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Abstract
In this paper, we study several properties of an orthonormal basis {Nn(z)} for the
Newton space N2(P). In particular, we investigate the product of Nm and Nm and the
orthogonal projection P of NnNm that maps from L2(P) onto N2(P). Moreover, we find
the matrix representation of Toeplitz operators with respect to such an orthonormal
basis on the Newton space N2(P).
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1 Introduction
For any n ∈ N ∪ 0, let Nn(z) denote the nth Newton polynomial, which is determined by
the coefficients in the expansion:

(1 – w)z =
∞∑

n=0

Nn(z)wn,

where |w| < 1 and z is any complex number in the complex plane C. Using the notations
in [1, 12–14], Nn(z) has the following expression

Nn(z) :=
(–z)n

n!
= (–1)n

(
z
n

)
,

where
(z

n
)

= z(z–1)(z–2)···(z–(n–1))
n! for n ≥ 1 and

(z
0
)

= 1.
Consider a probability measure μ defined on C such that

∫

C

|z|n dμ(z) < ∞, (n ∈N).

Let γ (x) denote the discrete measure on R with unit masses at {– 1
2 + n

2 : n ∈ N} and P :=
{z ∈ C : Re(z) > – 1

2 }. Set

dμ(x + iy) =
1

2π

|�(x + iy)|2
�(2x + 2)

dy dγ (x),

where � denotes the usual gamma function.
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Let N2(P) be a Newton space as the closure of the set of polynomials in L2(C,μ) (see
[3]). In [11], Markett, Rosenblum, and Rovnyak verified that N2(P) is a Hilbert space and
the Newton polynomials {Nn(z)}∞n=0 form an orthonormal basis for N2(P). Note that

N2(P) =

{
f (z) =

∞∑

n=0

anNn(z) : ‖f ‖2 =
∞∑

n=0

|an|2 < ∞
}

.

On the positive real line define a measure μ by dμ(t) = e–t dt. The measure μ is finite and
has total mass �(1) = 1. Consider the weighted Lebesgue space denoted by L2(μ), which
comprises measurable complex-valued functions f defined with

∥∥f (t)
∥∥2 =

∫ ∞

0

∣∣f (t)
∣∣2e–t dt < ∞

and let L∞(μ) be the set of all essentially bounded measurable functions inP. For f ∈ L2(μ),
the weighted Mellin transform F on N2(P) of f is defined by

F(z) =
1

�(z + 1)

∫ ∞

0
f (t)e–ttz dt.

For f , g ∈ L∞(μ), an inner product on N2(P) is defined by

〈
F(z), G(z)

〉
=

∫ ∞

0
f (t)g(t)e–t dt,

where F and G are weighted Mellin transforms of f and g , respectively, (see [11]).
Let P denote the orthogonal projection that maps L2(μ) onto N2(P) defined by

Pf (z) =
∫

H

K(z, w)f (w) dA(w),

where dA is an area measure on P. The reproducing kernel of N2(P) has the following
form:

K(λ, z) =
�(z + λ + 1)

�(z + 1)�(λ + 1)
, z ∈H.

For ϕ ∈ L∞(μ), the Toeplitz operator Tϕ on N2(P) is defined by

Tϕ f := P(ϕ · f )
(
f ∈ N2(P)

)
.

From [9], it is known that the following properties of the Toeplitz operators Tϕ on N2(P)
hold:

(i) Tαϕ+βψ = αTϕ + βTψ for ϕ,ψ ∈ L∞(μ).
(ii) T∗

ϕ = Tϕ for ϕ ∈ L∞(μ).
(iii) Tϕ = 0 if and only if ϕ = 0 a.e.
(iv) TϕTψ = Tϕψ and TψTϕ = Tψϕ for ϕ ∈ L∞(μ) and ψ ∈ H∞(μ).
In [6, 10], the authors studied the properties of composition operators on Newton space

N2(P). Recently, Han [3] focused on the complex symmetric composition operators on
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Newton space N2(P) with respect to the specific conjugation. Furthermore, in [7, 8], we
considered the properties of Toeplitz operators on Newton space. From the above research
point of view, we further investigate the properties of Newton space and Newton basis and
study the matrix of Toeplitz operators on Newton space in this paper.

This paper is organized as follows. First, we study several properties of an orthonor-
mal basis {Nn(z)} for Newton space N2(P). In particular, we investigate the product of
Nm and Nm and the orthogonal projection P of NnNm that maps from L2(P) onto N2(P).
Next, we consider the matrix representation of Toeplitz operators with respect to such an
orthonormal basis on Newton space N2(P).

