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Abstract
In this study, we take into account the of modified Szász–Mirakyan–Kantorovich
operators to obtain their rate of convergence using the modulus of continuity and for
the functions in Lipschitz space. Then, we obtain the statistical convergence of this
form. In addition, we determine the weighted statistical convergence and compare it
with the statistical one for the same operator. Medical applications and traditional
mathematics; one way to get a close approximation of the Riemann integrable
functions is through the use of the Kantorovich modification of positive linear
operators. The use of Kantorovich operators is tremendously helpful from a medical
point of view. Their application is shown as an approximation of the rate of
convergence in respect of modulus of continuity.

Mathematics Subject Classification: 26A15; 41A10; 41A25; 41A30; 41A63
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1 Introduction
1.1 Problem context
First introduced by Fast in [1], statistical convergence can be applied to either real or com-
plex number sequences. This is strongly connected to the idea of the natural/ asymp-
totic density of subsets of positive integers N. In [2], Zygmund refers to this as “almost
convergence” and identifies the association between statistical convergence and strong
summability. This notation has been further investigated in the number of papers [3–7].
In [7], D – limκr = L represents the statistical convergence and is called D-convergence.
Salat [5] showed that if D – limκr = L holds, then the number L is unique. Conversely, if
limr→∞ κr = L holds, the D – limκr = L holds too, since the set {r ≤ n : |κr – L| ≥ ε} is
finite in this case for all ε > 0. As stated in [8], this approach has significant applications
in the theory of approximating polynomials, functional analysis, numerical solutions to
differential equations, integral equations, and others. We used the work to study the fol-
lowing:
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(1) apply statistical convergence on Kantorovich form of Szász–Mirakyan operators,
(2) statistical convergence for approximation theorem of the Korovkin type,
(3) the convergence of the same operators in weighted statistical sense.

1.2 Limitations of existing literature and algorithms
Statistical convergence was introduced as a solution to problems arising from series sum-
mation. This concept has been widely applied in diverse branches of mathematics, with
a particular focus on estimating the characteristics of linear positive operators. The lim-
itations of the existing literature and algorithms are the following: First, classical conver-
gence and statistical convergence are not compared for the same operators in the existing
literature. Second, the main drawback of statistical convergence is that it does not en-
sure convergence of the sequence, while the converse is true. In relation to issues of series
summation, statistical convergence was introduced to the theory of approximation to be
applied in several areas of pure and applied mathematics to estimate the properties of lin-
ear positive operators, and the present study refines this motive for better application in
the different areas of mathematics where the rate of convergence needs to be significant.
The replacement of uniform convergence with statistical convergence has the benefit of
modeling and enhancing the signal approximation technique in different function spaces.

Using summability and sequence to function methods, in various ways, the Cauchy Con-
vergence classical notion has been generalized. In 1932, the first generalization was initi-
ated by Banach, which was later studied in detail by Lorentz (1948). Many authors have
used statistical convergence for the operators, but the convergence for the same operators
is missing. Unless the two convergences are compared, the purpose of using statistical
convergence is of no use. Main limitation of statistical convergence is that any convergent
sequence is statistically convergent, but the statistically convergent sequence is not always
convergent. Nevertheless, neither the limits nor the statistical limits can be computed or
quantified with exact precision in the general case. Many mathematical approaches have
been developed in order to model this imprecision using mathematical structures and to
account for its imprecision. As is well-known, real-world sequences are not convergent in
a strict mathematical sense. The algorithm used here is to calculate the auxiliary results
for the test functions using the Korovkin theorem, which proves it as a linear positive op-
erator, then to find the rate of convergence in the classical, statistical sense and also in
weighted space.

1.3 Motivation and objectives of this paper
Different approaches have been applied by various methods to reduce rate of convergence.
Therefore, this study uses modulus of continuity to get an efficient rate of convergence and
compares classical, statistical and weighted statistical convergence. Most of the problem
arises when we do not have a proper algorithm / methodology to reach the required re-
sult. The present work provides this for statistical convergence, where the behavior of the
elements become irrelevant.

1.4 Contribution of this study
The following are the primary contributions of this study:

(i) In this study, the rate of convergence of the operators is identified both in the classical
sense and from a statistical perspective.
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(ii) The idea that the majority, or something close to it, of a sequence’s elements, will
converge via statistical convergence; this means that the behavior of the sequence’s other
elements becomes less significant to the analysis. It was understood at the time that se-
quences originating from sources in the real world do not converge mathematically, and
the work proposes approximation results of weighted statistical convergence.

