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Abstract
The classical Cauchy surface area formula states that the surface area of the boundary
∂K =� of any n-dimensional convex body in the n-dimensional Euclidean space Rn

can be obtained by the average of the projected areas of � along all directions in
S
n–1. In this note, we generalize the formula to the boundary of arbitrary

n-dimensional submanifold in R
n by introducing a natural notion of projected areas

along any direction in S
n–1. This surface area formula derived from the new notion

coincides with not only the result of the Crofton formula but also with that of De Jong
(Math. Semesterber. 60(1):81–83, 2013) by using a tubular neighborhood. We also
define the projected r-volumes of � onto any r-dimensional subspaces and obtain a
recursive formula for mean projected r-volumes of � .
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1 Introduction and main results
Finding the volume of k-dimensional embedded submanifolds K with boundary � = ∂K
in the Euclidean space R

n is an interesting research topic in differential geometry. There
have been abundant results to measure the volumes and surface areas of K . For instance,
the surface area of K can be measured by restricting the Euclidean metrics to � and in-
tegrating the (k – 1)-volumes of the infinitesimal parallelotopes in the tangent space of K
[1, Sect. 2.2]; it can also be obtained by limiting the ratio for the volume of an (n – k)-ball
and the n-dimensional Lebesgue measure of the tubular neighborhood of � derived by
De Jong [4].

In this note, we restrict our attention to the method developed in integral geometry [11]
and convex geometry [12]. The efficiency of the method has been validated on the ap-
plications of geometric tomography and other scientific fields (for more detail, see [6]).
The basic assumption in this approach is that K must be convex, since the original proof
was established by a limiting process of convex polyhedrons inscribed in K . When k = n,
we observe that the convexity assumption for K may be relaxed by introducing a natural
notion of projected surface areas of � onto any r-dimensional subspaces, r ≤ n – 1 (see
Definition 1). The new notion also gives an alternative proof for Crofton’s formula, which
states that the surface area of � can be obtained by “counting” the number of intersec-
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tions of all lines with � (Lemma 2 and Theorem 2), and it results in the generalization of
the Cauchy surface area formula for arbitrary K (Theorem 3). We also generalize the pro-
jected surface area to higher-codimensional subspaces, namely, the projected r-volume
(1 ≤ r ≤ n – 1) of � onto r-subspaces (Definition 2), and derive a recursive formula of
mean projected area of � (Theorem 4).

It seems that there are only a few results in the literature concerning the relation between
projected areas and surface areas for nonconvex boundaries. Two closer notions probably
are the integral geometric measure defined by Favard [5] and more recently by Bouafia
and Pauw [2]; both are based on the approach of geometric measure theory. The kinematic
formula has similar results without introducing the notion of projections; see, for instance,
[14, 15]. As mentioned before, De Jong [4] gave a geometric definition of the volume of
an r-dimensional submanifold in R

n (1 ≤ r ≤ n – 1) and derived an r-volume formula
by considering the ratio of r-volume of the tubular neighborhood to the volume of the
unit ball in the normal bundle. He claimed that the formula holds when the submanifold
is of dimension n with C1-boundary. However, we will take parallel transformations of
Lie groups and the method of moving frames to construct the r-volume forms on the r-
subspaces to represent the r-projected volumes of � (see the discussion in Case 1 and
Case 2 of Sect. 2). In Proposition 1, we will also prove that the surface area we derived (see
Theorem 3) coincides with that in his work [4].

The Cauchy surface area formula in R
n states that the surface area of a convex hyper-

surface � in R
n can be represented by the average of the projected areas of � along all

normal directions of the (n – 1)-dimensional unit sphere S
n–1:

Theorem 1 ([9], Theorem 5.5.2) Let K ⊂ R
n be an n-dimensional convex body (i.e., a

convex set with nonempty interior) with rectifiable boundary ∂K = �. The surface area (or
the (n – 1)-dimensional volume) of K , denoted by Vn–1(�), is given by

Vn–1(�) =
1

ωn–1

∫
ν∈Sn–1

Vn–1
(
�|ν⊥)

dSν . (1)

Here dSν is the surface area element at ν ∈ S
n–1, ωn–1 is the (n – 1)-dimensional volume of

the unit ball in R
n–1, and Vn–1(�|ν⊥) is the (n – 1)-dimensional volume of the orthogonal

projection of � onto the (n–1)-dimensional subspace ν⊥ perpendicular to the unit outward
normal ν .

The orthogonal projected area Vn–1(�|ν⊥) of � can be explicitly represented by the
integral formula

Vn–1
(
�|ν⊥)

=
1
2

∫
ν̃∈Sn–1

|ν · ν̃|dSν̃ , (2)

where dSν̃ is the surface area element at ν̃ ∈ S
n–1. Identities (1) and (2) both can be proved

by inscribing a convex m-polyhedron in � and calculating the limit of the surface area
of the polyhedron as m goes to infinity. The convexity of the polyhedron ensures that at
any point in ν⊥, the counting multiplicity of the projected areas of � is almost every-
where two (we may assume that the polyhedron contains the origin and each point in ν⊥

is projected for twice: from the “front” and the “back” of ν⊥ respectively). See the proof of
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Theorem 5.5.2 in [9] or [11, p. 217] for details. However, such a method does not work for
nonconvex K since it may not necessarily have the inscribed convex polyhedron.

Although, in general, Theorem 1 does not work for arbitrary hypersurface �, formula
(1) still holds in the particular nonconvex case where � = ∂K is such that its complement
Kc = R

n \ K is convex. Indeed, let K be a nonconvex set with convex complement Kc. By
Lemma 3 (see below) we will show that the closure Kc of Kc is convex. Since � shares the
same boundary with K and Kc, the surface area of � = ∂K can be obtained by applying
formula (1) to the convex part ∂Kc.

