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1 Introduction and main results
The solutions to mathematical systems contribute to our ability to understand, predict,
and manipulate the world around us. They are essential tools for addressing complex prob-
lems, making informed decisions, and driving progress in various fields of study and ap-
plication [5, 6, 9, 11, 19, 20]. In this work, we will focus on the existence of solutions for
the fractional Kirchhoff p(z)-Laplacian problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K(
∫

�
1

p(z) |HDα,β ;ψ
0+ v|p(z) dz)Rα,β ;ψ

p(z) v

= γ (z)vq(z)–1 + g(z, v), in � = [0, T] × [0, T],

v ≥ 0, in � = [0, T] × [0, T],

v = 0, on ∂�,

(1.1)

where

Rα,β ;ψ
p(z) v = H

D
α,β ;ψ
T

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2H

D
α,β ;ψ
0+ v

)
,

is the ψ-Hilfer fractional operator with variable exponent, H
D

α,β ;ψ
T (·) and H

D
α,β ;ψ
0+ are ψ-

Hilfer fractional partial derivatives of order 1
p(z) < α < 1 and type 0 ≤ β ≤ 1, where p ∈

C1(�), with 1 ≤ p– ≤ p+ < 2, where p– := ess inf� p, p+ := ess sup� p, q ∈ C(�, (1, +∞)),
and γ ∈ L∞(�) in which γ (z) > 0 a.e., z ∈ �. Define the function p�(z) := 2p(z)

2–p(z) if p(z) < 2
and p�(z) := +∞ if 2 ≥ p(z).
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Equations characterized by variable exponent growth conditions have been the subject
of extensive research in the past decade, with notable advances documented in recent
works such as [8, 11, 13, 17]. The substantial volume of literature dedicated to problems
involving variable exponent growth conditions is driven by the recognition that such equa-
tions can serve as effective models in various fields, including the theory of electrorheolog-
ical fluids [1, 20], image processing [23], and the theory of elasticity [4]. Elliptic equations
with variable exponent growth conditions typically rely on the utilization of the so-called
p(z)-Laplace operator, i.e.,

∑N
i=1

∂
∂zi

(| ∂v
∂zi

|p(z)–2 ∂v
∂zi

) := �p(z), in which p(z) is a function and
for all z, 1 < p(z).

Problem (1.1) is p(z)-version associated with the following

ρ
∂2v
∂t2 –

(
ρ0

h
+

E
2L

∫ L

0

∣
∣
∣
∣
∂v
∂z

∣
∣
∣
∣

2

dz
)

∂2v
∂z2 = 0.

The above was introduced for the first time by Kirchhoff [14] and served as a generaliza-
tion of the classical D’Alembert wave equation, accounting for alterations in the length of
strings caused by transverse vibrations. Additionally, Woinowsky-Krieger [21] put forth
the evolution equation of the Kirchhoff-type as given below

vtt + �2v – K
(‖∇v‖2

2
)
�v = f (z, v). (1.2)

It serves as a model representing the deflection of an extensible beam; for a deeper un-
derstanding of the physics background and related models, refer to [2, 3]. From a mathe-
matical standpoint, the existence and multiplicity of solutions for Kirchhoff-type problems
involving the p(z)-Laplacian have undergone comprehensive investigation, as detailed in
[13] and references therein. In [13], the authors successfully established the existence of
solutions to a broad category of problems featuring variable exponents. Additional con-
ditions were employed to derive the multiplicity of solutions. The paper also includes il-
lustrative examples showcasing the applicability of the results. The methodology relies on
the utilization of sub-supersolutions and suitable L∞ estimates within the framework of
variable spaces.

In [7], the authors studied existence and multiplicity problems for a new class of κ(ξ )-
Kirchhoff-type equation of the form

⎧
⎨

⎩

R(
∫

�
1

κ(ξ ) |HDα,β ;ψ
0+ φ|κ(ξ ) dξ )Lμ,υ,ψ

κ(ξ ) φ = g(x, ξ ), in � = [0, T] × [0, T],

φ = 0, on ∂�,

where

Lμ,υ,ψ
κ(ξ ) φ := Rα,β ;ψ

p(z) v,

where R(t) is a continuous function, and g(x, ξ ) : �×R→R is the Caratheodory function
that satisfies certain conditions. Using a variational approach, they investigated results
from the theory of variable exponent Sobolev spaces and the theory of the ψ-fractional
space Hμ,υ,ψ

κ(ξ ) (�). In this sense, some new findings have been explored.
In this research, our primary objective is to investigate the existence and multiplicity of

solutions to the problem (1.1). The outcomes of this study can be seen as an extension of
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previous findings [13] and [7], focusing on the p(z)-Laplacian problem with K ≡ 1. This pa-
per delves into the realm of fractional Kirchhoff-type problems with a variable exponent,
specifically considering scenarios where K is not fixed. Leveraging the sub-supersolution
method and a specialized weak fractional comparison principle, we establish the existence
of a solution to the problem (1.1). Furthermore, employing the mountain pass theorem,
we derive the multiplicity of solutions to the problem (1.1). Notably, these results repre-
sent novel contributions to fractional Kirchhoff-type variable exponent boundary value
problems.