2 Main results
In this section, we first study an orthonormal basis for the Newton space N2(P). We begin
with the following lemma.

Lemma 2.1 ([10]) Let the map 
 : N2(P) → N2(P) defined by


F(z) := F(z) – F(z + 1)

be the backwards unilateral shift on the orthonormal basis {Nn(z)}∞n=0. Then, 
∗ is the uni-
lateral shift on the orthonormal basis {Nn(z)}∞n=0, i.e., 
∗Nn(z) = Nn+1(z) holds.

Lemma 2.2 For any m, n ≥ 0, the following equation holds

N1(z)Nn(z) = (n + 1)Nn+1(z) – nNn(z).

Proof Since Nn(z) = (–1)n z(z–1)···(z–(n–1))
n! for n ≥ 1, it follows that

(n + 1)Nn+1(z) – nNn(z) = (n + 1)(–1)n+1 z(z – 1) · · · (z – n)
(n + 1)!

– nNn(z)

= (–1)n+1 z(z – 1) · · · (z – n)
n!

– nNn(z)

= (–1)(z – n)Nn(z) – nNn(z)

= –zNn(z) = N1(z)Nn(z).

Hence, we complete the proof. �

Lemma 2.3 Let N be an (n + 1) × (n + 1) matrix given by

N =

⎛

⎜⎜⎜⎜⎝

Nm(m) 0 0 0 · · · 0
Nm(m + 1) Nm+1(m + 1) 0 0 · · · 0
Nm(m + 2) Nm+1(m + 2) Nm+2(m + 2) 0 · · · 0

...
...

...
...

. . .
Nm(m + n) Nm+1(m + n) Nm+2(m + n) Nm+3(m + n) · · · Nm+n(m + n)

⎞

⎟⎟⎟⎟⎠
.

Then, N –1 = N .
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Proof Put

xj =
(
Nm(m + j), Nm+1(m + j), . . . , Nm+j(m + j), 0, . . . , 0

)

and

yk =
(
0, . . . , 0, Nm+k(m + k), Nm+k(m + k + 1), . . . , Nm+k(m + n)

)T ,

where AT is the transpose of the matrix A. If j < k, then xj · (yk)T = 0. If j = k, then

xj · (yj)T = Nm+j(m + j)Nm+j(m + j) = (–1)m+j(–1)m+j = 1.

Let j > k. Note that
∑j–k

i=0(–1)i(j–k
i
)

= 0. Since

Nm(j) = (–1)m j(j – 1)(j – 2) · · · (j – (m – 1))
m!

= (–1)m j!
m!(j – m)!

= (–1)m

(
j

m

)
,

we have

xj · (yk)T = Nm+k(m + j)Nm+k(m + k) + Nm+k+1(m + j)Nm+k(m + k + 1) + · · ·
+ Nm+j(m + j)Nm+k(m + j)

=
j–k∑

�=0

Nm+k+�(m + j)Nm+k(m + k + �)

= (–1)2m+2k
j–k∑

�=0

(–1)�
(

m + j
m + k + �

)(
m + k + �

m + k

)

=
j–k∑

�=0

(–1)�
(m + j)!

(j – k – �)!�!(m + k)!

=
(m + j)!

(j – k)!(m + k)!

j–k∑

�=0

(–1)�
(j – k)!

(j – k – �)!�!

=
(m + j)!

(j – k)!(m + k)!

j–k∑

�=0

(–1)�
(

j – k
�

)
= 0.

Hence, it means that N 2 = I and so N –1 = N . �

Let m, n ≥ 0 be nonnegative integers. Then, zmzn = zm+n holds on the Hardy space H2.
However, NmNn is not Nm+n on Newton space N2(P), in general. We next show that the
product of Nm and Nn is the linear combination of {Nj}(m+n)

j=max{m,n}.
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Theorem 2.4 For any m ≥ n ≥ 0, it holds that

Nm(z)Nn(z) =
(m+n)∑

j=max{m,n}
bj(m, n)Nj(z), (2.1)

where

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

bm(m, n)
bm+1(m, n)
bm+2(m, n)

...
bm+n(m, n)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= N

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Nm(m)Nn(m)
Nm(m + 1)Nn(m + 1)
Nm(m + 2)Nn(m + 2)

...
Nm(m + n)Nn(m + n)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(2.2)

for bj(m, n) ∈R and N is denoted as in Lemma 2.3.

Proof By the definition of Nn(z), we have

Nm(z)Nn(z)

= (–1)n+m
(

z(z – 1) · · · (z – (m – 1))
m!

)(
z(z – 1) · · · (z – (n – 1))

n!

