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Abstract
In this paper, we introduce new types of contraction mappings named S-Pata-type
contraction mapping and Generalized S-Pata-type contraction mapping in the
framework of S-metric space. Then, we prove some new fixed-point results for
S-Pata-type contraction mappings and Generalized S-Pata-type contraction
mappings. To support our results, we provide examples to illustrate our findings and
also apply these results to the ordinary differential equation to strengthen our
conclusions.
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The study of fixed-point theory stands as one of the most vibrant and evolving research
areas in mathematics within the last few decades and it is the most interesting topic for the
researchers because of its simplicity, easiness, and applications in different fields. There
have been published many results for fixed-point theory and their applications in different
areas of mathematics and sciences. Exploring new and intriguing outcomes is achievable
by focusing on two primary directions:

The first involves modifying the framework and structural attributes of the space [1–6],
secondly, by changing the nature of the operators by imposing and reducing some restric-
tions [7–11].

Numerous publications discuss the generalization of the fundamental Banach Contrac-
tion Principle [12]. Pata introduced a captivating extension of the Banach Contraction
Principle in a recent publication [13]. Many other authors followed Pata’s approach and
improved many fixed-point results that are present in the literature [14–23].

Neugebauer in [24] proved fixed-point results in the Banach space that is symmetric,
and discussed its importance, and several researchers are working on this around the
globe. Recalling that symmetry is a mapping on an object X, preserving its underlying
structure, Neugebaner [24] utilized this concept to derive various applications of a layered
compression–expansion fixed-point theorem. These applications resulted in the deriva-
tion of solutions for a second-order difference equation with Dirichlet boundary condi-
tions.
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In this paper, we have taken the abstract space as an S-metric space and generalized the
concept of Pata’s approach in this space and introduced the concept of S-Pata-type con-
tractions and Generalized S-Pata-type contractions. Then, we apply this notion to prove
some results of fixed points in an S-metric space. Sufficient examples are given in support
of our results.

1 Preliminaries
Let us recall a few important definitions and preliminaries. In this section, we will use the
norm ‖ϑ‖ = d(ϑ ,ϑ0) in a metric space (X, d), where ϑ0 is a fixed element of X.

In the paper [13], Pata demonstrated an advancement upon the fundamental Banach
Contraction Principle as follows:

Theorem 1.1 [13] Assume (X, d) is a metric space that is complete and fixed constants
� ≥ 0, α ≥ 1, and β that lies in the interval [0,α]. Let us consider a function ψ : [0, 1] →
[0,∞) that is increasing and meets the condition ψ(0) = 0. If the mapping � : X → X fulfills
the subsequent inequality for each ε ∈ [0, 1] and all ϑ , θ ∈ X,

d(�ϑ ,�θ ) ≤ (1 – ε)d(ϑ , θ ) + �εα
[
1 + ‖ϑ‖ + ‖θ‖]β

then, � possesses a unique fixed point ϑ∗ ∈ X, and the sequence {�nϑ0} exhibits convergence
towards ϑ∗ for any given initial element ϑ0 ∈ X.

Further, Chakraborty and Samnta [25], Kadelburg and Radenović [15], Jacob et al. [14]
extended the Theorem 1.1 to the case Kannan-type, Chatterjea-type, and Zamfirescu-type
contraction mappings, respectively, as follows.

Note For the following theorems, let (X, d) represent a complete metric space, the fixed
constants are � ≥ 0, α ≥ 1, and β ∈ [0,α] and consider the function ψ : [0, 1] → [0,∞) is
an increasing function, continuous and ψ(0) = 0.

Theorem 1.2 [25] Let the mapping � : X → X adhere to the inequality

d(�ϑ ,�θ ) ≤ (1 – ε)
2

[
d(ϑ ,�ϑ) + d(θ ,�θ )

]
+ �εαψ(ε)

[
1 + ‖ϑ‖ + ‖θ‖ + ‖�ϑ‖ + ‖�θ‖]β

for all values of ε ∈ [0, 1] and any elements ϑ , θ ∈ X, then the � possesses a unique fixed
point ϑ∗ ∈ X.

Theorem 1.3 [14] Let the mapping � : X → X adhere to the inequality expressed as fol-
lows:

d(�ϑ ,�θ ) ≤ (1 – ε)
2

[
d(ϑ ,�θ ) + d(θ ,�ϑ)

]
+ �εαψ(ε)

[
1 + ‖ϑ‖ + ‖θ‖ + ‖�ϑ‖ + ‖�θ‖]β

for all values of ε ∈ [0, 1] and any elements ϑ , θ ∈ X, then the � possesses a unique fixed
point ϑ∗ ∈ X.
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Theorem 1.4 [15] Let the mapping � : X → X adhere to the inequality expressed as fol-
lows:

d(�ϑ ,�θ ) ≤ (1 – ε) max

{
d(ϑ , θ ),

1
2
[
d(ϑ ,�ϑ) + d(θ ,�θ )

]
,

1
2
[
d(ϑ ,�θ ) + d(θ ,�ϑ)

]}

+ �εαψ(ε)
[
1 + ‖ϑ‖ + ‖θ‖ + ‖�ϑ‖ + ‖�θ‖]β

for all values of ε ∈ [0, 1] and any elements ϑ , θ ∈ X, then � possesses a fixed point ϑ∗ ∈ X
that is unique.