Here, we take the Kirchhoff function K and the nonlinearity g with some assumptions.
(K0) Let K : [0, +∞) → [k0, +∞) be a nondecreasing and continuous function for some

positive constant k0;
(K1) One can find θ ∈ (0, 1) in a way that

K̂(t) :=
∫ t

0
K(r) dr ≥ (1 – θ )K(t)t for all t ≥ 0;

(g1) g ∈ C(� × [0, +∞),R) and there exists η > 0 in a manner that

g(z, t) ≥ γ (z)
(
1 – tq(z)–1) for all (z, t) ∈ � × [0,η];

(g2) One can find s ∈ C(�, (1, +∞)) in a way that

∣
∣g(z, t)

∣
∣ ≤ γ (z)

(
1 + ts(z)–1) for all (z, t) ∈ � × [0, +∞);

(g3) One can find μ > p+

1–θ
in a manner that

0 < μG(z, t) := μ

∫ t

0
g(z, r) dr ≤ g(z, t)t a.e. z ∈ � and for all 0 < T < t.

After that, we present the result in the following way:

Theorem 1.1 Let us consider that (K0) and (g1)–(g2) are satisfied. Then, one can find that
σ� > 0 in a way that the problem (1.1) provided at least one solution with ‖γ ‖∞ < σ�.

Theorem 1.2 Let us consider that (K0)–(K1) and (g1)–(g3) are satisfied. If q+, r+ < (p�)–

and (q– > p+

1–θ
or q+ < p–), then one can find that σ � > 0, in a way that problem (1.1) has

two solutions with the condition ‖γ ‖∞ < σ �.

The paper has the following structure: Sect. 2 introduces results related to variable ex-
ponentiated distances, Sect. 3 establishes the auxiliary L∞ estimate, and Sects. 4 and 5 are
devoted to proving Theorems 1.1 and 1.2, respectively.

2 Fundamental theory
In this section, the basic concepts and idea of variable exponent Lebesgue spaces will be
presented and will be used to prove the main results (see [12]). Let us indicate the set of
all continuous functions by C+(�) and q : � → (1, +∞). For q ∈ C+(�), we express

q+ := max
�

q(x) and q– := min
�

q(x).
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Suppose �(�) is the set of all measurable real functions defined on �.
In the next step, we define the variable exponent Lebesgue space as

Lq(z)(�) =
{

v ∈ �(�) :
∫

�

|v|q(z) dz < ∞
}

,

with the norm

‖v‖q(z) = inf

{

τ > 0 :
∫

�

∣
∣
∣
∣

v
τ

∣
∣
∣
∣

q(z)

dz ≤ 1
}

.

Assume that Lq′(z)(�) is the conjugate space of Lq(z)(�) with 1
q(z) + 1

q′(z) = 1. Then, the in-
equality below of the Holder type is satisfied.

Lemma 2.1 ([12]): Let v ∈ Lq(z)(�) and w ∈ Lq′(z)(�). Then,

∫

�

|vw|dz ≤
(

1
q–

+
1

(q′–)

)

‖v‖q(z)‖w‖q′(z).

The modular function in the space Lq(x) is considered as follows

ρq(z)(v) =
∫

�

|v|q(z) dz.

Lemma 2.2 ([12]): For any v ∈ Lq(z)(�), we have

min
(‖v‖q–

q(z),‖v‖q+

q(z)
) ≤ ρq(z)(v) ≤ max

(‖v‖q–

q(z),‖v‖q+

q(z)
)
.

Lemma 2.3 ([12]): Let v ∈ Lq(z)(�) and {vn} ⊂ Lq(z)(�). Then, the following properties are
equivalent:

(1) limn→+∞ ‖vn – v‖q(z) = 0;
(2) limn→+∞ ρq(z)(vn – v) = 0.

Next, we define the ψ-fractional space given by [7]

Hα,β ;ψ
p(z) (�) =

{
v ∈ Lp(z)(�) :

∣
∣HD

α,β ;ψ
0+ v

∣
∣ ∈ Lp(z)(�)

}

and equipped with a norm

‖v‖1,p(z) = ‖v‖Hα,β ;ψ
p(z) (�) = ‖v‖p(z) +

∥
∥H

D
α,β ;ψ
0+ v

∥
∥

p(z)
.

Then, (Hα,β ;ψ
p(z) (�),‖ · ‖1,p(x)) is a Banach reflexive space [7]. Let X0 := Hα,β ;ψ

p(z),0 (�) be the clo-
sure of C∞

0 (�) in Hα,β ;ψ
p(z) (�). After all p(z) < p�(z) for all z ∈ �,

‖v‖p(z) ≤ C
∥
∥H

D
α,β ;ψ
0+ v

∥
∥

p(z)
for all v ∈ X0 (a Poincaré-type inequality),

where C is a positive constant independent of u, and ‖ · ‖X0 is the norm of the space X0 of
the form

‖v‖X0 :=
∥
∥H

D
α,β ;ψ
0+ v

∥
∥

p(z)
for all v ∈ X0.
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Lemma 2.4 ([7]): Assume that q ∈ C+(�) in a manner that p�(z) > q(z) ≥ 1 for all z ∈ �.
Then, we have compact and continuous embedding Hα,β ;ψ

p(z) (�) ↪→ Lq(x)(�).

