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Abstract
The combination of the time-scaling transformation and control parameterization has
proven to be an effective approach in addressing optimal control problems involving
switching systems with predefined subsystem sequences. However, this approach
has certain limitations. First, the number of control switchings is required to be no less
than the number of subsystem switchings. Second, the switching of the subsystem
must be accompanied by the switching of the control. Third, this scheme introduces
many hyperparameters, leading to combinatorial explosion. To address these
drawbacks, we introduce a novel computational approach such that the control
switching can be independent of subsystem switching. The superiority of this novel
approach can be clearly observed from the solutions obtained using the proposed
method for solving two illustrative examples.

Keywords: Switched system; Optimal control; Switching time optimization; Control
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1 Introduction
A switching system is a dynamic system composed of multiple modes (often called sub-
systems). The system transitions between these modes based on defined rules or condi-
tions. More specifically, a transition between subsystems can be triggered by predefined
events, specific time instances, or conditions tied to the system state. Due to their inherent
adaptability, such systems can dynamically shape their behavior and control strategies to
adeptly respond to changes in environmental conditions or system requirements. Switch-
ing systems are encountered in a variety of areas such as robots [1, 2], power systems
[3], and communication networks [4, 5]. The success of these applications demonstrates
the versatility and importance of switching systems. The challenge in solving the optimal
control problem of switching systems (SOCP) lies in intelligently determining the control
inputs and switching laws. The switching law serves as a blueprint outlining the detailed
sequence of active subsystems and their corresponding switching times. This sequence
encapsulates the precise moments when the system transitions smoothly from one sub-
system to another, coordinating the interaction of modes to optimize overall performance.

Early theoretical advances to address this problem can be found in [6] and [7], where
dynamic programming and the maximum principle were adopted, respectively. However,
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they do not provide effective numerical methods to obtain optimal solutions. In [8], Xu and
Antsaklis introduced a bilevel optimization approach to address SOCPs. This approach
breaks down the problem into two levels and solves them iteratively. The lower level fo-
cuses on fixing the switching sequence and optimizing the control inputs and switch-
ing times to minimize the cost function. On the other hand, the upper layer optimizes
the switching sequence and performs the lower layer optimization for each switching se-
quence. This is much more complex. In [9–13], it was generally assumed that the switching
sequence is predetermined, and the focus is on optimizing the lower level. This consider-
ation applies to scenarios where the order of switching sequences is predetermined and
only lower-level issues are performed. See, for example, [8]. In addition, the research re-
sults of the lower level will lay the foundation for the research of the upper level. Therefore,
this paper also studies the switching optimal control problem of fixed switching sequence.

Most existing strategies for addressing the lower-level problem resort to discretizing the
control function and/or state variable. Then, a search algorithm is applied to the resulting
discrete model to find the optimal solution [14]. However, these discretization methods
can lead to combinatorial explosion. To address this issue, a novel method is proposed in
[8] to decompose the lower-level problem into two subproblems. The first subproblem
focuses on minimizing the cost function with fixed switching instants, where decision
variables are limited to control inputs. This process converts the problem into a nonlinear
optimization problem. For the second subproblem, it aims to minimize the cost function
with respect to switching instants. For this, the gradient of the cost function with respect
to the switching times is derived. This approach has been improved in [15–17].

In [18], a novel technique is introduced to address the lower-level problem without the
need for decomposition. This method works by first approximating the control function
using a piecewise constant function where the control heights and the control switch-
ing times become the new optimization variables. Then, with the aid of the time-scaling
transformation [19, 20], the switching times of the control and subsystems are mapped
into fixed knots within a newly defined time horizon. This process leads to the approxi-
mation of the original optimal control problem as a nonlinear optimization problem. Since
then, this technique has been widely adopted for solving optimal control problems involv-
ing switching systems over the past decade [21–23]. However, it is worth noting that this
scheme requires that (i) the number of control switchings must be no less than the num-
ber of switchings between subsystems, and (ii) the switching of the subsystem must be
accompanied by the switching of the control. These predetermined requirements may not
be strictly adhered to for many practical problems. This is because the control switching
times and the subsystem switching times are usually independent of each other.

