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Abstract
In this paper, we prove an equality for twice-differentiable convex functions involving
the conformable fractional integrals. Moreover, several Bullen-type inequalities are
established for twice-differentiable functions. More precisely, conformable fractional
integrals are used to derive such inequalities. Furthermore, sundry significant
inequalities are obtained by taking advantage of the convexity, Hölder inequality, and
power-mean inequality. Finally, we provide our results by using special cases of
obtained theorems.
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1 Introduction
It is well known that theory of inequalities and fractional calculus, which has received
much attention recently, has been the topic of many studies in the literature. Therefore, it
has offered solutions to many problems in several disciplines. The most famous of the frac-
tional approaches that are developing day by day are the Riemann–Liouville, conformable
fractional approaches, Caputo, and many types of fractional integrals. In addition to this,
convexity theory is an important subject that has been used in many fields of optimiza-
tion theory, energy systems, engineering applications, and physics. Moreover, convexity
theory is an available way to solve a large number of problems from different branches
of mathematics. That is why convexity theory has an important place in these branches
of mathematics, especially in inequalities such as Hermite–Hadamard, Simpson, Newton,
and Bullen-type inequalities are the most well known of these inequalities.

Although classical derivative, classical integral, and differential concepts solve most of
the problems that arise in many areas of technology, these concepts are insufficient. Hence,
fractional calculus offers new solutions to such problems. Two fundamental approaches
are used to do this fractional calculation. The first approach is called the Riemann–
Liouville approach. In addition to repeating the integral operator n times, the authors
made it possible to convert it to an integral with the Cauchy formula where n! is changed
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to the Gamma function. Thus, the fractional integral operator of noninteger order is de-
scribed. These operators were then used to find the Riemann–Liouville and Caputo frac-
tional derivatives. The second approach is the Grünwald–Letnikov approach which is iter-
ating the derivative n times and then fractionalizing including the Gamma function in the
binomial coefficients. Taking advantage of the results obtained with these approaches, the
calculations become complicated as the product and chain rules are lost from the prop-
erties of the derivative. That is why the conformable fractional approach was developed
in [20], which depends on the basic definition of the derivative. The author of [1] estab-
lished that the conformable approach in [20] cannot yield good results when compared
to the Caputo definition for specific functions. This flaw in the conformable definition
was avoided by several extensions of the conformable approach [15, 30]. With the help of
these approaches, Jarad presented the definitions of conformable fractional integrals in
[18]. Considering all these studies, fractional calculus attracts mathematicians day by day.

Bullen introduced Bullen-type inequalities in [3]. Dragomir and Wang [8] acquired a
natural generalization of Bullen-type inequalities. Sarikaya et al. obtained generalized
Bullen-type inequalities in [27]. Erden and Sarikaya established a few generalized inequal-
ities of Bullen-type by using the local fractional integrals on fractal sets in [12]. More-
over, Du et al. presented the generalized fractional integrals to discover Bullen-type in-
equalities in [9]. Hwang et al. [14] investigated several new Hermite–Hadamard-, Bullen-,
and Simpson-type inequalities with the help of the fractional integrals. In [16], İşcan
et al. acquired several Hermite–Hadamard- and Bullen-type inequalities via functions
whose derivatives in modulus at certain power are convex. Tseng et al. established sev-
eral Hadamard- and Bullen-type inequalities via Lipschitz functions and presented some
applications by using the special means in [28]. With the aid of the several Euler-type
equalities, Matic et al. [22] proved a generalization of Bullen–Simpson’s inequality based
on (2r)-convex functions. In [4], Çakmak acquired several Bullen-type inequalities for
differentiable functions by using the s-convexity and Riemann–Liouville fractional inte-
gral operators via Gauss hypergeometric function. What is more, several Bullen-type in-
equalities via differentiable mappings with the aid of the h-convex functions are given in
[7]. Furthermore, Kara et al. [19] established the upper and lower bounds for parame-
terized inequalities with the help of the Riemann–Liouville fractional integral operators.
By using the specific choices of the parameter, the authors presented several new Bullen-
type inequalities. For further information and unexplained subjects about such inequal-
ities involving different types of fractional integral operators, one can refer the reader to
[5, 6, 10, 11, 23–25, 29] and the references cited therein.