3 Fractional comparison principle
Here, we will provide an estimate for a weak fractional comparison principle for (1.1) and
an L∞, which will be used in generating the corresponding sub-supersolutions.

Definition 3.1 Take v, w ∈ X0. We say that

K
(
Iα,β (v)

)
Rα,β ;ψ

p(z) v ≤ K
(
Iα,β (w)

)
Rα,β ;ψ

p(z) w

if for all nonnegative functions ϕ ∈ X0.

K
(
Iα,β (v)

)
∫

�

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v

)
.HDα,β ;ψ

0+ ϕ dz

≤ K
(
Iα,β (w)

)
∫

�

(∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2 H

D
α,β ;ψ
0+ w

)
.HDα,β ;ψ

0+ ϕ dz,

where

Iα,β (v) =
∫

�

1
p(z)

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z) dz.

Lemma 3.2 Let (K0) be satisfied. Then, φ: X0 → X∗
0 of the form

〈
φ(v),χ

〉
= K(Iα,β(v)

∫

�

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v

)
.HDα,β ;ψ

0+ χ dz, v,χ ∈ X0, (3.1)

is strictly monotone and continuous.

Proof It is clear that the operator φ is continuous. Assume that v �= w ∈ X0. Without loss
of generality, one can suppose that Iα,β (v) ≥ Iα,β (w). Further, the nondecreasing property
of K implies that

K
(
Iα,β (v)

) ≥ K
(
Iα,β (w)

)
. (3.2)

Further, we have

H
D

α,β ;ψ
0+ v.HDα,β ;ψ

0+ w ≤ 1
2
(∣
∣HD

α,β ;ψ
0+ v

∣
∣2 +

∣
∣HD

α,β ;ψ
0+ w

∣
∣2). (3.3)

Thus,

∫

�

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z) –

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v.HDα,β ;ψ

0+ w
)

dz (3.4)

≥
∫

�

1
2
∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2(∣∣HD

α,β ;ψ
0+ v

∣
∣2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz (3.5)
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and
∫

�

(∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z) –

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2 H

D
α,β ;ψ
0+ w.HDα,β ;ψ

0+ v
)

dz (3.6)

≥
∫

�

1
2
∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2(∣∣HD

α,β ;ψ
0+ w

∣
∣2 –

∣
∣HD

α,β ;ψ
0+ v

∣
∣2)dz, (3.7)

we put

�a =
{

z ∈ � :
∣
∣HD

α,β ;ψ
0+ v

∣
∣ ≥ ∣

∣HD
α,β ;ψ
0+ w

∣
∣
}

and

�b =
{

z ∈ � :
∣
∣HD

α,β ;ψ
0+ v

∣
∣ <

∣
∣HD

α,β ;ψ
0+ w

∣
∣
}

.

By (3.2), (3.4)–(3.6) and (K0), we get

A := K
(
Iα,β (v)

)
∫

�a

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z) –

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v.HDα,β ;ψ

0+ w
)

dz (3.8)

+ K
(
Iα,β (w)

)
∫

�a

(∣
∣HD

α,β ;ψ
0+ w|p(z) –

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v.HDα,β ;ψ

0+ w
)

dz

≥ 1
2

K
(
Iα,β (v)

)
∫

�a

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2(∣∣HD

α,β ;ψ
0+ v

∣
∣2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz

–
1
2

K
(
Iα,β (w)

)
∫

�a

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2(∣∣HD

α,β ;ψ
0+ v

∣
∣2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz

≥ 1
2

K
(
Iα,β (w)

)
∫

�a

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2)

× (∣
∣HD

α,β ;ψ
0+ v

∣
∣2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz

≥ k0

2

∫

�a

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2)(∣∣HD

α,β ;ψ
0+ v

∣
∣2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz

≥ 0.

Similarly, we obtain

B := K
(
Iα,β (v)

)
∫

�b

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z) –

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v.HDα,β ;ψ

0+ w
)

dz (3.9)

+K
(
Iα,β (w)

)
∫

�b

(∣
∣HD

α,β ;ψ
0+ w|p(z) –

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v.HDα,β ;ψ

0+ w
)

dz

≥ 1
2

K
(
Iα,β (v)

)
∫

�b

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2(∣∣HD

α,β ;ψ
0+ v

∣
∣2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz

–
1
2

K
(
Iα,β (w)

)
∫

�b

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2(∣∣HD

α,β ;ψ
0+ v

∣
∣2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz

≥ 1
2

K
(
Iα,β (w)

)
∫

�b

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2)

× (|HDα,β ;ψ
0+ v|2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz
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≥ k0

2

∫

�b

(|HDα,β ;ψ
0+ v|p(z)–2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2)(|HDα,β ;ψ

0+ v|2 –
∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz

≥ 0.