)
.

Thus, we can write Nm(z)Nn(z) as follows:

Nm(z)Nn(z) =
m+n∑

j=0

bj(m, n)Nj(z) (2.3)

for some bj(m, n). Substituting 0 to m – 1 into (2.3), we obtain that b0(m, n) = b1(m, n) =
· · · = bm–1(m, n) = 0. If we put m into (2.3), then we have

Nm(m)Nn(m) =
m+n∑

j=m

bj(m, n)Nj(m) = bm(m, n)Nm(m)

and so Nn(m) = bm(m, n). Next, we put m + 1 into (2.3) and we have

Nn(m + 1)Nn(m + 1) = bm(m, n)Nm(m + 1) + bm+1(m, n)Nm+1(m + 1).

Set

N =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Nm(m) 0 0 0 · · · 0
Nm(m + 1) Nm+1(m + 1) 0 0 · · · 0
Nm(m + 2) Nm+1(m + 2) Nm+2(m + 2) 0 · · · 0

...
...

...
...

. . .
Nm(m + n) Nm+1(m + n) Nm+2(m + n) Nm+3(m + n) · · · Nm+n(m + n)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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as in Lemma 2.3. By repeating this method, we deduce that

N

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

bm(m, n)
bm+1(m, n)
bm+2(m, n)

...
bm+n(m, n)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Nm(m)Nn(m)
Nm(m + 1)Nn(m + 1)
Nm(m + 2)Nn(m + 2)

...
Nm(m + n)Nn(m + n)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, we conclude that Nm(z)Nn(z) =
∑(m+n)

j=m bj(m, n)Nj(z), where

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

bm(m, n)
bm+1(m, n)
bm+2(m, n)

...
bm+n(m, n)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= N –1

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Nm(m)Nn(m)
Nm(m + 1)Nn(m + 1)
Nm(m + 2)Nn(m + 2)

...
Nm(m + n)Nn(m + n)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

By Lemma 2.3, we have the results. �

From (2.2), we obtain the exact value of bj(m, n) as follows for the given m, n. We obtain
the specific value of b(m, n) through a simple calculation.

Remark 2.5 (a) If m = n = 2, then we have N2(z)N2(z) =
∑4

j=1 bj(2, 2)Nj(z) gives that

N2(z)N2(z)
N1(z)

= b1(2, 2) +
4∑

j=2

bj(2, 2)
Nj(z)
N1(z)

.

Take z = 1, then b1(2, 2) = 0 and so N2(z)N2(z) =
∑4

j=2 bj(2, 2)Nj(z). Thus,

N2(z)N2(z)
N2(z)

= b2(2, 2) +
4∑

j=3

bj(2, 2)
Nj(z)
N2(z)

.

Take z = 2, then b2(2, 2) = N2(2) = 1 and hence

N2(z)N2(z) = N2(z) + b3(2, 2)N3(z) + b4(2, 2)N4(z).

Therefore,

N2(z) = 1 + b3(2, 2)
N3(z)
N2(z)

+ b4(2, 2)
N4(z)
N2(z)

. (2.4)

If z = 3 in (2.4), then b3(2, 2) = –6. If z = 4 in (2.4), then 6 = 3 + b4(2,2)
2 and so b4(2, 2) = 6.

Hence, b1(2, 2) = 0, b2(2, 2) = 1, b4(2, 2) = –b3(2, 2) = 6. Hence,

N2(z)N2(z) = N2(z) – 6N3(z) + 6N4(z).
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From (2.2), for m = 2 and n = 2, we have

⎛

⎜⎝
b2(2, 2)
b3(2, 2)
b4(2, 2)

⎞

⎟⎠ =

⎛

⎜⎝
N2(2) 0 0
N2(3) N3(3) 0
N2(4) N3(4) N4(4)

⎞

⎟⎠

–1 ⎛

⎜⎝
N2(2)N2(2)
N2(3)N2(3)
N2(4)N2(4)

⎞

⎟⎠ =

⎛

⎜⎝
1

–6
6

⎞

⎟⎠ .

(b) From (2.2), for m = 3 and n = 2, we have

⎛

⎜⎝
b3(3, 2)
b4(3, 2)
b5(3, 2)

⎞

⎟⎠ =

⎛

⎜⎝
N3(3) 0 0
N3(4) N4(4) 0
N3(5) N4(5) N5(5)

⎞

⎟⎠

–1 ⎛

⎜⎝
N3(3)N2(3)
N3(4)N2(4)
N3(5)N2(5)

⎞

⎟⎠ =

⎛

⎜⎝
3

–12
10

⎞

⎟⎠ .