This article is organized as follows: In Sect. 2, we will recall the gamma, beta, and incom-
plete beta functions, which are well known in the literature. Moreover, the basic definitions
of Riemann–Liouville integral operators and conformable integrals will be explained for
building our main results. In Sect. 3, an equality will be proved for twice-differentiable
convex functions involving the conformable fractional integral operators. By using this
equality, we establish several Bullen-type inequalities via convex mappings with the help
of conformable fractional integrals. To be more precise, Hölder and power-mean inequali-
ties, which are well known in the literature, will be used in some of the proven inequalities.
Furthermore, we also give some corollaries and remarks. Finally, in Sect. 4, summary and
concluding remarks are noted.
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2 Preliminaries
Let us put forth some preliminaries which will be utilized in the sequel. More precisely,
definitions of Riemann–Liouville and conformable integrals, which are well known in the
literature, are given. From the fractional calculus theory, mathematical preliminaries are
given as follows:

Definition 1 The gamma, beta, and incomplete beta functions are defined by:

�(x) :=
∫ ∞

0
μx–1e–μ dμ,

B(x, y) :=
∫ 1

0
μx–1(1 – μ)y–1 dμ,

and

B(x, y, r) :=
∫ r

0
μx–1(1 – μ)y–1 dμ,

respectively, for 0 < x, y < ∞ and x, y ∈R.

In [21], Kilbas et al. described fractional integrals, also called Riemann–Liouville inte-
grals as follows:

Definition 2 ([21]) The Riemann–Liouville integrals Jβ
σ+F (x) and Jβ

δ–F (x) of order β > 0
are given by

Jβ
σ+F (x) =

1
�(β)

∫ x

σ

(x – μ)β–1F (μ) dμ, x > σ (1)

and

Jβ

δ–F (x) =
1

�(β)

∫ δ

x
(μ – x)β–1F (μ) dμ, x < δ, (2)

respectively, for F ∈ L1[σ , δ]. Here, � denotes the gamma function. For β = 1, the
Riemann–Liouville integrals are equal to the classical integrals.

Jarad et al. [18] introduced the following fractional conformable integral operators. They
also derived certain characteristics and relationships between these operators and some
other fractional operators in the literature. The fractional conformable integral operators
are described as follows:

Definition 3 ([18]) The fractional conformable integral operators βJ α
σ+F (x) and βJ α

δ– ×
F (x) of order β ∈ R

+ and α ∈ (0, 1] are presented by

βJ α
σ+F (x) =

1
�(β)

∫ x

σ

(
(x – σ )α – (μ – σ )α

α

)β–1 F (μ)
(μ – σ )1–α

dμ, μ > σ , (3)

and

βJ α
δ–F (x) =

1
�(β)

∫ δ

x

(
(δ – x)α – (δ – μ)α

α

)β–1 F (μ)
(δ – μ)1–α

dμ, μ < δ, (4)

respectively, for F ∈ L1[σ , δ].
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Note that the fractional integral in (3) coincides with the Riemann–Liouville fractional
integral in (1) if σ = 0 and α = 1. Furthermore, the fractional integral in (4) reduces to the
Riemann–Liouville fractional integral in (2) if δ = 0 and α = 1. For several recent results
connected with fractional integral inequalities, see [2, 13, 17] and the references therein.

3 Main results
In this section, we establish an identity for twice-differentiable convex functions involv-
ing the conformable fractional integrals. Moreover, sundry Bullen-type inequalities are
proved for twice-differentiable functions. To be more precise, conformable fractional in-
tegrals are used to derive these inequalities. Moreover, several important inequalities are
obtained by taking advantage of the convexity, Hölder inequality, and power-mean in-
equality.

Lemma 1 Let F : [σ , δ] → R denote a twice-differentiable function on (σ , δ) so that F ′′ ∈
L1[σ , δ]. Then, the following equality holds:

1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]
(5)

–
2αβ–1αβ�(β + 1)

(δ – σ )αβ

[
βJ α

δ–F
(

σ + δ

2

)
+ βJ α

σ+F
(

σ + δ

2

)]

=
(δ – σ )2αβ

8

{∫ 1

0

(∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

)
F ′′

(
1 – μ

2
σ +

1 + μ

2
δ

)
dμ

+
∫ 1

0

(∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

)
F ′′

(
1 + μ

2
σ +

1 – μ

2
δ

)
dμ

}
.