It follows that

〈
φ(v) – φ(w), v – w

〉

=
〈
φ(v), v – w

〉
–

〈
φ(w), v – w

〉

=
〈
φ(v), v

〉
–

〈
φ(v), w

〉
+

〈
φ(w), w

〉
–

〈
φ(w), v

〉

= K
(
Iα,β (v)

)
∫

�

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z) –

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v.HDα,β ;ψ

0+ w
)

dz

+ K
(
Iα,β (w)

)
∫

�

(∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z) –

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2H

D
α,β ;ψ
0+ v.HDα,β ;ψ

0+ w
)

dz

= (A + B) ≥ 0.

This implies that 〈φ(v) – φ(w), v – w〉 > 0. On the other hand, using (3.8)–(3.9), we have

0 =
〈
φ(v) – φ(w), v – w

〉
= (A + B) (3.10)

≥ k0

2

∫

�

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2)(∣∣HD

α,β ;ψ
0+ v

∣
∣2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz (3.11)

≥ 0,

which gives the following

∫

�

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2)(∣∣HD

α,β ;ψ
0+ v

∣
∣2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz,

hence |HDα,β ;ψ
0+ v| = |HDα,β ;ψ

0+ w|. After that, K(Iα,β (v)) = K(Iα,β (w)) and from (3.11), the fol-
lowing is obtained

0 =
〈
φ(v) – φ(w), v – w

〉

= K
(
Iα,β (v)

)
∫

�

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2(H

D
α,β ;ψ
0+ v –H

D
α,β ;ψ
0+ w

)2 dz,

so, HDα,β ;ψ
0+ v = H

D
α,β ;ψ
0+ w a.e., in �, as a result v = w in X0. This leads to a contradiction, and

thus, 〈φ(v) – φ(w), v – w〉 > 0. As a result, it can be affirmed that φ is strictly monotonic. �

Lemma 3.3 (Fractional comparison principle): Let (K0) be satisfied and assume that u, w ∈
X0 verify

K
(
Iα,β (v)

)
Rα,β ;ψ

p(z) v ≤ K
(
Iα,β (w)

)
Rα,β ;ψ

p(z) w (3.12)

and v ≤ w on ∂�, i.e., (v – w)+ ∈ X0. Then, v ≤ w a.e., in �.
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Proof Let us assume that a test function χ = (v – w)+ in (3.12), then, by (3.1), the following
is obtained

〈
φ(v) – φ(w), (v – w)+〉

= K
(
Iα,β (v)

)
∫

�∩[v>w]

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 H

D
α,β ;ψ
0+ vH

D
α,β ;ψ
0+ (v – w) dz

– K
(
Iα,β (w)

)
∫

�∩[v>w]

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2 H

D
α,β ;ψ
0+ wH

D
α,β ;ψ
0+ (v – w) dz

≤ 0.

Otherwise, we have the following from (3.11):

〈
φ(v) – φ(w), (v – w)+〉

≥ k0

2

∫

�∩[v>w]

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣p(z)–2)(∣∣HD

α,β ;ψ
0+ v|2 –

∣
∣HD

α,β ;ψ
0+ w

∣
∣2)dz

≥ 0.

Hence, 〈φ(v) – φ(w), (v – w)+〉 = 0. Applying Lemma 3.2, we deduce that (v – w)+ = 0, and
hence the proof is completed. �

Lemma 3.4 Let us assume that (K0) is satisfied and assume that γ ∈ L∞(�). Then, there
exists a unique solution to

⎧
⎨

⎩

K(Iα,β(v))Rα,β ;ψ
p(z) v = γ (z) in �

v = 0 on ∂�
(3.13)

in the space X0 := Hα,β ;ψ
p(z),0 (�).

Proof The operator defined in (3.1) has the following characteristics: see Proposition 2.7
in [7]

1. Lα,β : is a continuous, bounded and strictly monotone operator;
2. Lα,β : is a mapping of type (S+);
3. Lα,β : is a homeomorphism.
Hence by (K0) and Lemma 2.2, the following is obtained

lim
n→+∞

〈Lα,β (v), v〉
‖v‖X0

≥ lim
n→+∞

k0
∫

�
|HDα,β ;ψ

0+ v|p(z) dz
‖v‖X0

= +∞, (3.14)

Lα,β is coercive, thus Lα,β is a surjection. Applying the Minty-Browder theorem [22], we
conclude that the equation φ(v) = γ possesses a unique solution in X0. �

Let us indicate the best constant of the continuous embedding X0(�) ↪→ L2 by C0. Then,

‖v‖L2(�) ≤ C0‖v‖X0(�) for all v ∈ X0. (3.15)
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Lemma 3.5 Let (K0) be satisfied. Assume that � > 0 and v� is a unique solution to the
following

⎧
⎨

⎩

–K(Iα,β(v))Rα,β ;ψ
p(z) v = � in �

v = 0 on ∂�.
(3.16)

Put δ = k0p–

2C0|�| 1
2

. Then, when � ≥ δ, v� ∈ L∞(�) with

‖v�‖∞ ≤ C�
1K

(
C�

2�
(p–)′)�

1
p––1 ,

and when � < δ,

‖v�‖∞ ≤ C��
1

p+–1 ,

where C�
1 , C�

2 , and C� are positive constants depending only on �, k0 and p.