As a result, if the hypersurface � obtained from a nonconvex subset K such that the
complement Kc is also nonconvex, then the argument in the previous paragraph fails.
A simple example is that when � is the boundary of a star domain S, its complement
R

n \ S is again nonconvex. The main aim of the present paper is to generalize the notion
of projected areas for nonconvex boundary and derive the Cauchy surface area formula
(1) for arbitrary boundary.

Let us make some remarks about Theorem 1. First, when K = S
n–1, the following lemma

shows that the surface area of the orthogonal projection of the unit sphere is independent
of the choice of the projected direction.

Lemma 1 ([9], Lemma 5.5.1) For any ν ∈ S
n–1 ⊂R

n,

Vn–1
(
S

n–1∣∣ν⊥)
=

1
2

∫
ν̃∈Sn–1

|ν · ν̃|dSν̃ = ωn–1. (3)

This natural property for Sn–1 plays the key role for the proof of Theorem 1 (see [9] or
the proof of Theorem 3). We also notice that the converse of Lemma 1 is not true in gen-
eral. There exist compact hypersurfaces in R

n that are not the standard spheres but have
constant projected areas. For instance, Reuleaux triangles in R

2 and bodies of constant
width in R

n (see [3]) both are not round spheres but have constant projected areas.
Secondly, it is known that the Gauss map ν : � = ∂K → S

n–1 is bijective if and only if
K is convex. Moreover, if K is strictly convex, then the Gauss map is a diffeomorphism.
Since the surfaces � considered in Theorem 1 and Lemma 1 are convex, the domains over
which both integrations are performed are S

n–1, which can be identified (via the diffeo-
morphism ν) with �. In consequence, a natural generalization of Theorem 1 to nonconvex
hypersurfaces � can be considered as an integral over � itself.

We recall some fundamental background for the n-dimensional Euclidean spaceRn. The
space R

n can be regarded as an n-dimensional Lie group with natural left translation Lq

defined by Lqp = q + p for all q, p ∈ R
n. Its inverse translation and compositions are as be

(Lq)–1r = Lq–1 r and (Lq ◦Lp–1 )r = Lqp–1 r = q–p+r, respectively, for all r ∈R
n. For each point

p ∈ R
n, we may identify the whole space Rn with the tangent space TpR

n. In this paper, we
will abuse the notations for any point q ∈R

n and the vector �Oq starting from the origin O
and ending at q if the content is clear. Thus, for any point p ∈ R

n and any tangent vector
q ∈ T0R

n, the push-forward of the left translation Lp∗q is the vector obtained by moving
the vector �Oq to the vector starting from p and parallel to �Oq. Similarly, (L∗

p)(ω(q)) denotes
the pull-back of the r-form ω at q. We insist using the Lie group notations in R

n (for
instance, using Lpq instead of p+q for vector addition) because we believe that all contents
in the paper can be applied to any smooth Lie group without change. In particular, recently,
the author also proved the Cauchy surface area formula for domains in the Heisenberg
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groups, which is regarded as a strictly pseudoconvex CR manifold with Tanaka–Webster
curvature vanished (see [7]). We also denote by n(p) ∈ S

n–1 the outward unit normal at
p ∈ S

n–1 and by n(p)⊥ the subspace perpendicular to n(p).
Let K be an n-dimensional compact submanifold embedded in R

n (n ≥ 1) with rectifi-
able boundary � = ∂K in the usual topology ofRn. Next, we give the definition of projected
areas of compact hypersurfaces (not necessarily convex).

Definition 1 The (orthogonal) weighted projected area of a compact hypersurface � in
R

n along the direction n(p) ∈ S
n–1 onto the subspace n(p)⊥ is given by

Vn–1
(
�|n(p)⊥

)
=

1
2

∫
q∈�

∣∣Lqp–1∗n(p) · ñ(q)
∣∣d�q, (4)

where Lqp–1∗n(p) is the push-forward of the outward unit normal n(p) at p ∈ S
n–1, ñ(q) is

the outward unit normal at q ∈ �, and d�q is the area element of � at q ∈ �.

Remark 1 We give a geometric interpretation of (4) as follows. At each point q ∈ �, the
integrand with area element at q, |Lqp–1∗n(p) · ñ(q)|d�q, is the projected infinitesimal area
element of d�q onto the projected point of q on the plane n(p)⊥, and the integral becomes
the projected area of � onto n(p)⊥ counted with multiplicity. In other words, suppose �

is a line parallel to n(p) such that � ∩ � �= ∅ and � ∩ n(p)⊥ �= ∅. Then all points at � ∩ �

are projected along � onto one point at � ∩ n(p)⊥ with multiple times depending on the
number of �∩�. This is the reason we call the integral the weighted projected area. When
� is convex, the number of the points on � ∩ � is almost everywhere two, but in general
the number depends on the projected direction and �.

According to Remark 1, a geometric definition equivalent to Definition 1 is given in the
following lemma, which states that the value Vn–1(�|n(p)⊥) is equal to the integral of the
number of intersections over all lines parallel to n.

Lemma 2 Let � be a compact hypersurface in R
n, and let n(p) ∈ S

n–1 ve a unit vector.
Suppose � is any line parallel to n(p) and intersects with the orthogonal complement n⊥(p)
at the point u. Then the projected area of � onto the subspace n(p)⊥ in Definition 1 can be
obtained by

Vn–1
(
�|n(p)⊥

)
=

1
2

∫
�⊥n(p)⊥

#(� ∩ �) dn⊥
u , (5)

where #(� ∩ �) is the number of intersections of � and �, and dn⊥
u is the area element of

n(p)⊥ at u ∈ n(p)⊥ ∩ �.