One of the papers in which the authors have already proved the fixed-point theorem
using the Pata-type condition is [7].

In 2012, Sedghi and colleagues [6] introduced a novel notion known as the S-metric
space. This concept emerges within the broader scope of generalizing and extending the
concept of metric spaces, and its definition is presented as follows.

Definition 1.5 [6] Suppose that X is a nonempty set. An S-metric is a function on
X defined as S : X3 → [0,∞) that fulfills the subsequent conditions for all elements
ϑ , θ ,
, a ∈ X :

(S1) S(ϑ , θ ,
) ≥ 0,
(S2) S(ϑ , θ ,
) = 0 if and only if ϑ = θ = 
,
(S3) S(ϑ , θ ,
) ≤ S(ϑ ,ϑ , a) + S(θ , θ , a) + S(
,
, a).

The pair (X, S) is referred to as an S-metric space.

Lemma 1.6 [6] Within an S-metric space (X, S), the equality S(ϑ ,ϑ , θ ) = S(θ , θ ,ϑ) holds
true.

Definition 1.7 [6] Consider (X, S) is an S-metric space,
(i) A sequence {ϑn} in X is said to converge to ϑ if and only if S(ϑn,ϑn,ϑ) → 0 holds as

n → ∞. In other words, for each given ε > 0, we have n0 ∈ N so that it holds that
S(ϑn,ϑn,ϑ) < ε for any n ≥ n0, and this convergence is denoted by limn→∞ ϑn = ϑ .

(ii) A sequence ϑn within the set X is termed a Cauchy sequence if there exists a
natural number n0 ∈N for any given ε > 0 so that the condition S(ϑn,ϑn,ϑm) < ε is
fulfilled for all n, m ≥ n0.

(iii) If any Cauchy sequence within this space converges to a limit within X , then the
space (X, S) is considered to be complete.

2 Results
In the current section, we will take into account fixed constants � ≥ 0, α ≥ 1 and β ∈
[0,α], and we consider ψ : [0, 1] → [0,∞) to be a nondecreasing and continuous function
vanishing at 0. In this section, we will make use of the norm defined as ‖ϑ‖ = S(ϑ ,ϑ ,ϑ0)
with ϑ0 being an arbitrary point in the space (X, S).

Definition 2.1 If (X, S) is an S-metric space. A self-map � : X → X is classified as having
an S-Pata-type contraction mapping of type-I if the subsequent inequality

S(�ϑ ,�θ ,�
) ≤ (1 – ε)S(ϑ , θ ,
) + �εαψ(ε)
[
1 + ‖ϑ‖ + ‖θ‖ + ‖
‖]β (1)

holds for any ε ∈ [0, 1) along with arbitrary ϑ , θ ,
 ∈ X.
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Definition 2.2 If (X, S) is an S-metric space. A self-map � : X → X is classified as having
an S-Pata-type contraction mapping of type-II if the subsequent inequality

S(�ϑ ,�ϑ ,�θ ) ≤ (1 – ε)S(ϑ ,ϑ , θ ) + �εαψ(ε)
[
1 + 2‖ϑ‖ + ‖θ‖]β (2)

holds for any ε ∈ [0, 1) along with arbitrary ϑ , θ ∈ X.

The proof of the following lemmas in metric space can be found in [10]. Here, we extend
it to the framework of an S-metric space.

Lemma 2.3 If (X, S) is an S-metric space and the sequence {ϑn} is defined on X that is
not Cauchy such that limn→∞ S(ϑn,ϑn,ϑn+1) = 0, then we have two subsequences {ϑnk } and
{ϑmk } of {ϑn} for any given ε > 0, such that

lim
k→∞

S(ϑnk +1,ϑnk +1,ϑmk +1) = ε+, (3)

lim
k→∞

S(ϑnk ,ϑnk ,ϑmk ) = lim
k→∞

S(ϑnk +1,ϑnk +1,ϑmk ) = lim
k→∞

S(ϑnk ,ϑnk ,ϑmk +1) = ε. (4)

Proof Since {ϑn} is not Cauchy and limn→∞ S(ϑn,ϑn,ϑn+1) = 0, we have ε > 0 and N0 ≥ 1
so that for any N > N0 and m, n > N with n ≤ m, we obtain

S(ϑn+1,ϑn+1,ϑm+1) > ε and S(ϑn+1,ϑn+1,ϑn) ≤ ε.

By selecting the least m ≥ n for which S(ϑn+1,ϑn+1,ϑm+1) > ε holds, we obtain the con-
clusion that there exists N > N0 such that for any n, m > N ,

S(ϑn+1,ϑn+1,ϑm+1) > ε and S(ϑn+1,ϑn+1,ϑm) ≤ ε.

Thus, we can construct two subsequences {ϑnk } and {ϑmk } of {ϑn} such that

S(ϑnk +1,ϑnk +1,ϑmk +1) > ε and S(ϑnk +1,ϑnk +1,ϑmk ) ≤ ε.