In [24, 25], within the computational paradigm of control parameterization, an effective
strategy called Sequential Adaptive Switching Time Optimization (SASTO) is proposed
to solve standard optimal control problems. The SASTO approach is applicable to scenar-
ios where the optimization is to be carried out on multiple sets of mutually independent
switching times. It is achieved through the systematic introduction of new time domains.
Motivated by the success of this approach, our aim is to devise a new method that effi-
ciently addresses the limitations faced when solving switching optimal control problems.

The remainder of the paper is structured as follows. The problem formulation is pre-
sented in Sect. 2. Moving on to Sect. 3, we delve into the shortcomings of employing
traditional time scale transformations and devise an efficient approach to address this
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challenge. A new computational method is constructed to solve the resulting transformed
problem. In Sect. 4, the gradient formulas of the cost/constraint functions are given. In
Sect. 5, two numerical examples are solved. Finally, concluding remarks are provided in
Sect. 6.

2 Problem formulation
Consider the following nonlinear switched system with N subsystems:

ẋ(t) = f j(x(t), u(t)
)
, t ∈ [tj–1, tj), j = 1, . . . , N , (1)

x(t0) = x0, (2)

where x(t) ∈ R
n and u(t) ∈ R

m are the state and control vectors of the system at time
t, respectively; x0 ∈ R

n is the given initial state; f j : Rn × R
m → R

n, j = 1, . . . , N , is the
given continuously differentiable function representing the jth subsystem; t0, t1, . . . , tN are
the switching instants of subsystems where t0 = 0, tN = T > 0 are the initial and terminal
times, respectively. Let τ = [t0, t1, . . . , tN ]� be such that tj–1 < tj, j = 1, . . . , N . Let T be the
set consisting of all such τ .

Let u : [0, T] → R
m be a Borel measurable function satisfying u(t) ∈ U for almost all

t ∈ [0, T], where U is a compact and convex set in R
m. Such a u is termed an admissible

control. Denote the set of all such admissible controls as U . The formal definition of the
optimal control problem for the switched system is as follows:

Problem (P1) Given the switched system (1)–(2), find u ∈ U and τ ∈ T such that the cost
function

g0(u) = �0
(

x(T |u)
)

+
∫ T

0
L0

(
x(t), u(t)

)
dt

is minimized subject to the canonical constraints

gl(u) = �l
(

x(T |u)
)

+
∫ T

0
Ll

(
x(t), u(t)

)
dt ≥ 0, l = 1, . . . , Nb,

gl(u) = �l
(

x(T |u)
)

+
∫ T

0
Ll

(
x(t), u(t)

)
dt = 0, l = Nb + 1, . . . , Nb + Nd.

Here, Nb and Nd represent the counts of inequality and equality constraints, respectively;
�l : Rn →R, Ll : Rn ×R

m →R, l = 0, 1, . . . , Nb + Nd , are specified real-valued functions.

We presume that the conditions outlined in [20] are satisfied throughout this paper:
A1. Function f j, j = 1, . . . , N , is twice continuously differentiable.
A2. For j = 1, . . . , N , there is a constant L (L > 0) such that

∥
∥f j(ℵ,�)

∥
∥ ≤ L

(
1 + ‖ℵ‖ + ‖�‖), (ℵ,�) ∈R

n ×R
m.

A3. Functions �l : Rn →R, l = 0, 1, . . . , Nb + Nd , and Ll : Rn ×R
m →R,

l = 0, 1, . . . , Nb + Nd , are continuously differentiable with respect to their arguments.
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3 Method analysis
Over the past few decades, the utilization of the time-scaling transformation and con-
trol parameterization method has gained popularity as a numerical method for solving
SOCPs [18, 21, 26]. This method subdivides the time interval [tj–1, tj] into pj subinter-
vals and denotes the pj + 1 nodes as τ

j
0, τ j

1, . . . , τ j
pj , j = 1, . . . , N , where t0 = 0, tN = T and

tj–1 = τ
j
0 < τ

j
1 < · · · < τ

j
pj = tj, as shown in Fig. 1. By applying the control parameterization,

u(t) is approximated by a piecewise constant function on the time domain [0, T] as follows:

u(t) ≈
N∑

j=1

pj∑

k=1

ρ j,kχ[τ j
k–1,τ j

k )(t), t ∈ [0, T], (3)

where ρ j,k is the approximate value of the control u(t) on the kth interval [tj–1, tj]. Then,
the time-scaling transformation operates by mapping these variable knots {t0, τ 1