(c) From (2.2), for m = 4 and n = 2, we have

⎛

⎜⎝
b4(4, 2)
b5(4, 2)
b6(4, 2)

⎞

⎟⎠ =

⎛

⎜⎝
N4(4) 0 0
N4(5) N5(5) 0
N4(6) N5(6) N6(6)

⎞

⎟⎠

–1 ⎛

⎜⎝
N4(4)N2(4)
N4(5)N2(5)
N4(6)N2(6)

⎞

⎟⎠ =

⎛

⎜⎝
3

–35
–105

⎞

⎟⎠ .

In the Hardy space H2(T), znzm is equal to zm–n, but in the weighted Bergmann space
A2

α(D), znzm 	= zm–n since z ∈D. In addition, Nn(z)Nm(z) is not Nm–n(z) in the Newton space
N2(P).

Lemma 2.6 [10, Theorem 1.2] The N2(P) is a Hilbert space that includes the Newton poly-
nomials as a complete orthogonal set.

Lemma 2.7 The set of functions {Nn(z)} ∪ {Nm(z)} forms an orthonormal basis for L2(P)
for n ∈N∪ {0} and m ∈N.

Proof For positive integers m, n with m 	= n,

〈Nn, Nm〉 = 〈Nm, Nn〉 = 0

and 〈Nm, Nm〉 = 〈Nm, Nm〉 = 1. Now, we want to show that Parseval’s identity

∞∑

n=0

∣∣〈f , Nn〉
∣∣2 +

∞∑

n=1

∣∣〈f , Nn〉
∣∣2 = ‖f ‖2

2

holds for every f ∈ L2(P). Let f (z) =
∑∞

k=0 akNk(z) +
∑∞

k=1 a–kNk(z). Then, ‖f ‖2
2 =∑∞

k=–∞ |ak|2 and for any n ≥ 0,

〈
f (z), Nn(z)

〉
=

〈 ∞∑

k=0

akNk(z) +
∞∑

k=1

a–kNk(z), Nn(z)

〉
= an

and for any n > 0,

〈
f (z), Nn(z)

〉
=

〈 ∞∑

k=0

akNk(z) +
∞∑

k=1

a–kNk(z), Nn(z)

〉
= a–n.
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Therefore,

∞∑

n=0

∣∣〈f , Nn〉
∣∣2 +

∞∑

n=1

∣∣〈f , Nn〉
∣∣2 =

∞∑

n=–∞
|an|2 = ‖f ‖2

2.

Since Parseval’s identity holds, we obtain that {Nn(z)} ∪ {Nm(z)} is complete (see [2]).
Hence, for n ∈ N∪ {0} and m ∈ N, {Nn(z)} ∪ {Nm(z)} forms an orthonormal basis for
L2(P). �

In [4], let P be an orthogonal projection of L2(D) onto the Bergamm space A2(D). Then,
for nonnegative integers n, m,

P
(
znzm)

=

⎧
⎨

⎩

�(n+1)�(n–m+α+2)
�(n+α+2)�(n–m+1) zn–m if n ≥ m;

0 if n < m.

Next, we investigate the orthogonal projection P of NnNm.

Theorem 2.8 For any nonnegative integers m, n,

P(NnNm) =

⎧
⎨

⎩

∑n
j=0 bm(n, m – n + j)Nm–n+j(z) if m ≥ n

0 if m < n,
(2.5)

where bm(n, m – n + j) is the solution of the matrix equation as in Theorem 2.4 for 0 ≤ j ≤ n.

Proof For any nonnegative integer k, we obtain from Theorem 2.4 that

〈
P(NnNm), Nk

〉
= 〈NnNm, Nk〉 = 〈Nm, NnNk〉

=

〈
Nm,

n+k∑

j=max{n,k}
bj(n, k)Nj(z)

〉
. (2.6)

(a) If m < n, then (2.6) implies

〈
P(NnNm), Nk

〉
=

〈
Nm,

n+k∑

j=n

bj(n, k)Nj(z)

〉
= 0

for n ≥ k and

〈
P(NnNm), Nk

〉
=

〈
Nm,

n+k∑

j=n

bj(n, k)Nj(z)

〉
= 0

for n < k since the Newton polynomials {Nn(z)}∞n=0 are orthonormal.
(b) If m ≥ n, then

〈
Nm,

n+k∑

j=max{n,k}
bj(n, k)Nj(z)

〉
=

⎧
⎨

⎩
bm(n, k) if m – n ≤ k ≤ m,

0 if 0 ≤ k < m – n or k > m.
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Hence, if m ≥ n, then (2.6) becomes

P(NnNm) = bm(n, m – n)Nm–n + bm(n, m – n + 1)Nm–n+1 + · · · + bm(n, m)Nm

=
n∑

j=0

bm(n, m – n + j)Nm–n+j(z)

and if m < n, then P(NnNm) = 0. �

Remark 2.9 Note that bm(m, n) = bm(n, m) and bj(m, 0) = 1 for any nonnegative integer m,
n, j.