The triangle inequality along with the above inequalities leads to the following conclusion:

ε < S(ϑnk +1,ϑnk +1,ϑmk +1) ≤ S(ϑnk +1,ϑnk +1,ϑmk ) + 2S(ϑmk ,ϑmk ,ϑmk +1)

≤ ε + 2S(ϑmk ,ϑmk ,ϑmk +1). (5)

We obtain (3) using the sandwich theorem. In addition, we have

S(ϑnk +1,ϑnk +1,ϑmk +1) – 2S(ϑmk +1,ϑmk +1,ϑmk ) ≤ S(ϑnk +1,ϑnk +1,ϑmk ) ≤ ε,

which demonstrates that the second limit in (4) is true. From the following two inequali-
ties,

S(ϑnk +1,ϑnk +1,ϑmk ) – 2S(ϑnk ,ϑnk ,ϑnk +1) ≤ S(ϑnk ,ϑnk ,ϑmk ) ≤ ε + 2S(ϑnk ,ϑnk ,ϑnk +1),

ε – 2S(ϑnk ,ϑnk ,ϑnk +1) < S(ϑnk ,ϑnk ,ϑmk +1) ≤ S(ϑnk+1,ϑnk +1,ϑmk +1) + 2S(ϑnk ,ϑnk ,ϑnk +1)

we will obtain the required limits. �
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Theorem 2.4 Let us consider a complete S-metric space (X, S), and if the following in-
equality is satisfied by a self-map � : X → X,

S(�ϑ ,�θ ,�
) ≤ (1 – ε)S(ϑ , θ ,
) + �εαψ(ε)
[
1 + ‖ϑ‖ + ‖θ‖ + ‖
‖]β

for any ε ∈ [0, 1) and ϑ , θ ,
 ∈ X, then � possesses a unique point ϑ∗ ∈ X such that �ϑ∗ =
ϑ∗. If ϑ0 ∈ X is any point, ϑn = �ϑn–1 = �nϑ0 then,

lim
n→∞ϑn = ϑ∗.

Proof For any ϑ0 ∈ X, let us define a {ϑn} by ϑ1 = �ϑ0, ϑn+1 = �ϑn. There is nothing to
prove if n exists in N such that ϑn+1 = ϑn. Let us suppose that ϑn+1 	= �ϑn for all n ∈ N .
Taking ε = 0, and ϑ = θ = ϑn, 
 = ϑn–1, the inequality is obtained as

S(ϑn,ϑn,ϑn–1) ≤ S(ϑn–1,ϑn–1,ϑn–2) ≤ · · · ≤ S(ϑ1,ϑ1,ϑ0) = c1.

We will now establish the proof for the boundedness of the sequence {cn}:

cn = S(ϑn,ϑn,ϑ0)

≤ 2S(ϑn,ϑn,ϑn+1) + S(ϑ0,ϑ0,ϑn+1)

≤ 2c1 + 2S(ϑ0,ϑ0,ϑ1) + S(ϑn+1,ϑn+1,ϑ1, )

≤ 4c1 + S(�ϑn,�ϑn,�ϑ0)

≤ 4c1 + (1 – ε)S(ϑn,ϑn,ϑ0) + �εαψ(ε)
[
1 + 2‖ϑn‖ + ‖ϑ0‖

]β

≤ 4c1 + (1 – ε)cn + �εαψ(ε)[1 + 2cn]α ,

εcn ≤ 4c1 + �εαψ(ε)[1 + 2cn]α .

Let us consider the sequence {cn} is not bounded. There exists a subsequence cnk → ∞,
hence, we can write the above inequality as

εkcnk ≤ A + Bεα
k ψ(εk)cα

nk
,

where A = 4c1 and B = 3� are fixed constant. Now, let us suppose that εk = 1+A
cnk

, then we
have

1 ≤ B(1 + A)αψ(εk) → 0,

which leads to a contradiction. Hence, {cn} is bounded.
We know that the sequence {S(ϑn,ϑn,ϑn–1)} is monotonically decreasing and has a lower

bound 0. Let S(ϑn,ϑn,ϑn–1) → δ > 0.
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By (1) we have,

S(ϑn+1,ϑn+1,ϑn) = S(�ϑn,�ϑn,�ϑn–1)

≤ (1 – ε)S(ϑn,ϑn,ϑn–1) + �εαψ(ε)
[
1 + 2‖ϑn‖ + ‖ϑn–1‖

]β

≤ (1 – ε)S(ϑn,ϑn,ϑn–1) + �εαψ(ε)[1 + 2cn + cn–1]β


⇒ δ ≤ (1 – ε)δ + Aεαψ(ε).

Taking n → ∞, where A = sup�[1 + 2cn + cn–1]β .


⇒ δ ≤ Aεα–1ψ(ε)


⇒ δ = 0.

Now, let us proceed to establish that {ϑn} is a Cauchy sequence. For the sake of contradic-
tion, let us assume the opposite that {ϑn} is not Cauchy.

Using Lemma 2.3, we can identify the existence of δ > 0 and two subsequences, namely
ϑnk and ϑmk , derived from the original sequence ϑn, such that:

lim
k→∞

S(ϑnk ,ϑnk ,ϑmk ) = δ+ and lim
k→∞

S(ϑnk –1,ϑnk –1,ϑmk –1) = δ.