Proof To prove the required result, let ζ ≥ 0 be fixed and put �ζ = {z ∈ � : v�(z) > ζ } and
v� ≥ 0 and by comparison principle. Testing equation (3.16) with (v� – ζ )+, it follows from
(3.15) and the Young inequality that

∫

�

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z) dz =

�

K(Iα,β(v�))

∫

�ζ

(v� – ζ ) dz (3.17)

≤ �|�ζ | 1
2

K(Iα,β(vλ))
∥
∥(v� – ζ )+∥

∥
L2(�)

≤ �|�ζ | 1
2 C0

k0

∫

�ζ

∣
∣HD

α,β ;ψ
0+ v�

∣
∣dz

≤ �|�ζ | 1
2 C0

k0

∫

�ζ

∣
∣HD

α,β ;ψ
0+ v�

∣
∣p(z) dz

≤ �|�ζ | 1
2 C0

k0

(∫

�ζ

εp(z)|HDα,β ;ψ
0+ v�|p(z)

p(z)
dz +

∫

�ζ

ε–p′(z)

p′(z)
dz

)

. (3.18)

When � ≥ δ, taking

ε =
(

k0p–

2�|�| 1
N C0

) 1
p–

=
(

δ

�

) 1
p–

, (3.19)

we have ε ≤ 1, thus

�|�ζ | 1
2 C0

k0

∫

�ζ

εp(z)|HDα,β ;ψ
0+ v�|p(z)

p(z)
dz ≤ �|�| 1

2 C0ε
p–

k0p–

∫

�ζ

∣
∣HD

α,β ;ψ
0+ v�

∣
∣p(z) dz, (3.20)

=
1
2

∫

�ζ

∣
∣HD

α,β ;ψ
0+ v�

∣
∣p(z) dz.
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Combining (3.18) and (3.20), we arrive at

∫

�ζ

∣
∣HD

α,β ;ψ
0+ v�

∣
∣p(z) dz ≤ 2�|�ζ | 1

2 C0

k0(p+)′

∫

�ζ

ε–(p–)′ dz =
4�C0ε

–(p–)′

k0(p+)′
|�ζ |1+ 1

2 . (3.21)

Similarly, from the test function in (3.16) with v� , the following is obtained

∫

�

∣
∣HD

α,β ;ψ
0+ v�

∣
∣p(z) dz ≤ 4�C0ε

–(p–)′

k0(p+)′
|�|1+ 1

2 .

From (3.17), (3.20) and the monotonicity of K, the below is obtained

∫

�ζ

(v� – ξ ) dz =
K(Iα,β (v))

�

∫

�ζ

∣
∣HD

α,β ;ψ
0+ v�

∣
∣p(z) dz

≤ K
(

4�C0ε
–(p–)′

k0p–(p+)′
|�ζ |1+ 1

2

)
4C0ε

–(p–)′

k0(p+)
|�ζ |1+ 1

2 .

Through Lemma 5.1 in [15], the below is achieved

‖v�‖∞ ≤ K
(

4�C0ε
–(p–)′

k0p–(p+)′
|�ζ |1+ 1

2

)
12C0ε

–(p–)′

k0(p+)′
|�ζ | 1

2 . (3.22)

It follows from (3.19) and (3.22) that

‖v�‖∞ ≤ C�
1K

(
C�

2�
(p–)′)�

1
p––1 ,

where

C�
1 :=

6(2C0)(p–)′

(p+)k(p–)′
0 (p–)

1
p––1

|�| (p–)′
2 ,

and

C�
2 :=

2(2C0)(p–)′

(p+)′k(p–)′
0 (p–)p–

|�|1+ (p–)′
2 .

When � < δ, taking

ε =
(

k0p–

2�|�| 1
2 C0

) 1
p+

=
(

δ

�

) 1
p+

,

we have ε < 1. The following can be easily proved through the same argument:

‖v�‖∞ ≤ C��
1

p+–1 ,

where

C∗ =
6(2C0)(p+)′

(p+)′k(p+)′
0 (p–)

1
p+–1

|�| (p+)′
2 K

(
2(2δC0)(p+)′

(p+)′k(p+)′
0 (p–)(p+)′

|�|1+ (p+)′
2

)

.
�
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4 Proof of Theorem 1.1
Taking the pair of sub-supersolutions (v, v) to the problem (1.1), if v, v ∈ L∞(�), v ≤ v a.e.,
in � and for all arbitrary nonnegative functions χ ∈ X0, the following is satisfied

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K(Iα,β(v))
∫

�
(|HDα,β ;ψ

0+ v|p(z)–2 H
D

α,β ;ψ
0+ v).HDα,β ;ψ

0+ χ dz

≤ ∫

�
γ (z)vq(z)–1χ dz +

∫

�
g(z, v)χ dz,

K(Iα,β(v))
∫

�
(|HDα,β ;ψ

0+ v|p(z)–2 H
D

α,β ;ψ
0+ v).HDα,β ;ψ

0+ χ dz

≥ ∫

�
γ (z)vq(z)–1χ dz +

∫

�
g(z, v)χ dz.