1 , . . . , τ 1
p1–1,

t2, . . . , tN–1, τN
1 , . . . , τN

pN –1, tN } to fixed and ordered points {0, 1 . . . , p1 – 1, p1, . . . , p1 + p2, . . . ,
∑N

j=1 pj} in a new domain. Clearly, there are many hyperparameters p1, . . . , pN , which can
easily lead to combinatoric explosion. For example, when p = 5 and p �

∑N
j=1 pj, there are

21 possible combinations of partitions (p1, p2, p3). To avoid this situation, most existing lit-
erature such as [18, 21, 22, 27, 28] only consider the case of p1 = p2 = p3 in their numerical
experiments so that p must be a multiple of N .

Additionally, from Fig. 1 it can be seen that the switching instants t0, t1, . . . , tN coincide
with the partition knots τ 1

0 , τ 2
0 , . . . , τN

N , so p �
∑N

j=1 pj ≥ N , which indicates (i) the number
of control switchings must be no less than the number of switchings between subsystems;
and (ii) the switching of the subsystem must be accompanied by the switching of the con-
trol. This is clearly unreasonable because the switching times t0, t1, . . . , tN and the control
switching points are usually mutually independent.

In [24, 25], it is pointed out that the time-scaling transformation is an order-preserving
mapping. Therefore, the application of this method must meet the essential requirements
of a priori knowledge of the chronological order of these time instants to be optimized.
Nevertheless, due to the independence of these two types of switching instants, the tem-
poral sequence between the control switching points and the switching times of the sub-
systems cannot be known in advance. Thus, using this method to solve Problem (P1) must
require the switching of the subsystem be accompanied by the switching of control, i.e.,
tj = τ

j+1
0 , j = 1, . . . , N . In other words, the prior knowledge of the chronological order of

these time instants {t0, τ 1
1 , . . . , τ 1

p1–1, t2, . . . , tN–1, τN
1 , . . . , τN

pN –1, tN } is essential. This clearly
violates the independent nature between these two types of switching instants.

To overcome these shortcomings, we will design a new method to solve Problem (P1),
which enables adaptive optimization of the selection of unknown switching time se-
quences as in [24].

Figure 1 Illustration of switching times for u(t)
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3.1 A new numerical solution procedure
For Problem (P1), the switching instant vector τ and the control function u(t) need to be
optimized jointly. Initially, we employ the time-scaling transformation to the subsystem
which involves τ , while keeping u(t) temporarily unchanged. This process leads to the
formulation of a new optimal control problem. Following this, we implement the control
parameterization for u(t) within the newly defined time domain and subsequently utilize
the time-scaling transformation to handle the control switching times, thereby introduc-
ing an additional new time domain. The detailed procedure is given below.

Step 1. Time-scaling transformation for switching time vector τ

For each τ = [t1, . . . , tN ]� ∈ T , define θ = [θ1, . . . , θN ]� ∈ R
N , where θj = tj – tj–1 ≥ 0,

j = 1, . . . , N , and θ1 + · · ·+θN = T . Define � as the set comprising all such vectors θ ∈ R
N . By

introducing a new time variable s, we establish the definition for the time-scaling function
μ1(s | θ ) such that

t(s) � μ1(s | θ ) =
	s
∑

j=1

θj + θ(	s
+1)
(
s – 	s
), s ∈ [0, N].

Here, 	·
 represents the floor function. The choice of θN+1 is arbitrary since its value does
not impact the result when s = N . Under the effect of time-scaling transformation, t = tj are
transformed into fixed points s = j, j = 1, . . . , N . Figure 2 shows the transformation of the
variable switching times to the fixed points on the time domain s through the time-scaling
function μ1(s | θ ) when N = 4. Accordingly, u(t) is transformed into u(μ1(s)) � w(s), which
is called the transitional control function of u(t). The switching system defined on the new
time domain [0, N] is

ẏ(s) = θjf j(y(s), w(s)
)
, s ∈ [j – 1, j), j = 1, . . . , N , (4)

y(0) = x0, (5)

where y(s) � x(μ1(s)) = x(t) is the new state vector of the time variable s.