This would make it clear that the inequality (1) implies the following statement. It follows
that

S(ϑnk ,ϑnk ,ϑmk ) = S(�ϑnk –1,�ϑnk –1,�ϑmk –1)

≤ (1 – ε)S(ϑnk –1,ϑnk –1,ϑmk –1) + �εαψ(ε)
[
1 + 2‖ϑnk –1‖ + ‖ϑmk –1‖

]β

≤ (1 – ε)S(ϑnk –1,ϑnk –1,ϑmk –1) + Aεαψ(ε),

where, A = sup�[1 + 2Cnk –1 + Cmk –1]β . Now, as k → ∞ we obtain the following inequality

δ ≤ (1 – ε)δ + Aεαψ(ε),

δ ≤ Aεα–1ψ(ε),

which implies δ = 0, which is a contradiction. Hence, it can be concluded that {ϑn} is, in
fact, a Cauchy sequence. Taking into consideration the completeness property of (X, S),
the existence of an element ϑ∗ in X such that the sequence ϑn converges to ϑ∗ can be
asserted.

Now, for any n ∈N, it follows that

S
(
�ϑ∗,�ϑ∗,ϑ∗) ≤ 2S

(
�ϑ∗,�ϑ∗,ϑn+1

)
+ S

(
ϑ∗,ϑ∗,ϑn+1

)

≤ 2
{

(1 – ε)S
(
ϑ∗,ϑ∗,ϑn

)
+ �εαψ(ε)

[
1 + 2

∥
∥ϑ∗∥∥ + ‖ϑn‖

]β}

+ S
(
ϑ∗,ϑ∗,ϑn+1

)

taking ε = 0

S
(
�ϑ∗,�ϑ∗,ϑ∗) ≤ 2S

(
�ϑ∗,�ϑ∗,ϑn

)
+ S

(
ϑ∗,ϑ∗,ϑn+1

)
.

Hence, letting n → ∞, S(�ϑ∗,�ϑ∗,ϑ∗) = 0, that is �ϑ∗ = ϑ∗.
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Now, the task remaining is to establish that the fixed point is unique. For the sake of
contradiction, let us assume that there are ϑ∗ and θ∗ two distinct fixed points for the
mapping �:

S
(
ϑ∗,ϑ∗, θ∗) = S

(
�ϑ∗,�ϑ∗,�θ∗)

≤ (1 – ε)S
(
ϑ∗,ϑ∗, θ∗) + �εαψ(ε)

[
1 + 2

∥∥ϑ∗∥∥ +
∥∥θ∗∥∥]β ,

S
(
ϑ∗,ϑ∗, θ∗) ≤ �εα–1ψ(ε)

[
1 + 2

∥
∥ϑ∗∥∥ +

∥
∥θ∗∥∥]β


⇒ S
(
ϑ∗,ϑ∗, θ∗) = 0 ⇔ ϑ∗ = θ∗.

This concludes the proof of the fixed point’s uniqueness. �

Remark 1 [14] The Bernaulli’s inequality is (1 + pq) ≤ (1 + q)p, for p ≥ 1 and q ∈ [–1, +∞).

Corollary 2.5 Suppose that (X, S) is a complete S-metric space and that � : X → X satisfies
the following inequality

S(�ϑ ,�θ ,�
) ≤ λS(ϑ , θ ,
), where λ ∈ [0, 1),

then there is an unique point ϑ in X, where �ϑ = ϑ .

Proof We are given that

S(�ϑ ,�θ ,�
) ≤ λS(ϑ , θ ,
)

= (1 – ε)S(ϑ , θ ,
) + (λ + ε – 1)S(ϑ , θ ,
)

≤ (1 – ε)S(ϑ , θ ,
) + λ

(
1 +

ε – 1
λ

)[
S(ϑ ,ϑ ,ϑ0) + S(θ , θ ,ϑ0) + S(
,
,ϑ0)

]

≤ (1 – ε)S(ϑ , θ ,
) + λε
1
λ
[
1 + ‖ϑ‖ + ‖θ‖ + ‖
‖],

using Remark 1. Since λ ∈ [0, 1) implies 1
λ

≥ 1.

S(�ϑ ,�θ ,�
) ≤ (1 – ε)S(ϑ , θ ,
) + λεε
1–λ
λ

[
1 + ‖ϑ‖ + ‖θ‖ + ‖
‖],

which is the inequality given in Theorem 2.4 for � = λ, α = 1, ψ(ε) = ε
1–λ
λ , and β = 1.

Hence, the � possesses a unique fixed point. �

Example 2.6 Consider X = [1, 100] with an S-metric defined as S(ϑ , θ ,
) = |ϑ – θ | + |θ –

| + |
 – ϑ |, then it can be proved that the space (X, S) is a complete S-metric space. Let
us consider a self-map � : X → X defined as �ϑ = 1 –

√
ϑ + ϑ . Then, for any ϑ , θ ∈ X, we

have

|�ϑ – �θ | =
∣∣(1 –

√
ϑ + ϑ) – (1 –

√
θ + θ )

∣∣ =
∣∣(ϑ – θ ) – (

√
ϑ –

√
θ )

∣∣

=
∣
∣∣∣(ϑ – θ ) –

ϑ – θ√
ϑ +

√
θ

∣
∣∣∣ =

∣
∣∣∣1 –

1√
ϑ +

√
θ

∣
∣∣∣|ϑ – θ |
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≤
∣∣
∣∣1 –

1√
100 +

√
100

∣∣
∣∣|ϑ – θ |

=
19
20

|ϑ – θ |.