(4.1)

Lemma 4.1 Assume that (K0) and (g1) – (g2) are satisfied. Then, there is σ� > 0 in a manner
that (1.1) has a pair of sub-supersolutions (v, v) ∈ (X0 ∩L∞(�)× (X0 ∩L∞(�)) with ‖v‖∞ ≤
η, provided that ‖γ ‖∞ < σ�, where η is defined in (g1).

Proof Using Lemmas 3.2, 3.3, and 3.4, one can find that v, v ∈ X0 ∩ L∞(�) is a unique
nonnegative solution to the following

⎧
⎨

⎩

–K(Iα,β(v)Rα,β ;ψ
p(z) v = γ (z) in �,

v = 0 on ∂�

and
⎧
⎨

⎩

–K(I(v)Rα,β ;ψ
p(z) v = γ (z) + 1 in �,

v = 0 on ∂�
(4.2)

such that

‖v‖∞ ≤ max
(
C�

1K
(
C�

2‖γ ‖(p–)′
∞

)‖γ ‖ 1
p––1 , C�‖γ ‖ 1

p+–1
)
,

where C�
1 , C�

2, and C� were mentioned in Lemma 3.4. Next, considering that K is nonde-
creasing, there exits σ > 0 relying only on C�

1, C�
2 , and C� such that ‖v‖∞ ≤ η, provided

that ‖γ ‖∞ < σ . Moreover, v ≤ v by Lemma 3.2.
For an arbitrary nonnegative function ψ in X0. The above (4.2) and (g1) imply that

K
(
Iα,β (v)

)
∫

�

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v

)
.HDα,β ;ψ

0+ χ dz

–
∫

�

γ (z)vq(z)–1χ dz –
∫

�

g(z, v)χ dz

≤
∫

�

γ (z)χ dz –
∫

�

γ (z)vq(z)–1χ dz –
∫

�

γ (z)
(
1 – vq(z)–1)χ dz

= 0.

By (4.2) and (g2), we have

K
(
Iα,β (v)

)
∫

�

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v

)
.HDα,β ;ψ

0+ χ dz

–
∫

�

γ (z)vq(z)–1χ dz –
∫

�

g(z, v)χ dz
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≥
∫

�

(
1 – B∞‖γ ‖∞

)
χ dz,

where

B∞ := max
(‖v‖q+–1

∞ ,‖v‖q––1
∞

)
+ max

(‖v‖s+–1
∞ ,‖v‖s––1

∞
)
.

Thus, choosing σ� = min(σ , 1
B∞ ), it yields

∫

�

(
1 – B∞‖γ ‖∞

)
χ dx ≥ 0 for ‖γ ‖∞ < σ�.

This completes the proof.
We give now the proof of Theorem 1.1:
Assume that v, v ∈ X0 ∩ L∞(�) as in the above lemma and introduce

h(z, t) =

⎧
⎪⎪⎨

⎪⎪⎩

γ (z)v(z)q(z)–1 + g(z, v(z)) if t > v(z),

γ (z)tq(z)–1 + g(z, t) if v(z) ≤ t ≤ v(z),

γ (z)v(z)q(z)–1 + g(z, v(z)) if t < v(z).

Consider the problem

⎧
⎨

⎩

–K(I(v))Rα,β ;ψ
p(z) v = h(z, v) in �,

v = 0 on ∂�
(4.3)

and the functional Iα,β : X0 →R defined by

Iα,β (v) = K̂
(
Iα,β (v)

)
–

∫

�

H(z, v) dz,

where G(z, t) =
∫ t

0 h(z, r) dr. Then, Iα,β belongs to the class C1, and its critical points pre-
cisely correspond to the solutions to problem (4.3). Based on (K0), it is evident that Iα,β is
both coercive and sequentially weakly lower semicontinuous. Consequently, Iα,β achieves
its minimum within the weakly closed subset [v, v]∩X0 at some v0, establishing it as a crit-
ical point of Iα,β . This concludes the proof of Theorem 1.1. �

5 Proof of Theorem 1.2
To prove the theorem, we introduce the following

f (z, t) =

⎧
⎨

⎩

γ (z)tq(z)–1 + g(z, t) if v(z) ≤ t,

γ (z)v(z)q(z)–1 + g(z, v(z)) if v(z) ≥ t,

and also take the following

⎧
⎨

⎩

–K(Iα,β(v))Rα,β ;ψ
p(z) v = f (z, v) in �,

v = 0 on ∂�.
(5.1)
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Our approach to finding solutions to (5.1) involves identifying critical points of the func-
tional J α,β : X0 →R, defined as:

J α,β (v) = K̂
(
Iα,β (v)

)
–

∫

�

F(z, v) dz,

where F(z, t) =
∫ t

0 f (z, r) dr. Obviously, J α,β is of class C1.