Figure 2 The time-scaling function μ(s | θ )
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Figure 3 Control switching times for w(s)

Step 2. Control parameterization applied to w(s)
We divide the time interval [0, N] into p subintervals with p + 1 partition points denoted

by s0, s1, . . . , sp, satisfying 0 = s0 < s1 < · · · < sp = N as shown in Fig. 3. Note that we intro-
duce only one hyperparameter p compared with the method in [18] (see Fig. 1). Define
� as the set comprising all such vectors ξ = [s0, s1, . . . , sp]� ∈ R

p, where sk , k = 1, . . . , p, are
the switching times of the transitional control function w(s). Accordingly, w(s) is approx-
imated by

w(s) ≈
p∑

k=1

ρkχ[sk–1,sk )(s), s ∈ [0, N], (6)

where ρk = [ρ1
k , . . . ,ρm

k ]� is the approximate value of the transitional control w(s) =
[w1(s), . . . , wm(s)]� on the kth subinterval. Define 	 as the set comprising all such vectors
ρ = [ρ�

1 , . . . ,ρ�
p ]� and let χ[sk–1,sk )(s) be defined by

χ[sk–1,sk )(s) =

⎧
⎨

⎩
1, if s ∈ [sk–1, sk),

0, otherwise.

The switching system (4)–(5) defined on the interval [0, N] becomes

ẏ(s) = θjf j

(

y(s),
p∑

k=1

ρkχ[sk–1,sk )(s)

)

, s ∈ [j – 1, j), j = 1, . . . , N , (7)

y(0) = x0. (8)

Step 3. Time-scaling transformation applied to the control switching times in ξ

For each ξ = [s0, s1, . . . , sp]� ∈ �, define σ = [σ1, . . . ,σp]� ∈ R
p, where σk = sk – sk–1 > 0,

k = 1, . . . , p, and σ1 + · · ·+σp = N . Define � as the set comprising all such vectors σ ∈ R
p. By

introducing a new time variable v, we establish the definition for the time-scaling function
μ2(v|σ ),

s(v) � μ2(v|σ ) =
	v
∑

k=1

σk + σ(	v
+1)
(
v – 	v
), v ∈ [0, p].

The above transformation maps variable times s = sk to fixed times v = k, k = 1, . . . , p. Also
y(s) = y(μ2(v)) � z(v), which is the new state vector of the time variable v. Accordingly, the
switching system (7)–(8) becomes

ż(v) = σk

N∑

j=1

θjf j(z(v),ρk
)
χ[j–1,j)

(
μ2(v)

)
, v ∈ [k – 1, k), k = 1, . . . , p, (9)

z(0) = x0. (10)
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Denote z(·|θ ,σ ,ρ) as the solution of (9)–(10). Based on Assumptions A1–A2, we can show
that the system possesses a unique solution for every permissible (θ ,σ ,ρ) within the set
(�,�,	) [20]. Problem (P1) is approximated as the following nonlinear programming
problem.

Problem (P2) Given system (7)–(8), find θ ∈ �, σ ∈ �, ρ ∈ 	, such that the cost function

ḡ0(θ ,σ ,ρ) =�0
(

z(p|θ ,σ ,ρ)
)

+
p∑

k=1

∫ k

k–1
σkθ	μ2(v)
L0

(
z(v),ρk

)
dv

is minimized subject to the canonical constraints

ḡl(θ ,σ ,ρ) = �l
(

z(p|θ ,σ ,ρ)
)

+
p∑

k=1

∫ k

k–1
σkθ	μ2(v)
Ll

(
z(v),ρk

)
dv ≥ 0,

l = 1, . . . , Nb,

ḡl(θ ,σ ,ρ) = �l
(

z(p|θ ,σ ,ρ)
)

+
p∑

k=1

∫ k

k–1
σkθ	μ2(v)
Ll

(
z(v),ρk

)
dv = 0,

l = Nb + 1, . . . , Nb + Nd.