Then, for some fixed ϑ0 ∈ X and any ϑ , θ ,
 ∈ X, we obtain

S(�ϑ ,�θ ,�
)

= |�θ – �
| + |�
 – �ϑ | =
19
20

[|ϑ – θ | + |θ – 
| + |
 – ϑ |] =
19
20

S(ϑ , θ ,
)

= (1 – ε)S(ϑ , θ ,
) +
{

19
20

– (1 – ε)
}

S(ϑ , θ ,
)

≤ (1 – ε)S(ϑ , θ ,
) +
19
20

{
1 –

(1 – ε)
19
20

}
[
S(ϑ ,ϑ ,ϑ0) + S(θ , θ ,ϑ0) + S(
,
,ϑ0)

]

≤ (1 – ε)S(ϑ , θ ,
) +
19
20

ε
20
19

[
1 + S(ϑ ,ϑ ,ϑ0) + S(θ , θ ,ϑ0) + S(
,
,ϑ0)

]

≤ (1 – ε)S(ϑ , θ ,
) +
19
20

ε1.ε
1

19
[
1 + ‖ϑ‖ + ‖θ‖ + ‖
‖],

which is the inequality (1) for all ε ∈ [0, 1], � = 19
20 , α = β = 1 and ψ(ε) = ε

1
20 . By Theo-

rem 2.4, the map � has a unique fixed point. It is worth noting that 1 is the only fixed
point of the mapping �.

Remark 2 The function satisfying the inequality given in equation (1), must be a contin-
uous function.

Definition 2.7 Let us consider an S-metric space (X, S). A self-map � : X → X is said to
have a generalized S-Pata-type contraction mapping of type-I if it satisfies the following
inequality

S(�ϑ ,�θ ,�
) ≤ (1 – ε)
3

{
S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) + S(
,
,�
)

}

+ �εαψ(ε)
[
1 + ‖ϑ‖ + ‖θ‖ + ‖
‖ + ‖�ϑ‖ + ‖�θ‖ + ‖�
‖]β (6)

for each ε ∈ [0, 1) and ϑ , θ ,
 ∈ X.

Definition 2.8 Let us consider an S-metric space (X, S). A self-map � : X → X is said to
have a generalized S-Pata-type contraction mapping of type-II if it satisfies the following
inequality

S(�ϑ ,�ϑ ,�θ ) ≤ (1 – ε)
3

{
2S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

}

+ �εαψ(ε)
[
1 + 2‖ϑ‖ + ‖θ‖ + 2‖�ϑ‖ + ‖�θ‖]β (7)

for each ε ∈ [0, 1) and ϑ , θ ∈ X.
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Theorem 2.9 A self-map � : X → X is defined on a complete S-metric space (X, S) and
holds the subsequent inequality

S(�ϑ ,�θ ,�
) ≤ (1 – ε)
3

{
S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) + S(
,
,�
)

}

+ �εαψ(ε)
[
1 + ‖ϑ‖ + ‖θ‖ + ‖
‖ + ‖�ϑ‖ + ‖�θ‖ + ‖�
‖]β

for each ε ∈ [0, 1) and all ϑ , θ ,
 ∈ X. Then, � possess a unique fixed point ϑ∗ and if ϑn =
�ϑn–1 for any ϑ0 ∈ X then limn→∞ ϑn = ϑ∗

Proof Let us choose a point ϑ0 from X, and let ϑn = �ϑn–1 and cn = S(ϑn,ϑn,ϑ0) = ‖ϑn‖.
In the inequality (7) taking ε = 0 and using Lemma 1.6 we have

S(ϑn+1,ϑn+1,ϑn) ≤ 1
3
{

2S(ϑn,ϑn,ϑn+1) + S(ϑn–1,ϑn–1,ϑn)
}

,

S(ϑn+1,ϑn+1,ϑn) ≤ S(ϑn–1,ϑn–1,ϑn) = S(ϑn,ϑn,ϑn–1)


⇒ S(ϑn+1,ϑn+1,ϑn) ≤ S(ϑn,ϑn,ϑn–1) ≤ · · · ≤ S(ϑ1,ϑ1,ϑ0) = C1.

Now, we will prove that cn is a bounded sequence:

cn = S(ϑn,ϑn,ϑ0) ≤ 2S(ϑn+1,ϑn+1,ϑn) + 2S(ϑ1,ϑ1,ϑ0) + S(ϑn+1,ϑn+1,ϑ1)

≤ 2c1 + 2c1 + S(�ϑn,�ϑn,�ϑ0)

≤ 4c1 +
(1 – ε)

3
{

2S(ϑn,ϑn,�ϑn) + S(ϑ0,ϑ0,�ϑ0)
}

+ �εαψ(ε)
[
1 + 2‖ϑn‖ + ‖ϑ0‖ + ‖�ϑn‖ + ‖�ϑ0‖

]β

≤ 4c1 +
(1 – ε)

3
{2c1 + c1} + �εαψ(ε)

[
1 + 2‖ϑn‖ + ‖ϑ0‖ + ‖�ϑn‖ + ‖�ϑ0‖

]β

≤ 5c1, for ε = 0,

which proves that {cn} is bounded. Since the sequence S(ϑn+1,ϑn+1,ϑn) is monotonically
decreasing having a bound 0, it follows that there exists δ ≥ 0 such that S(ϑn+1,ϑn+1,ϑn) →
δ, then

S(ϑn+1,ϑn+1,ϑn) ≤ S(�ϑn,�ϑn,�ϑn–1)

≤ (1 – ε)
3

{
2S(ϑn,ϑn,�ϑn) + S(ϑn–1,ϑn–1,�ϑn–1)

}
+ Kεαψ(ε)

≤ (1 – ε)
3

{
2S(ϑn,ϑn,ϑn+1) + S(ϑn–1,ϑn–1,ϑn)

}
+ Kεαψ(ε),

where, K > 0 and letting n → ∞ we obtain

δ ≤ (1 – ε)
3

{2δ + δ} + Kεαψ(ε),

δ ≤ Kεα–1ψ(ε) 
⇒ δ = 0.