Lemma 5.1 The functional J α,β satisfies the Palais-Smale condition for the given assump-
tions of Theorem 1.2.

Proof Assume that {vn} ⊂ X0 is a sequence in a way that

J α,β (vn) → c ∈R and J ′α,β (vn) → 0 in X∗
0 .

Here, the boundedness of {vn} in X0 is claimed.
Case 1: q– > p+

1–θ
. Let μ0 ∈ ( p+

1–θ
, min(μ, q)). By (K0) – (K1), (g3), (3.14) and embedding

theorem, for n large enough, the following is obtained

1 + c + ‖vn‖X0 ≥ J α,β (vn) –
1
μ0

〈
J ′α,β(vn), vn

〉

≥ (1 – θ )K
(
Iα,β (vn)

)
Iα,β (vn) –

1
μ0

K
(
Iα,β (vn)

)
∫

�

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z) dz

+
∫

�

(
1
μ0

f (z, vn)vn – F(z, vn)
)

dz

≥ k0

(
1 – θ

p+ –
1
μ0

)
(
Cp–‖vn‖p–

X0
– 2

)

+
∫

[vn>v]

(
1
μ0

g(z, zn)zn – H(z, vn)
)

dz

+
∫

[vn>v]

(
1
μ0

–
1

q(z)

)

γ (z)vq(z)
n dz – C3‖vn‖X0 – C2

≥ k0

(
1 – θ

p+
M

–
1
μ0

)
(
Cp–‖vn‖p–

X0
– 2

)
– C4

(‖vn‖q+

X0
+ ‖vn‖q–

X0

)

– C3‖vn‖X0 – C2,

where C1 and C2 are independent of n positive constants. Thus, the sequence {vn} is
bounded in X0 as p– > 1.

Case 2: q+ < p–. Using (K0) – (K1), (g3), (3.14) and embedding theorem, the following is
obtained

1 + c + ‖vn‖X0 ≥ J α,β (vn) –
1
μ

〈
J ′α,β(vn), vn

〉

≥ k0

(
1 – θ

p+ –
1
μ

)
(
Cp–‖vn‖p–

X0
– 2

)
+

∫

[vn>v]

(
1
μ

g(z, vn)vn – H(z, vn)
)

dz

+
∫

[vn>v]

(
1
μ

–
1

q(z)

)

γ (z)vq(z)
n dz – C3‖vn‖X0 – C2
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≥ k0

(
1 – θ

p+ –
1
μ

)
(
Cp–‖vn‖p–

X0
– 2

)
– C4

(‖vn‖q+

X0
+ ‖vn‖q–

X0

)

– C3‖vn‖X0 – C2,

where C3 and C4 are independent of n positive constants. Thus, the boundedness of {vn}
in X0 is proved. Further, we have

⎧
⎪⎪⎨

⎪⎪⎩

vn ⇀ v in X0,

vn → v a.e. in �,

vn → v in Lw(z)(�) with 1 < w– ≤ w+ < (p�)–.

(5.2)

Therefore,

on(1) =
〈
J ′α,β (vn), vn – v

〉

= K
(
Iα,β (vn)

)
∫

�

(∣
∣HD

α,β ;ψ
0+ vn

∣
∣p(z)–2 H

D
α,β ;ψ
0+ vn.HDα,β ;ψ

0+ (vn – v)
)

dz

–
∫

�

f (z, vn)(vn – v) dz.

Now, from (g2), (5.2), Lemmas 2.1 and 2.4, the following can be easily proved

∫

�

f (z, vn)(vn – v) → 0

so that

K
(
Iα,β (vn)

)
∫

�

(∣
∣HD

α,β ;ψ
0+ vn

∣
∣p(z)–2 .HDα,β ;ψ

0+ vn.HDα,β ;ψ
0+ (vn – v)

)
dz → 0.

Through the assumption of (K0), we have

∫

�

(∣
∣HD

α,β ;ψ
0+ vn

∣
∣p(z)–2 .HDα,β ;ψ

0+ vn.HDα,β ;ψ
0+ (vn – v)

)
dz → 0.

Similarly, the following is obtained

∫

�

(∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v.HDα,β ;ψ

0+ (vn – v)
)

dz → 0.