3.2 The switching times analysis
After making the above approximation to Problem (P1), the original switching time vector
τ is transformed into the duration θ between two successive subsystem switching points,
while the switching times for the control function u(t) are transformed into the control
height ρ and the duration σ between two successive control switching knots. Here, ρ , σ ,
and θ are new decision vectors to be optimized. Once the optimal solution (ρ∗,σ ∗, θ∗) is
obtained by solving Problem (P2), we can derive the switching times of the subsystem and
the control on the original time interval [0, T].

To be specific, the optimal switching times, t∗
j , j = 1, . . . , N , of the subsystem can be read-

ily calculated by using the time-scaling function μ1(s | θ∗) and setting s = 1, . . . , N . How-
ever, determining the switching times of u(t) necessitates the following procedure:

(i) Use the time-scaling function μ2(v | σ ∗) and set v = 1, . . . , p. This results in the
optimal switching times of w(s), denoted as s∗

k , k = 1, . . . , p, according to the time
variable s within the interval [0, N];

(ii) Use the time-scaling function μ1(s | θ∗) and set s = s∗
1, . . . , s∗

p. The optimal switching
times of u(t), τ ∗

k = μ1(s∗
k | θ∗), k = 1, . . . , p, are determined. Let τ 1,∗ = [τ ∗

1 , . . . , τ ∗
p ]�

represent the control switching times.
Note that τ ∗ = [t∗

1 , . . . , t∗
N ]� and τ 1,∗ = [τ ∗

1 , . . . , τ ∗
p ]� are selected adaptively, being carried

out under the condition that the subsystem switching times and the control switching
times are mutually independent, as illustrated in Fig. 4. Moreover, it is worth noting that
compared to Fig. 1, there is only one hyperparameter p.

Figure 4 The optimal switching times of the subsystems and the control
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4 Gradient computation
Problem (P2) can be addressed through the application of gradient-based nonlinear opti-
mization algorithms. To accomplish this, it is necessary to calculate the gradients of both
the cost and constraint functions, where the used gradient computational method is the
variational method. The theorem below provides the partial derivatives of the state at θ .

Theorem 1 For each (θ ,σ ,ρ),

∂z(v | θ ,σ ,ρ)
∂θ

= �(v | θ ,σ ,ρ),

�(· | θ ,σ ,ρ) is the solution of the following variational system on v ∈ [k – 1, k), k = 1, . . . , p:

�̇(v) =
∂σk

∑N
j=1 θjf j(z(v),ρk)χ[j–1,j)(μ2(v))

∂z(v)
�(v)

+
∂σk

∑N
j=1 θjf j(z(v),ρk)χ[j–1,j)(μ2(v))

∂θ
,

�(0) = 0.

Proof The proof closely resembles that presented in Theorem 1 of [29] and is consequently
omitted. �

Utilizing the chain rule, the theorem below provides the gradients of gl(θ ,σ ,ρ) at θ , l =
0, 1, . . . , Nb + Nd .

Theorem 2 For each l = 0, 1, . . . , Nb + Nd , the gradient of gl in terms of θ , are given by

∂gl

∂θ
=

∂�l(z(p))
∂z

�(p)

+
p∑

k=1

∫ k

k–1
σk

{
θ	μ2(v)
∂Ll(z(v),ρk)

∂z
�(v) +

θ	μ2(v)
∂Ll(z(v),ρk)
∂θ

}
dv.

Proof The proof is derived by using the chain rule to the cost/constraint functionals in
conjunction with Theorem 1. �

Likewise, the derivatives of the cost/constraint functions in terms of ρ can be computed.

Theorem 3 For each (θ ,σ ,ρ),

∂z(v | θ ,σ ,ρ)
∂ρ

= ϒ(v | θ ,σ ,ρ),

where ϒ(· | θ ,σ ,ρ) is the solution of the following variational system on v ∈ [k – 1, k), k =
1, . . . , p,

ϒ̇(v) =
∂σk

∑N
j=1 θjf j(z(v),ρk)χ[j–1,j)(μ2(v))

∂z(v)
ϒ(v)

+
∂σk

∑N
j=1 θjf j(z(v),ρk)χ[j–1,j)(μ2(v))

∂ρ
,
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ϒ(0) = 0.