Chand et al. Journal of Inequalities and Applications         (2024) 2024:59 Page 10 of 16

To prove {ϑn} is a Cauchy sequence, on the contrary let us suppose that {ϑn} is not a
Cauchy sequence. By Lemma 2.3 there exist two subsequences {ϑnk } and {ϑmk } of sequence
{ϑn} for any ε > 0, such that

lim
k→∞

S(ϑnk ,ϑnk ,ϑmk ) = ε and lim
k→∞

S(ϑnk –1,ϑnk –1,ϑmk –1) = ε.

Hence,

S(ϑnk ,ϑnk ,ϑmk ) = S(�ϑnk –1,�ϑnk –1,�ϑmk –1)

≤ (1 – ε)
3

{
2S(ϑnk –1,ϑnk –1,ϑnk ) + S(ϑmk –1,ϑmk –1,ϑmk )

}
+ Kεαψ(ε).

Considering the above limit and letting n → ∞, we obtain

ε ≤ Kεαψ(ε)


⇒ ε = 0,

which leads to a contradiction. Hence, sequence {ϑn} is a Cauchy sequence. Taking into
account the completeness of X we have ϑ∗ ∈ X such that ϑn → ϑ∗. Now, we verify that ϑ∗

is a fixed point for the mapping �. We observe that, for all n ∈N,

S
(
ϑ∗,ϑ∗,�ϑ∗) ≤ 2S

(
ϑ∗,ϑ∗,ϑn+1

)
+ S

(
�ϑ∗,�ϑ∗,�ϑn

)

≤ 2S
(
ϑ∗,ϑ∗,ϑn+1

)

+
(1 – ε)

3
{

2S
(
ϑ∗,ϑ∗,�ϑ∗) + S(ϑn,ϑn,�ϑn)

}
+ Kεαψ(ε)

≤ 2S
(
ϑ∗,ϑ∗,ϑn+1

)

+
(1 – ε)

3
{

2S
(
ϑ∗,ϑ∗,�ϑ∗) + S(ϑn,ϑn,ϑn+1)

}
+ Kεαψ(ε).

Letting n → ∞, and taking ε = 0, we have

S
(
ϑ∗,ϑ∗,�ϑ∗) ≤ 2

3
S
(
ϑ∗,ϑ∗,�ϑ∗)


⇒ S
(
ϑ∗,ϑ∗,�ϑ∗) = 0


⇒ �ϑ∗ = ϑ∗.

Now, we are left to prove that the fixed point is unique. On the contrary, let us assume two
fixed points ϑ∗ and θ∗ for �, it follows that

S
(
ϑ∗,ϑ∗, θ∗) = S

(
�ϑ∗,�ϑ∗,�θ∗)

≤ (1 – ε)
3

{
2S

(
ϑ∗,ϑ∗,�ϑ∗) + S

(
θ∗, θ∗,�θ∗)} + Kεαψ(ε), where K > 0

≤ Kεαψ(ε)


⇒ S
(
ϑ∗,ϑ∗, θ∗) = 0
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⇒ ϑ∗ = θ∗.

This illustrates the fixed point’s uniqueness. �

Example 2.10 Let us consider an S-metric space (X, S), where X = [0, 1] and the metric is
defined by S(ϑ , θ ,
) = |ϑ – θ | + |θ – 
| + |
 – ϑ |. Let us define a self-map on � : X→ X by

�ϑ =

⎧
⎨

⎩

ϑ
8 , if ϑ ∈ [0, 1

2 );
ϑ
10 , if ϑ ∈ [ 1

2 , 1].

Here, � is discontinuous at ϑ = 1
2 ; consequently, Theorem 2.4 can not be applied. Further,

to apply Theorem 2.9, let us discuss the following cases:
Case 1. For ϑ , θ ∈ [0, 1

2 );

S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) = 4
(

7ϑ

8

)
+ 2

(
7θ

8

)
=

7
4

[2ϑ + θ ],

S(�ϑ ,�ϑ ,�θ ) =
1
4
|ϑ – θ | ≤ 2

9
× 7

4
[2ϑ + θ ]

≤ 2
9
[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]
.

Case 2. For ϑ , θ ∈ [ 1
2 , 1];

S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) = 4
(

9ϑ

10

)
+ 2

(
9θ

10

)
=

9
5

[2ϑ + θ ],

S(�ϑ ,�ϑ ,�θ ) =
1
5
|ϑ – θ | ≤ 2

9
× 9

5
[2ϑ + θ ]

≤ 2
9
[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]
.