Proof For simplicity, we fix any point p ∈ S
n–1 and write n = n(p) and n⊥ = n(p)⊥. Suppose

the line � parallel to n intersects � at the point q. Then � must intersect the subspace n⊥

at the unique point u. We may choose two orthonormal frames {q, ei} and {u, ēj}, 1 ≤ i,
j ≤ n, at q and u, respectively, satisfying the conditions

⎧⎪⎪⎨
⎪⎪⎩

at the point q : e1 ∈ Tq�
⊥, e2, eα ∈ Tq�,

at the point u : ē1 ∈ �, ē2, ēα ∈ Tun⊥,

eα = ēα for α = 3, . . . , n.

(6)
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According to the construction of the frames, the transition matrix [ai
j] is given by ēj =

�n
i=1eiai

j , where

⎧⎪⎪⎨
⎪⎪⎩

a1
1 = a2

2 = cos θ ,

a1
2 = –a2

1 = – sin θ ,

aα
β = δα

β , the Kronecker delta, 3 ≤ α,β ≤ n,

and θ is the angle between the planes Tq� and n⊥. Suppose {ω1,ω2,ωα} and {ω̄1, ω̄2, ω̄α}
are the dual forms of {ei} and {ēi}, respectively. It can be shown that ω̄i = �n

j=1bi
jω

j, where
the matrix [bj

i] = [aj
i]–1. Therefore by identifying the point q ∈ � and u ∈ n⊥ the relation

between the area elements d�q and dn⊥
u at q and u, respectively, can be obtained as fol-

lows:

dn⊥
u = ω̄2 ∧ ω̄3 ∧ · · · ∧ ω̄n (7)

=
(
sin θω1 + cos θω2) ∧ ω3 ∧ · · · ∧ ωn

= sin θω1 ∧ ω3 ∧ · · · ∧ ωn + cos θω2 ∧ ω3 ∧ · · · ∧ ωn

= sin θω1 ∧ ω3 ∧ · · · ∧ ωn + cos θ d�q.

When restricted on �, by (7) we have the projected formula

dn⊥
u |� = | cos θ |d�q (8)

(here we have put the absolute value on the cosine to get the positive surface area). By
integrating over all lines � parallel to n we have

Vn–1
(
�|n⊥)

=
1
2

∫
q∈�

∣∣Lqp–1∗n(p) · ñ(q)
∣∣d�q

=
1
2

∫
q∈�

| cos θ |d�q =
1
2

∫
u∈�∩n⊥

#(� ∩ �) dn⊥
u ,

which completes the proof. �

Recall that the Crofton formula inR
2 states that the perimeter of a rectifiable plane curve

γ is equal to the integral of the number #(� ∩ γ ) of intersections of γ and any line �. It
has been generalized to higher dimensions with a variety of versions (see [11, Chap. 14] or
[13]). Notice that, in contrast to the Cauchy surface formula, the Crofton formula does not
need the convexity assumption for curves and hypersurfaces, and hence Vn–1(�|n⊥(p)) in
Lemma 2 seems a reasonable definition connecting both Cauchy’s and Crofton’s formulas.

The previous result, Lemma 2, will give a simpler proof for the Crofton formula in R
n for

n ≥ 1. Before that, let us introduce some basic settings. Let L be the set of oriented lines
in R

n. Suppose � ∈ L and �⊥ is its orthogonal complement through the origin. The line
� can be uniquely determined by the following process: first, choose a line �′ parallel to �

through the origin and use the unit vector n(p) ∈ S
n–1 to represent the direction of �′ for

some p ∈ S
n–1. Second, parallelly move �′ to � at the point u = �∩�⊥. By identifying �⊥ with
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R
n–1, there is a natural one-to-one correspondence between the set L and S

n–1 ×R
n–1,

L←→ S
n–1 ×R

n–1,

� ←→ (
n(p), u

)
.

Thus we may take the (2n – 2)-form d� := dSp ∧ d�⊥
u as an invariant measure on L, where

dSp is the area element at p ∈ S
n–1, and d�⊥

u is the area element of �⊥ at u = � ∩ �⊥. Notice
that dSp ∧ d�⊥

u is invariant under the rigid motions (rotations and translations) in R
n.

Theorem 2 (The Crofton formula inR
n) Let K be an n-dimensional compact submanifold

with rectifiable boundary ∂K = �. Let L be the set of all oriented lines in R
n and denote by

#(� ∩ �) the number of intersections of � ∈L and �. Then the surface area Vn–1(�) of K is
given by

Vn–1(�) =
1

2ωn–1

∫
�∈L

#(� ∩ �) d�, (9)

where d� = dSp ∧ d�⊥
u is the invariant measure in L consisting of the area elements dSp at

p ∈ S
n–1 and d�⊥

u at u = �∩ �⊥, with the orthogonal complement �⊥ of � through the origin.

Proof For any line � = �p ∈ L with direction n(p) ∈ S
n–1 and � ∩ � = q �= ∅, let φp,q be the

angle between �p and the normal vector at q ∈ �. Notice that d�⊥
u = dn⊥

u in Lemma 2.
Using Lemma 1, Definition 1, and Lemma 2, a straight-forward derivation implies that

2ωn–1Vn–1(�) = 2
∫

q∈�

ωn–1 d�q =
∫

q∈�

∫
p∈Sn–1

| cosφp,q|dSp d�q

=
∫

p∈Sn–1

∫
q∈�

| cosφp,q|d�q dSp

=
∫

p∈Sn–1
2Vn–1

(
�|n(p)⊥

)
dSp

=
∫

p∈Sn–1

∫
�⊥�⊥

p

#(� ∩ �) d�⊥
u dSq

=
∫

�∈L
#(� ∩ �) d�. �

The following lemma is one of the motivations for the paper.