(i) Since

N1(z)N1(z) =
2∑

j=1

bj(1, 1)Nj(z) = b1(1, 1)N1(z) + b2(1, 1)N2(z)

and

N2(z)N1(z) =
3∑

j=2

bj(2, 1)Nj(z) = b2(2, 1)N2(z) + b3(2, 1)N3(z)

by Theorem 2.4, we have b1(1, 1) = –1, b2(1, 1) = 2, b2(2, 1) = –2, and b3(2, 1) = 3. Then,

P(N1N2) =
1∑

j=0

b2(1, 1 + j)N1+j(z)

= b2(1, 1)N1 + b2(1, 2)N2

= 2(N1 – N2)

by Theorem 2.8.
(ii) By Theorem 2.8 and Remark 2.4, we also obtain that

P(N2N3) =
2∑

j=0

b3(2, 1 + j)N1+j(z)

= b3(2, 1)N1 + b3(2, 2)N2 + b3(2, 3)N3

= 3(N1 – 2N2 + N3)

and

P(N1N3) =
1∑

j=0

b3(1, 2 + j)N2+j(z)

= b3(1, 2)N2 + b3(1, 3)N3

= 3(N2 – N3).

As an application of Theorem 2.8, we obtain the following corollary.
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Corollary 2.10 For any nonnegative integers m, k with m ≥ k,

P(NkNm) = m
k∑

i=0

(–1)i
(

k
i

)
Nm–k+i(z)

holds, where P denotes an orthogonal projection of L2(P) onto N2(P).

Proof By Theorem 2.8, we obtain that

P(NkNm) = bm(n, m – k)Nm–k + bm(k, m – k + 1)Nm–k+1 + · · · + bm(k, m)Nm

=
k∑

j=0

bm(k, m – k + j)Nm–k+j(z)

= m
k∑

i=0

(–1)i
(

k
i

)
Nm–k+i(z),

where bm(n, m – k + j) denotes the solutions of the matrix equation as in Theorem 2.4 for
0 ≤ j ≤ n. �

We finally find the matrices of Toeplitz operators Tϕ with harmonic symbols ϕ on the
Newton spaces by using Theorems 2.4 and 2.8. In Theorem 2.11, we explain the charac-
teristics of the entries of the Toeplitz matrix in Newton space. Applying this, by specifi-
cally using the coefficient of bj(m, n) in Corollary 2.14, it was found that the entries of the
Toeplitz matrix in Newton space are expressed as a linear combination of the binomial
coefficients of the given entries.

Theorem 2.11 For the harmonic symbol ϕ(z) =
∑∞

i=0 aiNi +
∑∞

i=1 a–iNi, the matrix of Tϕ

with respect to orthonormal basis B = {Nn}n≥0 is given by

[Tϕ]B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a0b0(0, 0) a–1b1(1, 0) a–2b2(2, 0) a–3b3(3, 0) · · ·
a1b1(1, 0)

∑1
i=0 aib1(i, 1)

∑2
i=1 a–ib2(i, 1)

∑3
i=2 a–ib3(i, 1) · · ·

a2b2(2, 0)
∑2

i=1 aib2(i, 1)
∑2

i=0 aib2(i, 2)
∑3

i=1 a–ib3(i, 2) · · ·
a3b3(3, 0)

∑3
i=2 aib3(i, 1)

∑3
i=1 aib3(i, 2)

∑3
i=0 aib3(i, 3) · · ·

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and the adjoint of the matrix of Tϕ is given by

[Tϕ]∗B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a0b0(0, 0) a1b1(1, 0) a2b2(2, 0) a3b3(3, 0) · · ·
a–1b1(1, 0)

∑1
i=0 a–ib1(i, 1)

∑2
i=1 aib2(i, 1)

∑3
i=2 aib3(i, 1) · · ·

a–2b2(2, 0)
∑2

i=1 a–ib2(i, 1)
∑2

i=0 a–ib2(i, 2)
∑3

i=1 aib3(i, 2) · · ·
a–3b3(3, 0)

∑3
i=2 a–ib3(i, 1)

∑3
i=1 a–ib3(i, 2)