Proof With the help of integration by parts, we have

I1 =
∫ 1

0

(∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

)
F ′′

(
1 – μ

2
σ +

1 + μ

2
δ

)
dμ

=
2

δ – σ

(∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

)
F ′

(
1 – μ

2
σ +

1 + μ

2
δ

)∣∣∣∣
1

0

+
2

δ – σ

∫ 1

0

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
F ′

(
1 – μ

2
σ +

1 + μ

2
δ

)
dμ

= –
2

δ – σ

(∫ 1

0

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

)
F ′

(
σ + δ

2

)

+
2

δ – σ

{
2

δ – σ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
F

(
1 – μ

2
σ +

1 + μ

2
δ

)∣∣∣∣
1

0

–
2β

δ – σ

∫ 1

0

(
1 – (1 – μ)α

α

)β–1

(1 – μ)α–1F
(

1 – μ

2
σ +

1 + μ

2
δ

)
dμ

}

If we use the change of variables x = 1–μ

2 σ + 1+μ

2 δ, then we obtain

I1 = –
2

δ – σ

(∫ 1

0

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

)
F ′

(
σ + δ

2

)
(6)
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+
2

(δ – σ )2αβ

[
F (δ) + F

(
σ + δ

2

)]

–
(

2
δ – σ

)αβ+2
�(β + 1)

�(β)

∫ δ

σ+δ
2

( ( δ–σ
2 )α – (δ – x)α

α

)β–1 F (x)
(δ – x)1–α

dx

= –
2

δ – σ

(∫ 1

0

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

)

×F ′
(

σ + δ

2

)
+

2
(δ – σ )2αβ

[
F (δ) + F

(
σ + δ

2

)]

–
(

2
δ – σ

)2+αβ

�(β + 1)βJ α
δ–F

(
σ + δ

2

)
.

Similarly, we can easily get

I2 =
∫ 1

0

(∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

)
F ′′

(
1 + μ

2
σ +

1 – μ

2
δ

)
dμ (7)

=
2

δ – σ

(∫ 1

0

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

)
F ′

(
σ + δ

2

)

+
2

(δ – σ )2αβ

[
F (σ ) + F

(
σ + δ

2

)]

–
(

2
δ – σ

)αβ+2

�(β + 1) βJ α
σ+F

(
σ + δ

2

)
.

If (6) and (7) are added and then multiplied by (δ–σ )2αβ

8 simultaneously, then the proof
of Lemma 1 is finished. �

Theorem 1 Consider that F : [σ , δ] → R is a twice-differentiable function on (σ , δ) such
that F ′′ ∈ L1[σ , δ]. Assume also that |F ′′| is convex on [σ , δ]. Then, the following inequality
holds:

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]

–
2αβ–1αβ�(β + 1)

(δ – σ )αβ

[
βJ α

δ–F
(

σ + δ

2

)
+ βJ α

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2αβ

8
ψ1(α,β)

[∣∣F ′′(σ )
∣∣ +

∣∣F ′′(δ)
∣∣].

Here,

ψ1(α,β) =
∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣dμ (8)

=
1
αβ

∫ 1

0

∣∣∣∣ 1
α

(
B

(
1
α

,β + 1, (1 – μ)α
))

–
1 – μ

2

∣∣∣∣dμ,

where B and B denote the beta and incomplete beta functions, respectively.
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Proof If we start by taking the absolute value of both sides of (5), then we have

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]
(9)

–
2αβ–1αβ�(β + 1)

(δ – σ )αβ

[
βJ α

δ–F
(

σ + δ

2

)
+ βJ α

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2αβ

8

[∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣
∣∣∣∣F ′′

(
1 – μ

2
σ +

1 + μ

2
δ

)∣∣∣∣dμ

+
∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣
∣∣∣∣F ′′

(
1 + μ

2
σ +

1 – μ

2
δ

)∣∣∣∣dμ

]
.