Lemma 3 If a compact subset K and its complement Kc in R
n both are convex, then the

boundary � = ∂K is a hyperplane.

Proof Since K and the closure Kc of its complement Kc both are closed and convex,
they can be written as the intersections of families F and G of closed halfspaces, namely,
K =

⋂
f ∈F f and Kc =

⋂
g∈G g . We claim that all elements f ∈ F and g ∈ G are parallel. By

parallel we mean that the hyperplanes of two halfplanes are parallel. Indeed, let us fix an
element f ∈ F and assume that there exists g ∈ G such that g is not parallel to f . On the
one hand, we have f c ∩ gc = (f ∪ g)c �= ∅. On the other, Rn = K ∪ Kc ⊂ f ∪ g implies that
(f ∪ g)c = ∅, and we get a contradiction. Thus, for fixed f , all elements in G are parallel to f .
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Since f can be arbitrarily chosen, we conclude that all elements in F are parallel to those
of G , and � is a hyperplane. �

Next, we prove the main theorem, which states that the surface area of arbitrary compact
hypersurface in R

n is the average of the integrals of weighted projected areas over the unit
sphere.

Theorem 3 Let K be a compact n-dimensional subset in R
n with boundary � = ∂K . Then

its surface area is given by

Vn–1(�) =
1

ωn–1

∫
q∈Sn–1

Vn–1
(
�|n(q)⊥

)
dSq.

Proof By using (2) and Definition 1 we immediately have

∫
p∈Sn–1

Vn–1
(
�|n(p)⊥

)
dSp =

1
2

∫
p∈Sn–1

∫
q∈�

∣∣ñ(q) · n(p)
∣∣d�q dSp

=
1
2

∫
q∈�

∫
p∈Sn–1

∣∣ñ(q) · n(p)
∣∣dSp d�q

=
∫

q∈�

ωn–1 d�q

= ωn–1Vn–1(�),

and the result follows. �

An immediate application of Theorem 3 is that a hypersurface with the smaller pro-
jected areas onto all hyperplanes has the smaller surface area; particularly, we obtain a
comparison theorem of projected surface areas between two compact hypersurfaces. No-
tice that by the Alexandrov projection theorem [6, p. 115, Theorem 3.3.6], even if two
convex bodies in R

n have the same projected areas in all directions, they may be com-
pletely different. In fact, there exist noncongruent convex polytopes �i, i = 1, 2, with
Vn–1(�1|n(p)⊥) = Vn–1(�2|n(p)⊥) for all p ∈ S

n–1 (see [6, p. 121, Theorem 3.3.17]). Thus
the following corollary gives a necessary condition to determine the consistency of sur-
face areas for two hypersurfaces, but not their congruence.

Corollary 1 Given two compact hypersurfaces �i, i = 1, 2, in R
n, if Vn–1(�1|n(p)⊥) ≤

Vn–1(�2|n(p)⊥) for all p ∈ S
n–1, thenVn–1(�1) ≤ Vn–1(�2). In particular, ifVn–1(�1|n(p)⊥) =

Vn–1(�2|n(p)⊥) for all p ∈ S
n–1, then Vn–1(�1) = Vn–1(�2).

Finally, we will prove that the surface area formula in Theorem 3 is equivalent to that
derived by De Jong [4]. More precisely, given a k-dimensional submanifold M ⊂R

n and a
compact subset A ⊂ M, De Jong gave a simpler method to prove that the limit

lim
ε↓0

μn(TubεA)
βn–kεn–k (10)

exits and can be used to define the k-dimensional volume of A. Here TubεA = {p + a; p ∈
A, a ∈ NpM, |a| < ε}, NpM denotes the orthogonal complement of the tangent space TpM
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at p, μn is the n-dimensional Lebesgue measure, and βn–k is the (n–k)-dimensional volume
of the unit ball in R

n–k (for instance, β1 = 2, β2 = π , β3 = 4π
3 ). In particular, when A = M :=

� = ∂K for some smooth n-dimensional compact submanifold K in R
n (namely, k = n – 1

in (10)), the surface area of K can be obtained by

Vn–1(�) = lim
ε↓0

μn(Tubε�)
2ε

. (11)

Proposition 1 The surface area obtained in (11) for an n-dimensional submanifold K with
smooth boundary ∂K = � is equal to that obtained in Theorem 3.

Proof Since locally � can be represented by a smooth defining function, we may assume
that for any open subset W ⊂ �, there exists a smooth function φ = (φ1, . . . ,φn) : U ⊂
R

n–1 → W ⊂ R
n such that W = {φn(x1, . . . , xn–1) = 0; any point (x1, . . . , xn–1) ∈ U}. Let B =

( ∂φi
∂xj

) for 1 ≤ i ≤ n and 1 ≤ j ≤ n–1 be the n× (n–1)-matrix. Then the surface area element
d�q at q ∈ W satisfies

d�q =
√

det
(
BT · B

)
dx1 . . . dxn–1,

where BT is the matrix transpose. Thus by Definition 1

Vn–1
(
W |n(p)⊥

)
=

1
2

∫
q∈W

∣∣Lqp–1∗n(p) · ñ(q)
∣∣d�q (12)

=
1
2

∫
U

| cos θ |
√

det
(
BT · B

)
dx1 . . . dxn–1,

where θ is the angle between the unit normal vector ñ(q) of W and n(p). Therefore by (12)

∫
p∈Sn–1

Vn–1
(
W |n(p)⊥

)
dSp =

1
2

∫
p∈Sn–1

∫
U

| cos θ |
√

det
(
BT · B

)
dx1 . . . dxn–1 dSp (13)

=
1
2

∫
U

2ωn–1

√
det

(
BT · B

)
dx1 . . . dxn–1

= ωn–1

∫
U

√
det

(
BT · B

)
dx1 . . . dxn–1

= ωn–1 lim
ε↓0

μn(TubεW )
2ε

.

