T],

where c = M�
1
q (q(β–1)+1)�

1
q (q+1)

�(q)�
1
q (q(β–1)+q+2)

, W (u) =
∫ u

u0
1

ωp(τ1/p) dτ , u0, u > 0.

Proof Define the operator G2 : C([0, T], X) → C([0, T], X) by

G2x(t) = S′
β (t)x0 +

∫ t

0
(t – s)β–1Sβ (t – s)f

(
s, x(s)

)
ds, ∀t ∈ [0, T]. (6.3)

Similar to the proof of Theorem 4.3, we only prove that the set �2 = {x ∈ C([0, T], X) : x =
λG2x for some 0 < λ < 1} is bounded. Indeed, for x ∈ �2 one has

∥
∥x(t)

∥
∥ ≤ M

�(q)
‖x0‖ +

M
�(q)

∫ t

0
(t – s)β–1∥∥f

(
s, x(s)

)∥
∥ds

≤ M
�(q)

‖x0‖ +
M

�(q)

∫ t

0
(t – s)β–1l(s)ω

(∥
∥x(s)

∥
∥
)

ds.

By Lemma 3.1 for α = δ = 0, we obtain

∥
∥x(t)

∥
∥ ≤

{

W –1
[

W
(

2p–1
(

M
�(q)

)p)

+ 2p–1cptpβ–1
∫ t

0
splp(s) ds

]} 1
p

, ∀t ∈ (0, T1),

which shows that the set �2 is bounded. The proof is complete. �

Remark 6.5 Theorems 6.3 and 6.4 generalize and improve the results on the existence of
mild solutions in [24, 25, 27].
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