∑3
i=0 a–ib3(i, 3) · · ·

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

where bm(m, n) ∈R is denoted as in Theorem 2.4.
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Proof For the harmonic symbol ϕ(z) =
∑∞

i=0 aiNi +
∑∞

i=1 a–iNi, the (m, n)th entry of the
matrix of Tϕ with respect to orthonormal basis {Nn}n≥0 of N2(P) is given by

〈TϕNn, Nm〉 =
〈
P(ϕNn), Nm

〉

=

〈
P

( ∞∑

i=0

aiNiNn +
∞∑

i=1

a–iNiNn

)
, Nm

〉

=

〈 ∞∑

i=0

ai

i+n∑

j=max{i,n}
bj(i, n)Nj +

n∑

i=1

a–i

i∑

j=0

bn(i, n – i + j)Nn–i+j, Nm

〉
.

(2.7)

Then, there are two cases to consider. If m ≥ n, then

∞∑

i=0

ai

i+n∑

j=max{i,n}
bj(i, n)Nj =

m–n–1∑

i=0

ai

i+n∑

j=max{i,n}
bj(i, n)Nj +

m∑

i=m–n

ai

i+n∑

j=max{i,n}
bj(i, n)Nj

+
∞∑

i=m+1

ai

i+n∑

j=max{i,n}
bj(i, n)Nj.

(2.8)

Thus, the first and third term of the right equation in (2.8) have no term of the form
aibm(i, n)Nm. Hence, (2.7) becomes

〈TϕNn, Nm〉 =

〈 ∞∑

i=0

ai

i+n∑

j=max{i,n}
bj(i, n)Nj, Nm

〉

=

〈 m∑

i=m–n

aibm(i, n)Nm, Nm

〉

=
m∑

i=m–n

aibm(i, n).

If m < n, then by a similar method, (2.7) gives

〈TϕNn, Nm〉 =

〈 n∑

i=n–m

a–ibn(i, m)Nm, Nm

〉
=

n∑

i=n–m

a–ibn(i, m).

Thus, we have

〈TϕNn, Nm〉 =

⎧
⎨

⎩

∑m
i=m–n aibm(i, n) for m ≥ n

∑n
i=n–m a–ibn(i, m) for m < n,

where m and n are nonnegative integers. Hence, the matrix of Tϕ with respect to B =
{Nn}n≥0 is given by

[Tϕ]B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a0b0(0, 0) a–1b1(1, 0) a–2b2(2, 0) a–3b3(3, 0) · · ·
a1b1(1, 0)

∑1
i=0 aib1(i, 1)

∑2
i=1 a–ib2(i, 1)

∑3
i=2 a–ib3(i, 1) · · ·

a2b2(2, 0)
∑2

i=1 aib2(i, 1)
∑2

i=0 aib2(i, 2)
∑3

i=1 a–ib3(i, 2) · · ·
a3b3(3, 0)

∑3
i=2 aib3(i, 1)

∑3
i=1 aib3(i, 2)

∑3
i=0 aib3(i, 3) · · ·

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠
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and the adjoint of the matrix of Tϕ is given by

[Tϕ]∗B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a0b0(0, 0) a1b1(1, 0) a2b2(2, 0) a3b3(3, 0) · · ·
a–1b1(1, 0)

∑1
i=0 a–ib1(i, 1)

∑2
i=1 aib2(i, 1)

∑3
i=2 aib3(i, 1) · · ·

a–2b2(2, 0)
∑2

i=1 a–ib2(i, 1)
∑2

i=0 a–ib2(i, 2)
∑3

i=1 aib3(i, 2) · · ·
a–3b3(3, 0)

∑3
i=2 a–ib3(i, 1)

∑3
i=1 a–ib3(i, 2)

∑3
i=0 a–ib3(i, 3) · · ·

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and, hence, we know that [Tϕ]∗B = [Tϕ]B . �

Corollary 2.12 If [Tϕ]B is self-adjoint, then ϕ(z) =
∑∞

i=0 aiNi +
∑∞

i=1 aiNi.

Proof The proof follows from Theorem 2.11. �

Corollary 2.13 (i) For the harmonic symbol ϕ(z) = a1N1 + a0 + a–1N1, the matrix of Tϕ

with respect to orthonormal basis B = {N0, N1} is given by

[Tϕ]B =

(
a0 a–1

a1 a0 – a1

)
.