Utilizing the chain rule, the theorem below provides the gradients of gl(θ ,σ ,ρ) at ρ .

Theorem 4 For each l = 0, 1, . . . , Nb + Nd , the gradient of gl in terms of ρ , are given by

∂gl

∂ρ
=

∂�l(z(p))
∂z

ϒ(p)

+
p∑

k=1

∫ k

k–1
σk

{
θ	μ2(v)
∂Ll(z(v),ρk)

∂z
ϒ(v) +

θ	μ2(v)
∂Ll(z(v),ρk)
∂ρ

}
dv.

Regarding the gradients of the cost/constraint functions in terms of σ , the derivation is
more intricate, as discussed in [24]. To begin, we provide the inverse function of μ2(v | σ ),

μ–1
2 (s | σ ) =

⎧
⎪⎪⎨

⎪⎪⎩

s
σ1

, s ∈ [0,σ1),

(k – 1) + 1
σk

(s –
∑k–1

i=1 σi), s ∈ [
∑k–1

i=1 σi,
∑k

i=1 σi),

p, s = N ,

where k = 2, . . . , p. The switching times of subsystems in the time domain v, denoted as
μ–1

2 (s | σ ), are dependent on σ . At each junction point μ–1
2 (h) where h = 1, . . . , N – 1, co-

inciding with any v = 1, . . . , p – 1, the inverse function is nondifferentiable.
It is worth noting that, for each integer h = 1, . . . , N in the time domain s, there exists a

unique q ∈ 1, . . . , p such that μ–1
2 (h– 1) ∈ [q – 1, q). Let vh represent μ–1

2 (h) for h = 1, . . . , N .
The partial derivatives of vh in terms of σk , k = 1, . . . , p, are provided for each h = 1, . . . ,
N – 1.

Case 1. When the point vh aligns with any v = 1, . . . , p – 1:

∂v–
h

∂σk
=

⎧
⎪⎪⎨

⎪⎪⎩

0, if k > q,

(–h +
∑q–1

j=1 σj)/(σq)2, if k = q,

– 1
σq

, if k < q,

∂v+
h

∂σk
=

⎧
⎪⎪⎨

⎪⎪⎩

0, if k > q + 1,

(–h +
∑q

j=1 θ
j
2 )/(θq+1

2 )2, if k = q + 1,

– 1
σq+1

, if k < q + 1.

Case 2. We have ∂v+
h

∂σ
= ∂v–

h
∂σ

when vh does not align with any v = 1, . . . , p – 1.

Theorem 5 For each (θ ,σ ,ρ),

∂z(v | θ ,σ ,ρ)
∂σ

= 	(v | θ ,σ ,ρ),
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where 	(·|θ ,σ ,ρ) is the solution of the following variational system on v ∈ [k – 1, k),
k = 1, . . . , p:

	̇(v) =
∂σk

∑N
j=1 θjf j(z(v),ρk)χ[j–1,j)(μ2(v))

∂z(v)
	(v)

+
∂σk

∑N
j=1 θjf j(z(v),ρk)χ[j–1,j)(μ2(v))

∂σ
,

	
(
v+
h

)
= 	

(
v–
h

)
– H+

h,f + H–
h,f ,

and

	(0) = 0,

while

H–
h,f = θ	μ2(v–

h)
σ	v–
h
f 	μ2(v+

h)
(z
(
v–
h

)
,ρ	v–

h

)∂v–

h

∂σ

and

H+
h,f = θ	μ2(v+

h)
σ	v+
h
f 	μ2(v+

h)
(z
(
v+
h

)
,ρ	v+

h

)∂v+

h

∂σ
.

Furthermore, for each l = 0, 1, . . . , Nb + Nd , the partial derivative of ḡl in terms of σ is given
by

∂ ḡl

∂σ
=

∂�l(z(p))
∂z

	(p)

+
p∑

k=1

{∫ k

k–1
σk

(
θ	μ2(v)
∂Ll(z(v),ρk)

∂z
	(v) +

θ	μ2(v)
∂Ll(z(v),ρk)
∂σ

)
dv

+ H–
h,Ll

– H+
h,Ll

}
.