Here we have used the fact in the last identity derived in [4, p. 83]. Finally, the smoothness
of � implies that � can be covered by such summable open subsets W . By the standard
argument of partitions of unity we conclude that

Vn–1(�) =
1

ωn–1

∫
p∈Sn–1

Vn–1
(
�|n⊥(p)

)
dSp = lim

ε↓0

μn(Tubε�)
2ε

,

which completes the proof. �

2 Generalization to higher codimensions
In this section, we will project the compact hypersurface � in R

n to the lower-dimensional
subspaces and consider their projected volumes. To be precise, we plan to define the pro-
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jected r-dimensional volume (projected r-volume, in short) of �, 1 ≤ r ≤ n – 1, onto any
r-dimensional subspace in R

n and find the recursive formula (see (24)) for the average
projected r-volume. Using the same notation as Santaló [11], for any point q ∈R

n, we de-
note by Lr[q] the r-dimensional plane (shortly, r-plane) in R

n through q and by L⊥
r[q] its

orthogonal complement. Notice that for any point q ∈ Lr[0], there exists a unique affine
(n – r)-plane L⊥

n–r[q] through q and perpendicular to Lr[0]. Indeed, the uniqueness and ex-
istence of the affine orthogonal complement can be obtained by parallel shifting L⊥

n–r[0] to
q, namely, L⊥

n–r[q] = {q + v for any v ∈ L⊥
n–r[0]}.

Let Lr[0] be an r-plane, and let q ∈ � be a fixed point. Denote u by the orthogonal pro-
jection of q onto Lr[0]. Then there exists the unique (n – r)-plane containing p and q and
perpendicular to Lr[0]. Let us denote the (n – r)-plane by L⊥

n–r[q]. Clearly, q ∈ Lr[0] ∩ L⊥
n–r[q].

Now we discuss the dimension of the intersection Tp� ∩ L⊥
n–r[q]. Since the following dis-

cussion also holds for any vector subspaces, we may simplify the notations by setting

M = Tp�, V = Lr[0], V ⊥ = L⊥
n–r[q].

It is clear that dim(M ∩ V ⊥) ≤ min{dim(M), dim(V ⊥)} = dim(V ⊥) = n – r. Moreover, since
the dimension of the sum of M and V ⊥, M + V ⊥ = {m + v, m ∈ M, v ∈ V ⊥}, is at most n,
we have

n – r – 1 ≤ dim(M) + dim
(
V ⊥)

– dim
(
M + V ⊥)

= dim
(
M ∩ V ⊥) ≤ n – r.

Thus there are two cases concerning the dimension dim(M ∩ V ⊥), n – r – 1 and n – r. We
will construct the projected r-volume forms of M onto V for the first case and show that
the all r-forms vanish in the second case, that is, they are of measure zero when considering
the integral over such points.

Case 1. When dim(M ∩ V ⊥) = n – r – 1, let ν be the unit normal to M. We may choose
the orthonormal basis {eα , e, eβ} in the space M ⊕ span{ν} = R

n and orthonormal basis
{eα , uδ} in M satisfying the following conditions: (1 ≤ α ≤ n – r – 1, n – r + 1 ≤ β ≤ n, and
n – r ≤ δ ≤ n – 1):

(1) span{eα} = M ∩ V ⊥,
(2) span{eα , e} = V ⊥,
(3) span{eβ} = V ,
(4) span{eα , uδ} = M.

Notice that since dim(V ⊥ \ (M ∩ V ⊥)) = 1, the unit vector e is uniquely determined (up to
a sign), independent of the choice of the vectors eα , eβ , and uδ . Since for the point p ∈ M,
the infinitesimal change dp is still contained in M, so we have the vector-valued one-form

dp =
n–r–1∑
α=1

Aαeα +
n–1∑

δ=n–r

Bδuδ

for some connection 1-forms Aα and Bδ . In addition, dp is a vector in R
n, so it can be

written in terms of the linear combination of the basis {eα , e, eβ}, namely,

dp =

(n–r–1∑
α=1

ωαeα

)
∧ ωe ∧

( n∑
β=n–r+1

ωβeβ

)
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for some 1-forms ωα , ω, and ωβ . Thus, for any β = n – r + 1, . . . , n, we have

ωβ = dp · eβ =
n–1∑

δ=n–r

Bδ(uδ · eβ ),

and so

n∧
β=n–r+1

ωβ = � ·
n–1∧

δ=n–r

Bδ , (14)

where � = det(uδ · eβ ) is the determinant of the (r × r)-matrix with entries uδ · eβ . Notice
that the value � satisfies –1 ≤ � ≤ 1, and it measures the cosine of the angle between
M \ V ⊥ and V , equivalently, the angle between ν and e. Indeed, recall that the Hodge star
operator ∗ satisfies the property

∗(
η ∧ (∗ζ )

)
= 〈η, ζ 〉

for any exterior r-forms η, ζ , where 〈·, ·〉 is the inner product for r-forms. Substituting
η =