(iii) We deployed different techniques to find the rate of convergence in classical, sta-
tistical and weighted statistical sense and hence thereby giving a comparative look of all
three convergence.

(iv) Providing a proper methodology and algorithm gives a way out to reach the result
using the modulus of continuity tool.

1.5 Paper organization
The remaining components of this investigation are laid out in the following manner:
Sect. 2 examines the related articles that already exist in the literature relevant to our re-
search. Section 3 focuses on preliminaries required for understanding the results obtained
in the paper. Section 4 concentrates on determining the rate of convergence used in clas-
sical sense and for functions in Lipschitz class. Section 5 presents the proposed method-
ology to reach the required result and the specified smart algorithm used in the paper to
reach at the desired result. Section 6 discusses some previous applications of Kantorovich
form of modified Szász–Mirakyan operators to show the possible cases where our result
may be applied. Section 6.1 explores application from previous publications in the area of
convergence in sustainability, whereas Sect. 6.2 discusses applications in the area of med-
ical diagnosis. Section 7 focuses the findings of this study and a comparative analysis with
the existing work. Section 8 concludes the research with research scope.

2 Literature review
In the field of approximation theory, Szász–Mirakyan operators have been used as a funda-
mental tool for the approximation of functions. In particular, the integral form of modified
Szász–Mirakyan operators has been analyzed in several studies.

Duman et al. [9] proposed a new approach to investigate the statistical convergence
of these operators. The authors derived the conditions to prove the modified Szász–
Mirakyan operators integral form convergence in a probabilistic sense. They also pre-
sented an algorithm for computing the convergence in statistical sense for these opera-
tors. Kizmaz and Karagoz [10] considered the statistical convergence of the integral form
of modified Szász–Mirakyan operators for the continuous functions. The authors proved
that these operators converge to the functions uniformly on compact subsets of the inter-
val [0, 1] and established the order of the convergence.

Altin and Karacik [11] have introduced the statistical convergence of modified Szász–
Mirakyan operators with respect to a new sequence of weights. They obtained some ap-
proximation results for the operators. They also proved that the sequence of modified
Szász–Mirakyan operators is statistically convergent with respect to the new sequence
of weights. Pehlivan and Duman [12] introduced a new type of Szász–Mirakyan opera-
tors, namely the exponential form of the same. They studied the convergence properties
in statistical sense for these operators and proved that the sequence of exponential Szász–
Mirakyan operators converges statistically to the function f for the functions continuous
on [0, 1].
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Several mathematicians extended Korovkin-type approximation theorems by incorpo-
rating Banach spaces, Banach algebras, function spaces and abstract Banach lattices, as
well as utilising other test functions as in [13–17]. Statistical convergence plays a very
important part in approximation theory out of all the approaches available to determine
the rate of convergence of different linear positive operators. Statistical convergence is a
conventional method for achieving sequence summability.

We recall the definition of statistical convergence: A sequence κ is statistically conver-
gent to a real number L if for each ε > 0,

lim
i→∞

1

i

∣
∣
{

r ≤ i : |κr – L| ≥ ε
}∣
∣ = 0; i, r ∈N.

Then, in this context, we say

|κr – L| < ε for almost all r ∈N

or

st – limκr = L. (2.1)

Gadjiev and Orhan were the pioneers in analyzing convergence in statistical sense in
approximation theory using Korovkin’s approximation theory. Their study focused on ap-
proximating a function, specifically addressing the problem of function z approximation
using the sequence of positive linear operators (Bi(z;κ)) [18, 19]. They stated the Ko-
rovkin’s approximation Theorem 2.1 using convergence in statistical sense of a sequence
of positive linear operators using the notations: Consider CM[c,d] as a space of all contin-
uous functions z in the interval [c,d] and bounded on the entire line, i.e.,

∣
∣z(κ)

∣
∣ ≤ Mz, –∞ < κ < ∞,

where Mz is constant for every z. Let (Bi) be a sequence of positive linear operators from
CM[c,d] to B[c,d], where B[c,d] is a Banach space of all bounded functions on [c,d], with
norm ‖.‖B := supc<κ<d |.|.