(ii) For the harmonic symbol ϕ(z) = a2N2 + a1N1 + a0 + a–1N1 + a–2N2, the matrix of Tϕ

with respect to orthonormal basis B = {N0, N1, N2} is given by

[Tϕ]B =

⎛

⎜⎝
a0 a–1 a–2

a1 a0 – a1 –2(a–1 + a–2)
a2 –2(a1 + a2) a0 – 2a1 + a2

⎞

⎟⎠ .

(iii) Let ϕ(z) = a3N3 + a2N2 + a1N1 + a0 + a–1N1 + a–2N2 + a–3N3 be the harmonic symbol.
Then, the matrix of Tϕ with respect to orthonormal basis B = {N0, N1, N2, N3} is given by

[Tϕ]B =

⎛

⎜⎜⎜⎝

a0 a–1 a–2 a–3

a1 a0 – a1 –2(a–1 + a–2) 3(a–2 – a–3)
a2 –2(a1 + a2) (a0 – 2a1 + a2) 3(a–1 – 2a–2 + a–3)
a3 3(a2 – a3) 3(a1 – 2a2 + a3) a0 – 3a1 + 3a2 – a3

⎞

⎟⎟⎟⎠ .

Proof Since N0(z)N0(z) = b0(0, 0)N0(z) and N1(z)N0(z) = b1(1, 0)N1(z) by Theorem 2.4, we
have b0(0, 0) = 1 and b1(1, 0) = 1. Moreover, since

N1(z)N1(z) =
2∑

j=1

bj(1, 1)Nj(z) = b1(1, 1)N1(z) + b2(1, 1)N2(z)

by Theorem 2.4, it follows that b1(1, 1) = –1. Since N2(z)N0(z) = b2(2, 0)N2(z), we have
b2(2, 0) = 1 and b2(2, 2) = 1 by Remark 2.5. Since bm(m, n) = Nn(m), we obtain b2(2, 1) =
N1(2) = –2 and b2(1, 1) = 2 by Remark 2.9. Hence, the proof follows from Theorem 2.11. �
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Corollary 2.14 Let ϕ(z) =
∑n

i=0 aiNi +
∑n

i=1 a–iNi be the harmonic symbol for even n. Then,
the matrix of Tϕ with respect to orthonormal basis B = {Nk}k=0,1,2,...,n is given by

[Tϕ]B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a0 a–1 a–2 a–3 · · · a–n

a1
∑1

i=0(–1)iai –2
∑2

i=1 a–i 3
∑3

i=2(–1)ia–i · · · –n
∑n

i=n–1 a–i

a2 –2
∑2

i=1 ai
∑2

i=0(–1)i(2
i

)
ai 3

∑3
i=1(–1)i(2

i

)
a–i · · ·

...

a3 3
∑3

i=2(–1)iai 3
∑3

i=1(–1)i(2
i

)
ai

∑3
i=0(–1)i(3

i

)
ai · · ·

...
...

...
...

...
. . .

...
an –n

∑n
i=n–1 ai · · · · · · · · · ∑n

i=0(–1)i(n
i

)
ai

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof The proof follows from Theorem 2.11 and Corollary 2.13. �

Remark 2.15 Set

cm,n = 〈TϕNn, Nm〉 =

⎧
⎨

⎩

∑m
i=m–n aibm(i, n) for m ≥ n

∑n
i=n–m a–ibn(i, m) for m < n.

Then, for m ≥ n, cm,n =
∑m

i=m–n aibm(i, n) and cn,m =
∑m

i=m–n a–ibm(i, n). Hence, [Tϕ]B is
self-adjoint if and only if cm,n = cn,m if and only if a–i = ai.

Example 2.16 (i) Let ϕ(z) = N1 + 2 + iN1 be the harmonic symbol. Then, the matrix of Tϕ

with respect to orthonormal basis B = {N0, N1} is given by

[Tϕ]B =

(
a0 a–1

a1 a0 – a1

)
=

(
2 i
1 1

)
.

(ii) Let ϕ(z) = iN2 – N1 + 2 + iN1 + 2N2 be the harmonic symbol. Then, the matrix of Tϕ

with respect to orthonormal basis B = {N0, N1, N2} is given by

[Tϕ]B =

⎛

⎜⎝
a0 a–1 a–2

a1 a0 – a1 –2(a–1 + a–2)
a2 –2(a1 + a2) a0 – 2a1 + a2

⎞

⎟⎠

=

⎛

⎜⎝
2 i 2

–1 3 –2i – 4
i 2 – 2i 4 + i

⎞

⎟⎠ .

A conjugation on H is an antilinear operator C : H → H that satisfies C2 = I and
〈Cx, Cy〉 = 〈y, x〉 for all x, y ∈H. An operator T ∈L(H) is complex symmetric if there exists
a conjugation C on H such that T = CT∗C.