From the fact that |F ′′| is convex on [σ , δ], we obtain

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]

–
2αβ–1αβ�(β + 1)

(δ – σ )αβ

[
βJ α

δ–F
(

σ + δ

2

)
+ βJ α

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2αβ

8

[∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣

×
(

1 – μ

2
∣∣F ′′(σ )

∣∣ +
1 + μ

2
∣∣F ′′(δ)

∣∣
)

dμ

+
∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣
(

1 + μ

2
∣∣F ′′(σ )

∣∣ +
1 – μ

2
∣∣F ′′(δ)

∣∣
)

dμ

]

=
(δ – σ )2αβ

8

(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣dμ

)[∣∣F ′′(σ )
∣∣ +

∣∣F ′′(δ)
∣∣].

Therefore, the proof of Theorem 1 is completed. �

Corollary 1 Let us consider α = 1 in Theorem 1. Then, we have

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]
–

2β–1�(β + 1)
(δ – σ )β

[
Jβ

δ–F
(

σ + δ

2

)
+ Jβ

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2

8
ψ1(1,β)

[∣∣F ′′(σ )
∣∣ +

∣∣F ′′(δ)
∣∣].

Here,

ψ1(1,β) =
∫ 1

0

∣∣∣∣
∫ 1

μ

[
μβ –

1
2

]
dμ

∣∣∣∣dμ =
∫ 1

0

∣∣∣∣μ – 1
2

+
1 – μβ+1

β + 1

∣∣∣∣dμ. (10)

Remark 1 Consider α = 1 and β = 1 in Theorem 1. Then,

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]
–

1
δ – σ

∫ δ

σ

F (x) dx
∣∣∣∣ ≤ (δ – σ )2

96
[∣∣F ′′(σ )

∣∣ +
∣∣F ′′(δ)

∣∣],

which is given in [26, Proposition 4].
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Theorem 2 Suppose that F : [σ , δ] → R is a twice-differentiable function on (σ , δ) such
that F ′′ ∈ L1[σ , δ] and |F ′′|q is convex on [σ , δ] with q > 1. Then, the following inequalities:

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]

–
2αβ–1αβ�(β + 1)

(δ – σ )αβ

[
βJ α

δ–F
(

σ + δ

2

)
+ βJ α

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2αβ

8
(
ϕβ

α (p)
) 1

p

[( |F ′′(σ )|q + 3|F ′′(δ)|q
4

)1/q

+
(

3|F ′′(σ )|q + |F ′′(δ)|q
4

)1/q]

≤ (δ – σ )2αβ

8
(
4ϕβ

α (p)
) 1

p
[∣∣F ′′(σ )

∣∣ +
∣∣F ′′(δ)

∣∣]

are valid. Here, 1
p + 1

q = 1 and

ϕβ
α (p) =

∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣
p

dμ.

Proof If we use Hölder inequality in (9), then we have

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]

–
2αβ–1αβ�(β + 1)

(δ – σ )αβ

[
βJ α

δ–F
(

σ + δ

2

)
+ βJ α

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2αβ

8

[(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣
p

dμ

) 1
p

×
(∫ 1

0

∣∣∣∣F ′′
(

1 – μ

2
σ +

1 + μ

2
δ

)∣∣∣∣
q

dμ

) 1
q

+
(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣
p

dμ

) 1
p

×
(∫ 1

0

∣∣∣∣F ′′
(

1 + μ

2
σ +

1 – μ

2
δ

)∣∣∣∣
q

dμ

) 1
q
]

.

It is known that |F ′′|q is convex on [σ , δ]. Then, we get

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]

–
2αβ–1αβ�(β + 1)

(δ – σ )αβ

[
βJ α

δ–F
(

σ + δ

2

)
+ βJ α

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2αβ

8

(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣
p

dμ

) 1
p

×
[(∫ 1

0

(
1 – μ

2
∣∣F ′′(σ )

∣∣q +
1 + μ

2
∣∣F ′′(δ)

∣∣q
)

dμ

) 1
q

+
(∫ 1

0

(
1 + μ

2
∣∣F ′′(σ )

∣∣q +
1 – μ

2
∣∣F ′′(δ)

∣∣q
)

dμ

) 1
q
]
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=
(δ – σ )2αβ

8

(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣
p

dμ

) 1
p

×
[( |F ′′(σ )|q + 3|F ′′(δ)|q

4

) 1
q

+
(

3|F ′′(σ )|q + |F ′′(δ)|q
4

) 1
q
]

.