Theorem 2.1 ([20]) If a sequence of positive linear operators Bi : CM[c,d] → B[c,d] satis-
fies the conditions

st – lim
∥
∥Bi(e0; .) – 1

∥
∥

B = 0, (2.2)

st – lim
∥
∥Bi(e1; .) – e1

∥
∥

B = 0, (2.3)

st – lim
∥
∥Bi(e2; .) – e2

∥
∥

B = 0, (2.4)

then for any function z ∈ CM[c,d], we get

st – lim
∥
∥Bi(z; .) – z

∥
∥

B = 0, (2.5)

where ei(κ) = κ
i ∀i = 0,1, 2.
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Convergence in statistical sense has been obtained of many positive linear operators,
like the Bernstein operator [21], Meyer–König and Zeller operators [22], general Beta op-
erators [23], a generalization of the certain positive linear operator (Meyer–König and
Zeller operators, Bleimann, Butzer and Hahn operators and Szász operators) [24], and
many more.

In addition, Karakaya and Chishti [25] proposed the idea of convergence in weighted
statistical sense, the definition of which was later refined by Mursaleen et al. [26]. This
research investigates the convergence in statistical sense of the modified Sz’asz–Mirakyan
operators in the Kantorovich form [27]. Furthermore, we analyze the weighted conver-
gence in statistical sense and rate of convergence of these operators in the Lipschitz space.
As defined in [28], “let the function z be defined on the interval [0,∞). Si, the Szász–
Mirakyan operator applied to z is”

Si(z;κ) =
∞

∑

r=0
z

(
r

i

)

pr(iκ), (2.6)

where

pr(u) = e–u u
r

r!
, u ∈ [0,∞).

In 1977, Jain and Pethe [29] generalized (2.6) as:

S[ν]
i

(z;κ) =
∞

∑

r=0
(1 + iν)– κ

ν

(

ν +
1

i

)–r
κ

(r,–ν)

r!
z

(
r

i

)

=
∞

∑

r=0
s[ν]
i,r (κ)z

(
r

i

)

,

(2.7)

where

s[ν]
i,r (κ) = (1 + iν)– κ

ν

(

ν +
1

i

)–r
κ

(r,–ν)

r!
,

κ
(r,–ν) = κ(κ + ν) · · · (κ + (r – 1)ν

)

, κ
(0,–ν) = 1,

and z is any function of exponential type such that

∣
∣z(u)

∣
∣ ≤ KeAu(u≥ 0),

for some finite constants K,A > 0. Here ν = (νi)i∈N is such that

0≤ νi ≤ 1

i
.

Therefore, for any bounded and integrable function z defined on [0,∞), Dhamija et
al. [27] modified the operator (2.7) in Kantorovich form as:

D[ν]
i

(z;κ) = i

∞
∑

r=0
s[ν]
i,r (κ)

∫ r+1
i

r
i

z(u) du. (2.8)
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The objective of this paper is to study the statistical approximation properties and rate of
convergence of the modified Kantorovich operator (2.8).

In this paper, we have used the following methodology:
1. First, take all the functions from CM[c,d], where CM[c,d] is the space of all continuous

functions z in the interval [c,d].
2. Apply Kantorovich form of modified Szász–Mirakyan operators D[ν]

i
, defined by (2.8)

on the continuous functions.
3. Calculate the auxiliary results for the test functions z(κ) = 1,κ,κ2 using Korovkin

theorem, which proves it as a linear positive operator.
4. Determine the rate of convergence through the modulus of continuity, also in Lipshitz

space.
5. Also, find statistical limits to determine convergence in statistical sense via D[ν]

i
.

6. Lastly, Estimate the results in classical and weighted space.
The following algorithm provides the method for selecting the function from CM[c,d]

according to our requirements.
Algorithm

Input all functions z ∈ CM[c,d]
⇓

Input the operator D[ν]
i

⇓
Collect the auxiliary results for the
test functions z(κ) = 1,κ,κ2

⇓
Calculate statistical limit using these auxil-
iary results

⇓
Compute convergence in statistical sense in clas-
sical and weighted space using these statistical
limits and estimate the results.

3 Basic results
To prove the convergence of operator in statistical sense (2.8), following results are re-
quired:

Lemma 3.1 ([27]) For Kantorovich operator (2.8), the following holds:

D[ν]
i

(e0;κ) = 1, L[ν]
n (e1;κ) = κ +

1

2i
,

and

D[ν]
i

(e2;κ) = κ
2 +

(

ν +
2
i

)

κ +
1

3i2
.