Corollary 2.17 Assume that C and Cμ,λ are conjugations on L2 given by Cf (z) = f (z) and
Cμ,λf (z) = μf (λz) for f ∈ N2(P) with |λ| = |μ| = 1, respectively. If for the harmonic symbol
ϕ(z) =

∑∞
i=0 aiNi +

∑∞
i=1 a–iNi and the matrix of Tϕ with respect to orthonormal basis B =

{Nn}n≥0, then the following statements are equivalent:
(i) [Tϕ]B is complex symmetric with the conjugation C;
(ii) [Tϕ]B is complex symmetric with the conjugation Cμ,λ;
(iii) ai = a–i for i = 0, 1, 2, . . . .
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Proof (i) ⇔ (iii) Let ϕ(z) =
∑∞

i=0 aiNi +
∑∞

i=1 a–iNi be with respect to the basis B = {Nn}∞n=0.
Since the matrix of [Tϕ]B is of the form as in Theorem 2.11, it follows that the matrix of
C[Tϕ]BC is the following:

C[Tϕ]BC =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a0b0(0, 0) a–1b1(1, 0) a–2b2(2, 0) a–3b3(3, 0) · · ·
a1b1(1, 0)

∑1
i=0 aib1(i, 1)

∑2
i=1 a–ib2(i, 1)

∑3
i=2 a–ib3(i, 1) · · ·

a2b2(2, 0)
∑2

i=1 aib2(i, 1)
∑2

i=0 aib2(i, 2)
∑3

i=1 a–ib3(i, 2) · · ·
a3b3(3, 0)

∑3
i=2 aib3(i, 1)

∑3
i=1 aib3(i, 2)

∑3
i=0 aib3(i, 3) · · ·

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, [Tϕ]B is complex symmetric with the conjugation C if and only if ai = a–i for i =
0, 1, 2, . . . .

(ii) ⇔ (iii) Let ϕ(z) =
∑∞

i=0 aiNi +
∑∞

i=1 a–iNi be with respect to the basis B = {Nn}∞n=0. It
is known from [5] that Cμ,λ is unitarily equivalent to C1,λ. Since the matrix of Tϕ is of the
form as in Theorem 2.11, it follows that the matrix of C1,λTϕC1,λ is the following:

[C1,λTϕC1,λ]B = λ[CTϕC]B .

Then, [Tϕ]B is complex symmetric with the conjugation C1,λ if and only if ai = a–i for
i = 0, 1, 2, . . . . �

Corollary 2.18 Let C be a conjugation on L2 given by Cf (z) = f (z) for f ∈ N2(P). If for the
harmonic symbol ϕ(z) =

∑3
i=0 ai(Ni + Ni), the matrix of Tϕ with respect to orthonormal

basis B = {N0, N1, N2, N3} is given by

[Tϕ]B =

⎛

⎜⎜⎜⎝

a0 a1 a2 a3

a1 a0 – a1 –2(a1 + a2) 3(a2 – a3)
a2 –2(a1 + a2) (a0 – 2a1 + a2) 3(a1 – 2a2 + a3)
a3 3(a2 – a3) 3(a1 – 2a2 + a3) a0 – 3a1 + 3a2 – a3

⎞

⎟⎟⎟⎠ ,

then [Tϕ]B is complex symmetric with the conjugation C.

Example 2.19 Let C be a conjugation on L2 given by Cf (z) = f (z) for f ∈ N2(P) and let
B = {N0, N1, N2, N3}.

(i) Let

ϕ(z) = 2iN3 + 2iN2 + 3N1 – 7i + 3N1 + 2iN2 + 2iN3

be the harmonic symbol. If the matrix of Tϕ with respect to orthonormal basis B is given
by

[Tϕ]B =

⎛

⎜⎜⎜⎝

–7i 3 2i 2i
3 –7i – 3 –2(2i + 3) 0
2i –2(2i + 3) –5i – 6 3(3 – 4i)
2i 0 3(3 – 4i) –3i – 9

⎞

⎟⎟⎟⎠ ,

then [Tϕ]B is complex symmetric with the conjugation C.
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(ii) If for the harmonic symbol ϕ(z) =
∑3

i=0(Ni + Ni), the matrix of Tϕ with respect to
orthonormal basis B is given by

[Tϕ]B =

⎛

⎜⎜⎜⎝

1 1 1 1
1 0 –4 0
1 –4 0 0
1 0 0 0

⎞

⎟⎟⎟⎠ ,

then [Tϕ]B is complex symmetric with the conjugation C.
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