Case 3. For ϑ ∈ [0, 1
2 ), θ ∈ [ 1

2 , 5
8 );

S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) = 4
(

7ϑ

8

)
+ 2

(
9θ

10

)

≥ 0 +
9
5

× 1
2

=
9

10
,

S(�ϑ ,�ϑ ,�θ ) = 2
∣∣
∣∣
ϑ

8

∣∣
∣∣ –

θ

10
≤ 2 × 1

16
=

1
8

≤ 2
9

× 9
10

≤ 2
9
[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]
.

Case 4. For ϑ ∈ [0, 1
2 ), θ ∈ [ 5

8 , 1];

S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) = 4
(

7ϑ

8

)
+ 2

(
9θ

10

)

≥ 0 +
9
5

× 5
8

=
9
8

,
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S(�ϑ ,�ϑ ,�θ ) = 2
∣∣
∣∣
ϑ

8
–

θ

10

∣∣
∣∣ ≤ 2 × 1

10
=

2
9

× 9
8

≤ 2
9
[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]
.

Therefore, for all ϑ , θ ∈X and ε ∈ [0, 1], we have

S(�ϑ ,�ϑ ,�θ ) ≤ 2
9
[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]

=
(1 – ε)

3
[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]

+
{

2
9

–
(1 – ε)

3

}
[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]

=
(1 – ε)

3
[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]

+
2
9

{
1 –

(1 – ε)
2
3

}
[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]

≤ (1 – ε)
3

[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]

+
2
9
ε

3
2
[
(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]

≤ (1 – ε)
3

[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]

+
2
9
εε

1
2
[
2‖ϑ‖ + ‖�ϑ‖ + 2‖ϑ‖ + ‖�ϑ‖ + 2‖θ‖ + ‖�θ‖]

≤ (1 – ε)
3

[
S(ϑ ,ϑ ,�ϑ) + S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ )

]

+
4
9
εε

1
2
[
1 + 2‖ϑ‖ + ‖θ‖ + 2‖�ϑ‖ + ‖�θ‖],

which indicates that the map � meets all the requirements outlined in Theorem 2.9 when
considering α = β = 1, � = 4

9 , and ψ(ε) = ε
1
2 . Consequently, it possesses a unique fixed

point.

Corollary 2.11 If (X, S) is a complete S-metric space. If for any nonnegative numbers
α,γ , δ ∈ [0, 1), the self-map � : X → X satisfies the following inequality:

S(�ϑ ,�θ ,�
) ≤ 1
3
{
φS(ϑ ,ϑ ,�ϑ) + γ S(θ , θ ,�θ ) + δS(
,
,�
)

}
.

Then, there exists a fixed point for �.

Proof Let us suppose that λ = max{φ,γ , δ}. Using Remark 1, we can write the above in-
equality as

S(�ϑ ,�θ ,�
) ≤ 1
3
{
φS(ϑ ,ϑ ,�ϑ) + γ S(θ , θ ,�θ ) + δS(
,
,�
)

}

≤ λ

3
{

S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) + S(
,
,�
)
}
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≤ (1 – ε)
3

{
S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) + S(
,
,�
)

}

+
(

λ

3
+

ε – 1
3

){
S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) + S(
,
,�
)

}

≤ (1 – ε)
3

{
S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) + S(
,
,�
)

}

+
λ

3
ε

1
λ

[
2S(ϑ ,ϑ ,ϑ0) + S(�ϑ ,�ϑ ,ϑ0) + 2S(θ , θ ,ϑ0) + S(�θ ,�θ ,ϑ0)

+2S(
,
,ϑ0) + S(�
,�
,ϑ0)

]

≤ (1 – ε)
3

{
S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) + S(
,
,�
)

}

+
2λ

3
εε

1–λ
λ

[
1 + ‖ϑ‖ + ‖θ‖ + ‖
‖ + ‖�ϑ‖ + ‖�θ‖ + ‖�
‖],

which is the inequality given in Theorem 2.9 for � = 2λ
3 , α = 1, ψ(ε) = ε

1–λ
λ , and β = 1.

Hence, the map � has a unique fixed point. �

Corollary 2.12 If (X, S) is a complete S-metric space and γ is a nonnegative number in
[0, 1

3 ) and if the self-map � : X → X satisfies the subsequent inequality

S(�ϑ ,�θ ,�
) ≤ γ
{

S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) + S(
,
,�
)
}

, (8)

then there exists a fixed point for �.

Proof Let us consider λ = 3γ . Since γ ∈ [0, 1
3 ) implies that λ ∈ [0, 1), and the above in-

equality (8) can be written as

S(�ϑ ,�θ ,�
) ≤ λ

3
{

S(ϑ ,ϑ ,�ϑ) + S(θ , θ ,�θ ) + S(
,
,�
)
}

.

Now, the rest of the proof is followed by Corollary 2.11. �

3 Application to ordinary differential equations
The objective of this section is to determine the presence of a solution for the boundary
value problems by utilizing the outcomes established in the preceding section.