∧
δ uδ and ζ =

∧
β eβ into the identity and using the orthogonal decomposition

R
n = M ⊕ span{ν} = span{eα} ⊕ span{uδ} ⊕ span{ν} � e,

a straightforward computation shows that

� = det(uδ · eβ )

=
〈∧

δ

uδ ,
∧
β

eβ

〉

= ∗
(∧

δ

uδ ∧
(

∗
∧
β

eβ

))

= ∗
(∧

δ

uδ ∧ e
∧
α

eα

)

= (e · ν) ∗
(∧

δ

uδ ∧ ν
∧
α

eα

)

= e · ν,

(15)

as desired. For our purpose (see (18)), we will take the absolute value |�| of � in (14) such
that the r-volume form

∧
β ωβ is a positive measure. For more detail about the angles

between two subspaces of arbitrary dimensions, we refer the reader to [8, Theorem 1] and
[10].

The geometric meaning of (14) can be interpreted as follows: by identifying the origin
O ∈ V (and so q) and p via the parallel transport in R

n,
∧

β ωβ (resp.,
∧

δ Bδ) is the r-
dimensional volume element in V at q (resp., in M \ V ⊥ at p, the subspace in M that is
not perpendicular to V ). Formula (14) describes that the projected r-form

∧
β ωβ is the

orthogonal projection of
∧

δ Bδ onto the plane V , and the projection is independent of the
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choice of the vectors eα , e, eβ , and uδ . As a consequence, we have constructed a natural
projected r-volume element of M onto V and finish the discussion for the first case.

Before advancing to the second case, let us implement the previous construction to the
compact hypersurface in R

n.

Proposition 2 For any r-plane Lr[0] through the origin and any point q ∈ Lr[0], there exists
a unique (n – r)-plane L⊥

n–r[q] through q satisfying
(1) the orthogonal decomposition Lr[0] ⊕ L⊥

n–r[q] = R
n, and

(2) if L⊥
n–r[q] ∩ � �= ∅, then for any point p ∈ L⊥

n–r[q] ∩ � with L⊥
n–r[q] � Tp�, there exists

the unique (up to a sign) unit vector ep,q in L⊥
n–r[q] \ Tp�.

Proof
(1) It is clear by the assumption.
(2) Suppose p ∈ L⊥

n–r[q] ∩ �. Since L⊥
n–r[q] � Tp�, dim(L⊥

n–r[q] ∩ Tp�) = n – r – 1. Then at
p, we have the orthogonal decomposition L⊥

n–r[q] = (L⊥
n–r[q] ∩ Tp�) ⊕ U for some

orthogonal complement U of (L⊥
n–r[q] ∩ Tp�) in L⊥

n–r[q]. Besides, since
dim(U) = dim(L⊥

n–r[q]) – dim(L⊥
n–r[q] ∩ Tp�) = 1, we may choose the unique vector

starting from the point p with length one (up to a sign) in the one-dimensional
affine subspace U , and the result follows. �

We point out that in (2) of Proposition 2, in general, the cross-section L⊥
n–r[q] ∩ � may

be comprised of infinitely or finitely many connected components. For our purpose, we
only consider the hypersurface � with finitely many cross-sections for all (n – r)-planes
through any point on �.

Proposition 3 For any p ∈ � and any (n – r)-plane U � Tp� through p, there exist a
unique r-plane Lr[0] through the origin and a unique point q ∈ Lr[0] such that

(1) q ∈ U ∩ Lr[0] and U ⊕ Lr[0] = R
n (thus we may denote U = L⊥

n–r[q] as shown in
Proposition 2), and

(2) dim(U \ Tp�) = 1.
Moreover, by (2) there exists the unique unit vector e ∈ U \ Tp� coinciding with the vector
ep,q constructed in (2) of Proposition 2.

Proof
(1) The r-plane Lr[0] can be uniquely obtained by the orthogonal affine subspace to U ,

namely, Lr[0] = {x ∈R
n, x · y = 0 for all y ∈ U}, and so the point q is given by the

unique point at Lr[0] ∩ U .
(2) The transversal assumption U � Tp� immediately implies the result.

Finally, by (2) we may have a unique (up to a sign) unit vector e ∈ U \Tp�. Since the vector
e is uniquely determined by U , Lr[0], p, and q, by setting U = L⊥

n–r[q] in Proposition 2 the
unique vector ep,q coincides with the vector e. �

Remark 2 For any fixed point p ∈R
n, the natural orthogonal decomposition forRn implies

that there exists a one-to-one correspondence that assigns the r-plane Lr[0] an (n – r)-
plane L⊥

n–r[q] through p, where q is the orthogonal projection of p onto Lr[0]. Let Gn,r be the
Grassmannian, the set of all r-subspaces in R

n. According to Proposition 3, if p ∈ �, then
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the map

φp : Gn,r → Gn–r,1

Lr[0] �→ φ(Lr[0]) = e ∈ L⊥
n–r[q] \ Tp�

(16)

is a bijection except for the r-planes Lr[0] perpendicular to Tp� (namely, L⊥
n–r[q] ⊆ Tp� for

some point q ∈ Lr[0] in Proposition 2 (2)).

Next, let us continue to discuss the second case of dim(M ∩ V ⊥).
Case 2. When dim(M ∩ V ⊥) = n – r, V ⊥ is contained in M. We claim that, by a similar

construction in Case 1, the r-form
∧

β ωβ vanishes. We may choose the orthonormal bases
{eα , eβ} in M ⊕ span{ν} = R

n and {eα , uδ} in M satisfying (1 ≤ α ≤ n – r, n – r + 1 ≤ β ≤ n,
n – r + 1 ≤ δ ≤ n – 1)

(1) span{eα} = M ∩ V ⊥ = V ⊥,
(2) span{eβ} = V ,
(3) span{eα , uδ} = M.