The definitions of H–
h,Ll

and H+
h,Ll

are analogous to those of H–
h,f and H+

h,f .

5 Illustrative example
To showcase the efficacy of the proposed approach, we examine two representative exam-
ples. We employ the Fmincon-SQP optimization solver in MATLAB R2022a to address
our problem. The ordinary differential equations (ODEs) are solved using the fourth-order
Runge–Kutta method with a step size of 10–2. The calculation of cost and constraint in-
tegrals is performed using Simpson’s rule, with a step size of 10–2 as well. All numerical
experiments are conducted on a computer with a CPU and RAM of 3.60 GHz and 16 GB,
respectively.

Example 5.1 Consider a nonlinear switching system, as detailed in [8], composed of three
subsystems described as follows:
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subsystem 1:

⎧
⎨

⎩
ẋ1(t) = –x1(t) + 2x1(t)u(t),

ẋ2(t) = x2(t) + x2(t)u(t),
(11)

subsystem 2:

⎧
⎨

⎩
ẋ1(t) = x1(t) – 3x1(t)u(t),

ẋ2(t) = 2x2(t) – 2x2(t)u(t),
(12)

subsystem 3:

⎧
⎨

⎩
ẋ1(t) = 2x1(t) + x1(t)u(t),

ẋ2(t) = –x2(t) + 3x2(t)u(t).
(13)

Let t0 = 0 and tf = 3, and assume that the system switches at t = t1 from subsystem 1 to
subsystem 2 and at t = t2 from subsystem 2 to subsystem 3 (0 < t1 < t2 < 3). Our objective
is to determine the optimal switching instants t1, t2 and the optimal input u to minimize
the cost functional

J =
1
2
(
x1(3) – 2

)2 +
1
2
(
x2(3) – 2

)2 +
1
2

∫ 3

0

{(
x1(t) – 2

)2 +
(
x2(t) – 2

)2 + u2(t)
}

dt. (14)

Here, x(0) = [1, 1]�.
First, we apply the new approach to solve this problem using 3, 4, and 5 partitions for the

control function within the time interval of [0, 3]. For comparison, we also consider using
the conventional time-scaling transformation to solve this problem. As stated in Sect. 3,
this method requires that p1 = p2 = p3 (p �

∑3
j=1 pj must be a multiple of N ). However,

a crucial distinction between them is that the time-scaling method requires that the sys-
tem switching times and discrete time knots of the control space coincide, resulting in
the computational combinatoric explosion. On the other hand, the proposed method can
effectively avoid the above deficiency by allowing the system switching to be independent
of the control switching. To continue, when applying the time-scaling method, we select
p = 3, 6, 9 with equal partition numbers (p1 = p2 = p3). The corresponding optimal results
obtained using these two methods are listed in Table 1. The optimal control are shown in
Figs. 5–7, where the two red vertical lines represent t = t

1 and t = t
2, respectively; t

1 and
t
2 are the optimal switching times of the subsystem.

Table 1 reveals that the optimal cost, 3.6809, obtained by doubling p from 3 to 9 using
the time-scaling method is inferior to the result obtained by using the proposed method

Table 1 Optimal results and computational times using the two techniques for Example 5.1

Control partitions Time-scaling method The proposed method

p = 3 p = 6 p = 9 p = 3 p = 4 p = 5

Optimal cost J∗ 3.8971 3.8637 3.6809 3.8676 3.7036 3.6741
Switching times t1 0.3979 0.4384 0.0003 0.3413 0.0001 0.0001
Switching times t2 1.7061 1.7188 1.7292 1.6936 1.7101 1.7080
CPU time (s) 14.44 23.47 42.77 8.06 21.35 40.28
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Figure 5 Optimal control using these two method when p = 3 for Example 5.1

Figure 6 Optimal control using the proposed method when p = 5 for Example 5.1

Figure 7 Optimal control using the time-scaling method when p = 9 for Example 5.1

for p = 5, which indicates the effectiveness of our method in eliminating unnecessary
partitions. Figure 5 shows that the time-scaling method necessitates the optimal control
switches at t