We examine the subsequent BVP concerning a second-order differential equation:

⎧
⎨

⎩
– d2u

dt2 = f (t, u(t)), t ∈ [0, 1];

u(0) = u(1) = 0,
(9)

where f : [0, 1] ×R →R represents a continuous function.
The corresponding Green function to equation (9) is

G(t, s) =

⎧
⎨

⎩
t(1 – s), 0 ≤ t ≤ s ≤ 1;

s(1 – t), 0 ≤ s ≤ t ≤ 1.
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The integral equation associated with the boundary value problem (9) can be formulated
as:

u(t) =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds for all t ∈ [0, 1]. (10)

Let us suppose a set C([0, 1]), which comprises every continuous function defined on the
interval [0, 1]. It is a commonly recognized fact that the set C([0, 1]) with the metric defined
as follows:

S(u, v, w) = ‖u – v‖∞ + ‖v – w‖∞ + ‖w – u‖∞ = max
t∈[0,1]

(|u – v| + |v – w| + |w – u|),

is a complete S-metric space. Let us consider a self-map T : C([0, 1]) → C([0, 1]) defined
by

Tu(t) =
∫ 1

0
G(t, s)f

(
s, u(s)

)
ds for t ∈ [0, 1]. (11)

Theorem 3.1 The given BVP (9) has at least one solution u∗ ∈ C([0, 1]) if the subsequent
inequality is satisfied for all t ∈ [0, 1] and a, b ∈R:

∣∣f (t, a) – f (t, b)
∣∣ ≤ 2|a – Tb| + |b – Tb|,

where T : C([0, 1]) → C([0, 1]) is a function defined in (11).

Proof The equivalence between a solution of equation (9) and a solution of the integral
equation (10) is a well-established fact. In other words, solving problem (9) is essentially
the same as finding a function u∗ ∈ C([0, 1]) that satisfies Tu∗ = u∗, where T is defined in
equation (11). This means that the problem (9) is effectively reduced to identifying a fixed
point of the operator T in the function space C([0, 1]).

Now, let u, v ∈ C([0, 1]) such that ξ (u(t), u(t), v(t)) ≥ 0 for all t ∈ [0, 1]:

∣∣Tu(t) – Tv(t)
∣∣ =

∣
∣∣∣

∫ 1

0
G(t, s)

[
f
(
s, u(s)

)
– f

(
s, v(s)

)]
ds

∣
∣∣∣

≤
∫ 1

0
G(t, s)

∣
∣f

(
s, u(s)

)
– f

(
s, v(s)

)∣∣ds

≤
(

sup
t∈I

∫ 1

0
G(t, s) ds

)[
2
∣∣Tu(t) – u(t)

∣∣ +
∣∣Tv(t) – v(t)

∣∣]

=
1
8
[
2
∣
∣Tu(t) – u(t)

∣
∣ +

∣
∣Tv(t) – v(t)

∣
∣].

Note that for all t ∈ [0, 1],
∫ 1

0 G(t, s) ds = – t2

2 + t
2 , which implies supt∈[0,1]

∫ 1
0 G(t, s) ds = 1

8 :

2 max
t∈[0,1]

∣
∣Tu(t) – Tv(t)

∣
∣ ≤ 2

8

[
2 max

t∈[0,1]

(∣∣Tu(t) – u(t)
∣
∣ +

∣
∣Tv(t) – v(t)

∣
∣)

]
,



Chand et al. Journal of Inequalities and Applications         (2024) 2024:59 Page 15 of 16

S
(
Tu(t), Tu(t), Tv(t)

) ≤ 1
8
[
2S

(
u(t), u(t), Tu(t)

)
+ S

(
v(t), v(t), Tv(t)

)]

=
1 – ε

3
[
2S

(
u(t), u(t), Tu(t)

)
+ S

(
v(t), v(t), Tv(t)

)]

+
(

1
8

–
1 – ε

3

)[
2S

(
u(t), u(t), Tu(t)

)
+ S

(
v(t), v(t), Tv(t)

)]

≤ 1 – ε

3
[
2S

(
u(t), u(t), Tu(t)

)
+ S

(
v(t), v(t), Tv(t)

)]

+
1
8

(
1 –

1 – ε
3
8

)[
4‖u‖ + 2‖v‖ + 2‖Tu‖ + ‖Tv‖]

≤ 1 – ε

3
[
2S

(
u(t), u(t), Tu(t)

)
+ S

(
v(t), v(t), Tv(t)

)]

+
1
4
ε

8
3
[
2‖u‖ + ‖v‖ + 2‖Tu‖ + ‖Tv‖] {Using Remark 1}

≤ 1 – ε

3
[
2S

(
u(t), u(t), Tu(t)

)
+ S

(
v(t), v(t), Tv(t)

)]

+
1
4
ε2ε

2
3
[
1 + 2‖u‖ + ‖v‖ + 2‖Tu‖ + ‖Tv‖].

Thus, the criteria outlined in Theorem 2.9 are met for the mapping T , where α = 2, β = 1,
� = 1

4 , and ψ(ε) = ε
2
3 . Consequently, this indicates that the mapping T possesses a unique

fixed point u∗ ∈ C([0, 1]) that is Tu∗ = u∗. As a result, it can be inferred that u∗ represents
the unique solution to the BVP (9). �

4 Conclusions
In conclusion, following Pata-type contraction we defined new types of contraction map-
pings and studied fixed-point results within the framework of S-metric spaces for these
mappings. These new ideas of contractions generalized for the self-mappings generalize
a large number of results present in the literature related the existence and uniqueness
of fixed points in S-metric space. We demonstrated that the self-operators, on a complete
metric space, that fulfill this contraction need to have only one fixed point. Also, we proved
the Banach contraction theorem in S-metric space as a corollary of our obtained results.
Additionally, we present examples that explain the obtained results, and an application to
the ordinary differential equation demonstrates how significant they are in the literature.
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