Similarly to Case 1, on one hand, since p = M ∩ V ⊥, dp =
∑n

i=1 ωiei for some connection
1-forms ωi. On the other hand, by writing

dp =
n–r∑
α=1

Aαeα +
n–1∑

δ=n–r+1

Bδuδ

and taking the inner product with eβ , n – r + 1 ≤ β ≤ n, we have

ωβ = dp · eβ =
n–1∑

δ=n–r+1

Bδ(uδ · eβ ).

We deduce

n∧
β=n–r+1

ωβ =
n∧

β=n–r+1

( n–1∑
δ=n–r+1

Bδ(uδ · eβ )

)
= 0. (17)

The last equality holds since the wedge product makes an r-form from (r – 1) one-forms
Bδ , and there must be some Bδs repeated. This finishes the discussion for Case 2.

In contrast to Case 1, Case 2 shows that if V ⊥ ⊂ M (equivalently, V is perpendicular to
M), then the orthogonal contribution of any r-volume element in M onto V is zero. As
a consequence of both cases, when considering the integral over all projected r-volumes∧n

β=n–r+1 ωβ , (14) and (17) suggest that we may ignore Case 2 and only consider Case 1,
dim(M ∩ V ⊥) = n – r – 1.

According to the previous discussion, we give a definition of the weighted projected area
of any compact hypersurface � onto any subspace Lr[0] of lower dimension.

Definition 2 Let � be a compact hypersurfacein R
n, and let Lr[0] be an r-plane through

the origin, 1 ≤ r ≤ n – 1. The (orthogonal) weighted projected r-volume Vr(�|Lr[0]) of �

onto Lr[0] is defined by

Vr(�|Lr[0]) =
1
2

∫
p∈�

L∗
pq–1

(∣∣�(p)
∣∣ r∧

δ=1

Bδ(p)

)
, (18)
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where L∗
pq–1 is the pullback of the left translation Lpq–1 , q is the orthogonal projection of

p ∈ � onto Lr[0], �(p) is the angle between the unit normal ν to Tp� and the unique vector
e in L⊥

n–r[q] defined in (16), and
∧r

δ=1 Bδ(p) is the r-volume in Tp� \ L⊥
n–r[q]. Also, the mean

value of the projected r-volumes Vr(�|Lr[0]) is defined by

E
(
Vr(�|Lr[0])

)
=

∫
Lr[0]∈Gn,r

Vr(�|Lr[0]) dLr[0]

m(Gn,r)
, (19)

where Gn,r is the Grassmannian consisting of all r-dimensional subspaces in R
n, dLr[0] is

the invariant density defined below in (20), and m(Gn,r) is the volume of the Grassmannian
Gn,r .

We point out that when r = n – 1, TpM ∩ L⊥
1[q] = {p}, and so

∧n–1
δ=1 Bδ is the surface area

element of � at p. Thus (18) coincides with (4). When r = 1, we have the mean width (19)
for arbitrary �.

Recall [11, p. 202] that the invariant density of Lr[0] is given by

dLr[0] =
∧

1≤h≤n–r
n–r+1≤β≤n

ωh
β , (20)

where

ωh
β =

⎧⎨
⎩

deβ · eα if 1 ≤ h ≤ n – r – 1,

deβ · e if h = n – r

(use the same indices α, β as in Case 1), and identity (12.36) in [11, p. 203] gives

∫
Gr,q

dLr[q] =
On–q–1On–q–2 · · ·On–r

Or–q–1Or–q–r · · ·O1O0
(21)

for 0 ≤ q < r ≤ n – 1. We also point out that the volume m(Gn,r) = On–1···On–r
Or–1···O1O0

, where

Or = 2π (r+1)/2

�((r+1)/2) is the surface area of the unit ball in R
r+1, and � denotes the gamma func-

tion. For instance, O0 = 2 (by convention), O1 = 2π , and O2 = 4π . Notice that the r-form∧n
β=n–r+1 ωβ (resp.,

∧r
δ=1 Bδ) is the r-dimensional volume of the infinitesimal parallelotope

in Lr[q] (resp., in Tp� \ L⊥
n–r[q]). Moreover, if � is convex, then definitions (18) and (19)

coincide with (13.1) and (13.2), respectively, in [11], and so we have had the generalized
projected r-volumes for arbitrary hypersurface �.

The rest of this paper is devoted to the derivation of a recursive formula for the integral
of projected r-volumes. Recall that [11, p, 216, (13.2)] the integral of the projected (n – r)-
volume of a convex body K (shortly, the mean (n – r)-volume) is defined by

Ir(K) =
∫

Gn,r

V
(
K ′

n–r
)

dLr[0] =
∫

Gn,n–r

V
(
K ′

n–r
)

dLn–r[0], (22)

where K ′
n–r is the convex set of all intersection points of Ln–r[0] with the r-planes per-

pendicular to Ln–r[0] through each point of K , and V (K ′
n–r) is the (n – r)-volume of K ′

n–r .
Using our notation, this means that V (K ′

n–r) = Vn–r(K |Ln–r[0]). Definition (22) of Ir(K) can
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be generalized to arbitrary compact submanifold K with smooth boundary � = ∂K if the
(n – r)-volume V (K ′

n–r) is replaced by that of (18), namely, the mean (n – r)-volume of �

is defined by

Ir(�) =
∫

Gn,n–r

Vn–r(�|Ln–r[0]) dLn–r[0], (23)

which is exactly same as shown in (19) (up to a constant m(Gn,r).