Consider η1 = |F ′′(σ )|q, 
1 = 3|F ′′(δ)|q, η2 = 3|F ′′(σ )|q, and 
2 = |F ′′(δ)|q. If we apply
the inequality

∑n
k=1(ηk + 
k)μ ≤ ∑n

k=1 η
μ

k +
∑n

k=1 

μ

k , with 0 ≤ μ < 1, then the proof of
Theorem 2 is completed. �

Corollary 2 If we choose α = 1 in Theorem 2, then

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]
–

2β–1�(β + 1)
(δ – σ )β

[
Jβ

δ–F
(

σ + δ

2

)
+ Jβ

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2

8
(
ϕ

β
1 (p)

) 1
p

[( |F ′′(σ )|q + 3|F ′′(δ)|q
4

)1/q

+
(

3|F ′′(σ )|q + |F ′′(δ)|q
4

)1/q]

≤ (δ – σ )2

8
(
4ϕ

β
1 (p)

) 1
p
[∣∣F ′′(σ )

∣∣ +
∣∣F ′′(δ)

∣∣],

where

ϕ
β
1 (p) =

∫ 1

0

∣∣∣∣μ – 1
2

+
1 – μβ+1

β + 1

∣∣∣∣
p

dμ.

Corollary 3 If we assign α = 1 and β = 1 in Theorem 2, then the following double inequality
holds:

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]
–

1
δ – σ

∫ δ

σ

F (x) dx
∣∣∣∣

≤ (δ – σ )2

16
(
B(p + 1, p + 1)

) 1
p

×
[( |F ′′(σ )|q + 3|F ′′(δ)|q

4

)1/q

+
(

3|F ′′(σ )|q + |F ′′(δ)|q
4

)1/q]

≤ (δ – σ )2

16
(
4B(p + 1, p + 1)

) 1
p
[∣∣F ′′(σ )

∣∣ +
∣∣F ′′(δ)

∣∣].

Theorem 3 If F : [σ , δ] → R is a twice-differentiable function on (σ , δ) such that F ′′ ∈
L1([σ , δ]) and |F ′′|q is convex on [σ , δ] with q ≥ 1, then the following inequality holds:

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]

–
2αβ–1αβ�(β + 1)

(δ – σ )αβ

[
βJ α

δ–F
(

σ + δ

2

)
+ βJ α

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2αβ

8
(
ψ1(α,β)

)1– 1
q

×
[(

ψ1(α,β) – ψ2(α,β)
2

∣∣F ′′(σ )
∣∣q +

ψ1(α,β) + ψ2(α,β)
2

∣∣F ′′(δ)
∣∣q

) 1
q

+
(

ψ1(α,β) + ψ2(α,β)
2

∣∣F ′′(σ )
∣∣q +

ψ1(α,β) – ψ2(α,β)
2

∣∣F ′′(δ)
∣∣q

) 1
q
]

.
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Here, ψ1(α,β) is defined as in (8) and

ψ2(α,β) =
∫ 1

0
μ

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣dμ

=
1
αβ

∫ 1

0
μ

∣∣∣∣ 1
α

(
B

(
1
α

,β + 1, (1 – μ)α
))

–
1 – μ

2

∣∣∣∣dμ,

where B and B denote the beta and incomplete beta functions, respectively.

Proof If we apply the power-mean inequality in (9), then we obtain

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]

–
2αβ–1αβ�(β + 1)

(δ – σ )αβ

[
βJ α

δ–F
(

σ + δ

2

)
+ βJ α

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2αβ

8

[(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣dμ

)1– 1
q

×
(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣
∣∣∣∣F ′′

(
1 – μ

2
σ +

1 + μ

2
δ

)∣∣∣∣
q

dμ

) 1
q

+
(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣dμ

)1– 1
q

×
(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣
∣∣∣∣F ′′

(
1 + μ

2
σ +

1 – μ

2
δ

)∣∣∣∣
q

dμ

) 1
q
]

.