It holds that

1
2p+–2

∫

�

∣
∣HD

α,β ;ψ
0+ (vn – v)

∣
∣p(z) dz

≤
∫

�

(∣
∣HD

α,β ;ψ
0+ vn

∣
∣p(z)–2 .HDα,β ;ψ

0+ vn –
∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 .HDα,β ;ψ

0+ v
)

× (H
D

α,β ;ψ
0+ vn –H

D
α,β ;ψ
0+ v

)
dz → 0,

combining with Lemma 2.3, we have vn → v in X0. �
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Lemma 5.2 For ‖γ ‖∞ sufficiently small with the assumptions of Theorem 1.2, the below is
satisfied

(i) One can find κ > 0 and ρ > ‖v‖X0 in a way that

J α,β (v) < 0 < κ ≤ inf
v∈∂Bρ (0)

J α,β (v);

(ii) One can find e ∈ X0 in a way that ‖e‖X0 > 2ρ and J α,β(e) < κ .

Proof (i) For the proof, taking ψ = v in the first inequality of (4.1) and applying the fact
that K is nondecreasing, we have

J α,β (v) = K
(
Iα,β (v)

)
–

∫

�

F(z, v) dz

≤ K
(
Iα,β (v)

)
I(v) –

∫

�

γ (z)vq(z) dz –
∫

�

g(z, v)v dz

< K
(
Iα,β (v)

)
∫

�

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z) dz –

∫

�

α(z)vq(z) dz –
∫

�

g(z, v)v dz

≤ 0.

Therefore, J α,β (v) < 0. Further, assume that v ∈ X0 with ‖v‖X0 ≥ 1. By (K0), (g2), (3.14) and
embedding theorem, one has

J α,β (v) ≥ k0

p+

(
Cp–‖v‖p–

X0
– 2

)
– C5‖γ ‖∞

(‖v‖X0 + ‖v‖q+

X0
+ ‖v‖s+

X0

)
– C6,

where C5, C6 > 0. Observe that one can choose κ > 0 and ρ > ‖v‖X0 such that

k0

p+

(
Cp–‖v‖p–

X0
– 2

)
– C6 ≥ 2κ .

Then, letting ‖γ ‖∞ ≤ κ

C5(ρ+ρq+ +ρs+ )
implies that J α,β (v) ≥ κ for ‖u‖X0 = ρ .

(ii) By (K1), there is C7 > 0 such that

K(t) ≤ C7t
1

1–θ for all t > 1. (5.3)

From (5.3) and (g3), for all t > 1, the following is achieved

J α,β (tv) = K
(
I(tv)

)
–

∫

�

F(z, tv) dz

≤ C7t
P+
1–θ

(
I(v)

) 1
1–θ – tq–

∫

�

γ (z)vq(z) dz – C8tμ

∫

�

vμ dz + C9.

Then, for some t0 > 1 large enough, J α,β (t0v) < 0 and ‖t0v‖X0 > 2ρ , due to p+

1–θ
< μ. Thus,

we take e = t0v, which completes the proof.
Now, we give the proof of Theorem 1.2.
Let v0 be the solution to problem (1.1) given in Theorem 1.1, which satisfies

Iα,β (v0) = inf
v∈�

Iα,β (v),
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with v0 ∈ � := [v, v] ∩ X0. In a standard way, by Lemmas 5.1, 5.2 and the mountain pass
theorem [16], the mountain pass level is defined by

c∗ := inf
λ∈�

max
t∈[0,1]

J α,β(
λ(t)

)
,

with

� :=
{
λ ∈ C

(
[0, 1], X0

)
;λ(0) = v,λ(1) = e

}

is a critical value of J α,β . This implies the existence of v1 ∈ X0 such that J ′α,β (v1) = 0
and J ′α,β (v1) = c∗. Considering that Iα,β (v) = J α,β (v) for all v ∈ [0, v] ∩ X0, it follows that
J α,β (v0) ≤ J α,β (v). Now, we assert that v1 ≥ v a.e. in �. Utilizing (v–v1)+ as a test function
in J ′α,β(v1) = 0 and in the first inequality of (4.1), we obtain:

K
(
Iα,β (v1)

)
∫

�

∣
∣HD

α,β ;ψ
0+ v1

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v1.HDα,β ;ψ

0+ (v – v1)+ dz

=
∫

�

f (z, v1)(v – v1)+ dz

=
∫

�

γ (z)v(z)q(z)–1 + g(z, v))(v – v1)+ dz

≥ K
(
Iα,β (v)

) ×
∫

�

∣
∣HD

α,β ;ψ
0+ v

∣
∣p(z)–2 H

D
α,β ;ψ
0+ v.HDα,β ;ψ

0+ (v – v1)+ dz

that is

〈
φ(v) – φ(v1), (v – v1)+〉 ≤ 0.

So, basically, if φ is strictly monotone (check out Lemma 3.2), then (v – v1)+ equals zero
almost everywhere in �. This leads to v1 being greater than or equal to v almost every-
where in �. As a result, v0 and v1 emerge as two nonnegative solutions to problem (1.1)
with

J α,β (v0) ≤ J α,β (v) < 0 < κ ≤ c∗ = J α,β (v1).

Thus, the proof of Theorem 1.2 is completed. �
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