From Lemma 3.1, we can imply

Lemma 3.2 For Kantorovich operator (2.8), the following holds:

st – lim
∥
∥D[ν]

i
(e0; .) – 1

∥
∥

B = 0,
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st – lim
∥
∥D[ν]

i
(e1; .) – e1

∥
∥

B = 0,

st – lim
∥
∥D[ν]

i
(e2; .) – e2

∥
∥

B = 0,

where ei(κ) = κ
i ∀i = 0,1, 2.

Proof Using D[ν]
i

(e0;κ) = 1, we can clearly say that

st – lim
∥
∥D[ν]

i
(e0; .) – 1

∥
∥

B = 0.

Now, by Lemma 3.1, we have

∥
∥D[ν]

i
(e1; .) – e1

∥
∥

B =
∥
∥
∥
∥
κ +

1

2i
– κ

∥
∥
∥
∥

B
=

∣
∣
∣
∣

1

2i

∣
∣
∣
∣
. (3.1)

Clearly,

st – lim
i

(
1

2i

)

= 0.

Hence,

st – lim
∥
∥L[ν]

n (e1; .) – e1
∥
∥

B = 0.

Lastly, again by Lemma 3.1, we have

∥
∥D[ν]

i
(e2; .) – e2

∥
∥

B =
∥
∥
∥
∥
κ

2 +
(

ν +
2
i

)

κ +
1

3i2
– κ

2
∥
∥
∥
∥

B

≤ ‖κ
∥
∥
∥
∥

∣
∣
∣
∣

(

ν +
2
i

)∥
∥
∥
∥

+
∥
∥
∥
∥

1

3i2

∥
∥
∥
∥

≤ μ

∣
∣
∣
∣

(

ν +
2
i

)∣
∣
∣
∣

+
∣
∣
∣
∣

1

3i2

∣
∣
∣
∣

≤ A
[(

ν +
2
i

)

+
1

3i2

]

,

where A = max{μ,1} = μ.
We define the following sets, for a given ε > 0,

U =
{

i ∈N :
∥
∥D[ν]

i
(e2; .) – e2

∥
∥

B ≥ ε

A

}

,

U1 =
{

i ∈N :
(

ν +
2
i

)

≥ ε

2A

}

,

U2 =
{

i ∈N :
1

3i2
≥ ε

2A

}

.

Clearly, we can see that U ⊆ U1 ∪ U2. Thus, we can say

∣
∣
∣
∣

{

i ∈N :
∥
∥D[ν]

i
(e2; .) – e2

∥
∥

B ≥ ε

A

}∣
∣
∣
∣
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≤
∣
∣
∣
∣

{

i ∈N :
(

ν +
2
i

)

≥ ε

2A

}∣
∣
∣
∣

+
∣
∣
∣
∣

{

i ∈N :
1

3i2
≥ ε

2A

}∣
∣
∣
∣
.

Since statistical limit of the right-hand side of the inequality is 0, thus

st – lim
i

∥
∥D[ν]

i
(e2; .) – e2

∥
∥

B = 0

So, proof is complete. �

By using the above Lemma 3.2 and Korovkin’s approximation Theorem 2.1, the following
outcome is obtained:

Theorem 3.3 If the sequence of positive linear operators D[ν]
i

, defined by (2.8), then for any
function z ∈ CM[0,μ] ⊂ CM[0,∞) and κ ∈ [0,μ] ⊂ C[0,∞), where μ > 0, we have

st – lim
∥
∥D[ν]

i
(z; .) – z

∥
∥

B = 0, (3.2)

where CM[0,μ] represents the space of all real bounded functions z continuous in [0,∞).

4 Rate of convergence
Let CM[0,∞) be the space of all continuous and bounded functions on [0,∞) and κ ≥ 0,
then the modulus of continuity of z is defined as

ω(z, δ) := sup
κ,y∈[0,∞),|κ–y|≤δ

∣
∣z(κ) – z(y)

∣
∣, (4.1)

where δ > 0.
We can see from (4.1), for z ∈ CM[0,∞),

lim
δ→0

ω(z; δ) = 0.