Since |F ′′|q is convex on [σ , δ], we have

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]

–
2αβ–1αβ�(β + 1)

(δ – σ )αβ

[
βJ α

δ–F
(

σ + δ

2

)
+ βJ α

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2αβ

8

(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣dμ

)1– 1
q

×
[(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣

×
[

1 – μ

2
∣∣F ′′(σ )

∣∣q +
1 + μ

2
∣∣F ′′(δ)

∣∣q
]

dμ

) 1
q

+
(∫ 1

0

∣∣∣∣
∫ 1

μ

[(
1 – (1 – μ)α

α

)β

–
1

2αβ

]
dμ

∣∣∣∣

×
[

1 + μ

2
∣∣F ′′(σ )

∣∣q +
1 – μ

2
∣∣F ′′(δ)

∣∣q
]

dμ

) 1
q
]

.
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It is clearly seen that

∣∣∣∣2αβ–1αβ�(β + 1)
(δ – σ )αβ

[
βJ α

δ–F
(

σ + δ

2

)
+ βJ α

σ+F
(

σ + δ

2

)]
– F

(
σ + δ

2

)∣∣∣∣

≤ (δ – σ )2αβ

8
(
ψ1(α,β)

)1– 1
q

×
[(

ψ1(α,β) – ψ2(α,β)
2

∣∣F ′′(σ )
∣∣q +

ψ1(α,β) + ψ2(α,β)
2

∣∣F ′′(δ)
∣∣q

) 1
q

+
(

ψ1(α,β) + ψ2(α,β)
2

∣∣F ′′(σ )
∣∣q +

ψ1(α,β) – ψ2(α,β)
2

∣∣F ′′(δ)
∣∣q

) 1
q
]

. �

Corollary 4 Let us consider α = 1 in Theorem 3. Then, the following inequality holds:

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]
–

2β–1�(β + 1)
(δ – σ )β

[
Jβ

δ–F
(

σ + δ

2

)
+ Jβ

σ+F
(

σ + δ

2

)]∣∣∣∣

≤ (δ – σ )2

8
(
ψ1(1,β)

)1– 1
q

×
[(

ψ1(1,β) – ψ2(1,β)
2

∣∣F ′′(σ )
∣∣q +

ψ1(1,β) + ψ2(1,β)
2

∣∣F ′′(δ)
∣∣q

) 1
q

+
(

ψ1(1,β) + ψ2(1,β)
2

∣∣F ′′(σ )
∣∣q +

ψ1(1,β) – ψ2(1,β)
2

∣∣F ′′(δ)
∣∣q

) 1
q
]

,

where ψ1(1,β) is defined in (10) and

ψ2(1,β) =
∫ 1

0
μ

∣∣∣∣
∫ 1

μ

[
μβ –

1
2

]
dμ

∣∣∣∣dμ =
∫ 1

0
μ

∣∣∣∣μ – 1
2

+
1 – μβ+1

β + 1

∣∣∣∣dμ.

Remark 2 If we take α = 1 and β = 1 in Theorem 3, then

∣∣∣∣1
2

[
F

(
σ + δ

2

)
+
F (σ ) + F (δ)

2

]
–

1
δ – σ

∫ δ

σ

F (x) dx
∣∣∣∣

≤ (δ – σ )2

96

[( |F ′′(σ )|q + 3|F ′′(δ)|q
4

) 1
q

+
(

3|F ′′(σ )|q + |F ′′(δ)|q
4

) 1
q
]

,

which is given in [26, Theorem 5 (for λ = 1/2)].

4 Summary and concluding remarks
In the present paper, an equality for twice-differentiable convex functions involving the
conformable fractional integrals is established. Moreover, sundry Bullen-type inequalities
are proved for twice-differentiable functions. In addition, several important inequalities
are obtained by taking advantage of the convexity, Hölder inequality, and power-mean in-
equality. Furthermore, we provide our results by using special cases of obtained theorems.

We expect that the ideas and techniques of this paper will inspire interested readers
working in this field. With the techniques used in obtaining our inequalities, different
fractional integrals can be used to obtain new inequalities in the future. In addition, new
inequalities can be acquired by considering different order derivatives of the functions.
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Furthermore, one can obtain sundry Bullen-type inequalities for convex functions by us-
ing quantum calculus.
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