Theorem 4 Let K be an n-dimensional compact submanifold in R
n with boundary � =

∂K . Denote by Ir(K) the mean (n – r)-volume as defined in (23). Then we have the recursive
formula

Ir(K) =
2

Or–1

∫
Gn,n–1

I(n–1)
r–1

(
K ′

n–1
)

dLn–1[0], (24)

where Or–1 is the surface area of the unit ball in R
r , and I(n–1)

r–1 (K ′
n–1) is the mean (r – 1)-

volume of the projection K ′
n–1 of K onto Ln–1[0].

Remark 3 In [11, p. 217] the author derived the same recursive formula (see identity (13.7)
there) under the assumption that K is a convex body in R

n. We observe that a similar ar-
gument can be applied even for nonconvex domains K when the new notion for projected
r-volumes (i.e., (4) and (18)) is introduced. The main idea of the proof of Theorem 4 is
based on identities (25) and (26), which are irrelevant to the convexity for K .

Proof Let Lr , 1 ≤ r ≤ n – 1, be an r-plane in R
n. Denote by L(r)

i+1 the (i + 1)-plane contained
in Lr for i + 1 ≤ r ≤ n – 1. In [11, p. 207, (12.53)] the author considered the density for the
sets of pairs of linear subspaces (Lr , L(r)

i+1) and the identity

dL(r)
i+1 ∧ dL∗

r = dLr[i+1] ∧ dLi+1, (25)

where dL∗
r is the density of the oriented r-plane Lr , and dLr[i+1] is the density for r-planes

about a fixed (i + 1)-plane. If we consider the linear spaces through the fixed origin O in
R

n, (25) still holds and may be written as

dL(r)
i+1[0] ∧ dL∗

r[0] = dLr[i+1] ∧ dLi+1[0]. (26)

In particular, when Lr is a hyperplane and L(r)
i+1[0] is of maximal dimension in Lr , namely,

r = n – 1, i + 1 = r, (26) becomes

dL(n–1)
r[0] ∧ dL∗

n–1[0] = dLn–1[r] ∧ dLr[0]. (27)

Similarly, when restricting to the hyperplane Ln–1[0] (namely, substitute n by n – 1, and i + 1
by r – 1) in (26), we have

dL(r)
r–1[0] ∧ dL∗(n–1)

r[0] = dL(n–1)
r[r–1] ∧ dL(n–1)

r–1[0], (28)
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where the superscripts (n – 1) emphasize that the sub-lanes considered here are contained
in the plane Ln–1[0]. For instance, dL∗(n–1)

r[0] is the density of the oriented r-plane through the
origin O contained in Ln–1[0]. Multiplying (27) by dLr

r–1[0] and (28) by dLn–1[0] and using
the fact that an oriented plane is equivalent to two unoriented planes such that dL∗

n–1[0] =
2dLn–1[0] and dL∗(n–1)

r[0] = 2dL(n–1)
r[0] , we arrive at

dL(n–1)
r[r–1] ∧ dL(n–1)

r–1[0] ∧ dLn–1[0] = dL(r)
r–1[0] ∧ dLn–1[r] ∧ dLr[0]. (29)

Now let us integrate over all the pairs of Lr–1[0] and L(n–1)
r[0] . Let �′

n–1 be the projected
(n – 1)-volume of � onto Ln–1[0]. Notice that the projected (n – r)-volume of � onto Ln–r[0]

is equal to the projected (n – r)-volume of �′
n–1 onto Ln–r[0] (counted for multiplicities).

On the one hand, the integral of the left-hand side of (29) becomes

∫
Gn,r

∫
Gr,r–1

∫
Gn–1,r

V
(
K ′

n–r
)

dL(n–1)
r[r–1] ∧ dL(n–1)

r–1[0] ∧ dLn–1[0] (30)

=
∫

Gn,r

I(n–1)
r–1

(
K ′

n–1
)

dLn–1[0] ∧ dL(n–1)
r[r–1]

=
∫

G(n–1)
r,r–1

∫
Gn,n–1

I(n–1)
r–1

(
K ′

n–1
)

dLn–1[0] ∧ dL(n–1)
r[r–1]

=
∫

Gn,n–1

I(n–1)
r–1

(
K ′

n–1
)

dLn–1[0] ·
∫

G(n–1)
r,r–1

dL(n–1)
r[r–1]

=
On–r–1

2

∫
Gn,n–1

I(n–1)
r–1

(
K ′

n–1
)

dLn–1[0],

where we have used that
∫

Gr,r–1

∫
Gn–1,r

=
∫

Gn–1,r–1
,
∫

Gn,r
=

∫
Gn,n–1

∫
G(n–1)

r,r–1
in the first two identi-

ties and (21) in the last identity On–r–1
2 =

∫
G(n–1)

r,r–1
dL(n–1)

r[r–1]. On the other hand, we deduce the
integral of the right-hand side of (29)

∫
Gn,r

∫
Gr,r–1

∫
Gn–1,r

V
(
K ′

n–r
)

dL(r)
r–1[0] ∧ dLn–1[r] ∧ dLr[0] (31)

=
∫

Gr,r–1

∫
Gn–1,r

Ir(K) dL(r)
r–1[0] ∧ dLn–1[r]

=
Or–1

2
On–r–1

2
Ir(K).

Again, we have used (21) to get
∫

Gr,r–1
dL(r)

r–1[0] = Or–1
O0

and
∫

Gn–1,r
dLn–1[r] = On–r–1

O0
in the last

equality. Combining (30) and (31), we get the recursive formula (24). �
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