1 and t
2, while our method has no such restriction. Furthermore, in Fig. 7, the
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optimal number of switches of the control u on each subinterval [ti–1, ti], i = 1, 2, 3, is given
in advance and is equal. However, in Fig. 6, the optimal number of switches of the control
u on each subinterval is determined by the adaptive optimization. This demonstrates our
method can achieve the adaptive selection of the number of control segments within each
subinterval [ti–1, ti], i = 1, 2, 3, whereas the time-scaling method lacks this flexibility.

Example 5.2 In this problem [18], a nonlinear switching system with three subsystems is
defined over the time domain [0, 3]:

subsystem 1:

⎧
⎨

⎩
ẋ1(t) = x1(t) + u(t) sin(x1(t)),

ẋ2(t) = –x2(t) + u(t) cos(x2(t)),
(15)

subsystem 2:

⎧
⎨

⎩
ẋ1(t) = x2(t) + u(t) sin(x2(t)),

ẋ2(t) = –x1(t) + u(t) cos(x1(t)),
(16)

subsystem 3:

⎧
⎨

⎩
ẋ1(t) = –x1(t) – u(t) sin(x1(t)),

ẋ2(t) = x2(t) + u(t) cos(x2(t)),
(17)

The initial conditions are

x(0) = [2, 3]�. (18)

The system undergoes a switch at t = t1 from subsystem 1 to subsystem 2 and at t = t2 from
subsystem 2 to subsystem 3 (0 < t1 < t2 < 3). We aim to determine the optimal switching
instants t1, t2, and the optimal input u that minimize the cost function

J =
1
2
(
x1(t1) – 1

)2 +
1
2
(
x2(3) + 1

)2 +
1
2

∫ 3

0

{(
x1(t) – 1

)2 +
(
x2(t) + 1

)2 + u2(t)
}

dt. (19)

Note that the cost function contains the state x1(t1) at the switching time t = t1.
We use the proposed method and the time-scaling technique to solve this problem. The

optimal results are listed in Table 2. The optimal controls are depicted in Figs. 8–9, with
the two red vertical lines denoting t = t

1 and t = t
2 correspondingly. Here, t

1 and t
2 are the

optimal switching times of the subsystem.
It can be seen from Table 2 that when p = 6 and p = 9, the optimal costs obtained by

the proposed method both are obviously better than the optimal costs obtained by the
time-scaling method. Figure 8 when compared with Fig. 9 also shows that our method
can avoid the limitation that the switching of the subsystem must be accompanied by the
switching of the control, and allows for the adaptive determination of the number of con-
trol segments within each subinterval.
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Table 2 Optimal results and computational times using the two techniques for Example 5.2

Control partitions Time-scaling method The proposed method

p = 6 p = 9 p = 6 p = 7 p = 8

Optimal cost J∗ 13.4381 7.0828 7.0866 7.0830 7.0808
Switching times t1 0.1241 0.0433 0.0447 0.0439 0.0438
Switching times t2 2.9998 0.7303 0.7276 0.7306 0.7280
CPU time (s) 17.73 99.07 99.35 148.97 183.83

Figure 8 Optimal control using the proposed method when p = 6 for Example 5.2

Figure 9 Optimal control using the time-scaling method when p = 9 for Example 5.2

6 Conclusion
We considered a type of optimal control problems involving the switched system with
a prespecified sequence of subsystems. We then highlighted the limitations of the con-
ventional time-scaling transformation used in solving this type of optimal control prob-
lems. Subsequently, we propose a novel method to overcome the existing shortcomings of
the conventional time scaling transformation, where the control switching times and sys-
tem switching moments are sequentially selected independently. Notably, in the proposed
method, we introduced only one hyperparameter, reducing the need for extensive param-
eter tuning, thus improving overall efficiency. Two numerical examples are solved and the
results obtained clearly illustrate the effectiveness of the new approach. In future studies,
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the proposed method can also be considered to solve problems involving the switching
time-delay system and the switching time-dependent state system.
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