For any δ > 0 and for each u,κ ≥ 0, we have

∣
∣z(u) – z(κ)

∣
∣ ≤ ω(z, δ)

(

1 +
|u – κ|

δ

)

. (4.2)

Theorem 4.1 Let z ∈ CM[0,∞). If D[ν]
i

is defined by (2.8), then we have

∣
∣D[ν]

i
(z;κ) – z(κ)

∣
∣ ≤ 2ω(z,

√

δi), (4.3)

where

δi(κ) =
(

ν +
1

i

)

κ +
1

3i2
. (4.4)

Proof With Popoviciu’s technique, i.e., with (4.2) (see, Theorem 1.6.1 of [30]), by linear
property and positivity of the operator D[ν]

i
, we get ∀i ∈N and κ ∈ [0,∞), that

∣
∣D[ν]

i
(z;κ) – z(κ)

∣
∣ ≤ D[ν]

i

(∣
∣z(u) – z(κ)

∣
∣;κ

)

. (4.5)
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By using (4.2) in inequality (4.5), we get

∣
∣D[ν]

i
(z;κ) – z(κ)

∣
∣ ≤ ω(z, δ)

(

1 +
D[ν]

i
(|u – κ|;κ)

δ

)

. (4.6)

Applying Cauchy–Schwartz inequality and from Lemma 3.1, we get from (4.6) that

∣
∣D[ν]

i
(z;κ) – z(κ)

∣
∣ ≤ ω(z, δ)

(

1 +
i
∑∞

r=0 s[ν]
i,r (κ)(

∫ r+1
i

r
i

(u – κ)2 du)1
2 (

∫ r+1
i

r
i

dt)1
2

δ

)

≤ ω(z, δ)
(

1 +
(D[ν]

i
((u – κ)2;κ))1

2 × (D[ν]
i

(1;κ))1
2

δ

)

≤ ω(z, δ)
(

1 +

√

(ν + 1

i
)κ + 1

3i2

δ

)

.

If we choose δi := (ν + 1

i
)κ + 1

3i2 and δ :=
√

δi, the expected result is obtained. �

Notice by Theorem 3.3, we can say that st – limi ω(z,
√

δi) = 0.
This provides us the pointwise rate of convergence in statistical sense, of the operators

D[ν]
i

(z;κ) to z(κ).
Now we analyze the rate of convergence of the operator D[ν]

i
using functions of the Lip-

schitz class LipM(β), where M > 0 and 0 < β ≤ 1. The function z ∈ CM[0,∞) belongs to
LipM(β) if

∣
∣z(u) – z(κ)

∣
∣ ≤ M|u – κ|β ; ∀u,κ ∈ [0,∞). (4.7)

Theorem 4.2 Let D[ν]
i

be defined as in (2.8) and let z ∈ LipM(β) with β ∈ (0,1], then

∣
∣D[ν]

i
(z;κ) – z(κ)

∣
∣ ≤ M(δi)

β
2 , (4.8)

where δi is defined as above.

Proof By linearity and positivity of the operator D[ν]
i

and z ∈ LipM(β) with β ∈ (0,1], we
can write

∣
∣D[ν]

i
(z;κ) – z(κ)

∣
∣ ≤ D[ν]

i

(∣
∣z(t) – z(κ)

∣
∣;κ

)

≤ MD[ν]
i

(|t – κ|β ;κ
)

.

Thus, we obtain

∣
∣D[ν]

i
(z;κ) – z(κ)

∣
∣ ≤ M

(

i

∞
∑

r=0
s[ν]
i,r (κ)

∫ r+1
i

r
n

|u – κ|β dt

)

. (4.9)

Applying Hölder’s inequality in (4.9), for p = 2
β

and q = 2
2–β

, we have

∣
∣D[ν]

i
(z;κ) – z(κ)

∣
∣ ≤ M

(

i

∞
∑

r=0
s[ν]
i,r (κ)

(∫ r+1
i

r
i

|u – κ|2 du
) β

2
(∫ r+1

i

r
n

du
) 2–β

2
)
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≤ M

(

i

∞
∑

r=0
s[ν]
i,r (κ)

∫ r+1
i

r
i

|u – κ|2 du

) β
2

×
(

i

∞
∑

r=0
s[ν]
i,r (κ)

∫ r+1
i

r
i

du

) 2–β
2

≤ M
(

D[ν]
i

(

(u – κ)2;κ
)) β

2
(

D[ν]
i

(1;κ)
) 2–β

2 .

Using Lemma 3.1 and taking δi = (ν + 1

i
)κ + 1

3i2 , we get

∣
∣D[ν]

i
(z;κ) – z(κ)

∣
∣ ≤ M(δi)

β
2 ,

which proves the theorem. �

So, Theorem 4.1 and Theorem 4.2 give us the rate of convergence of operators D[ν]
i

to z.

5 Statistical convergence-weighted
This section focuses on studying the properties of the weighted approximation of D[ν]

i
us-

ing the weighted Korovkin-type theorem proposed by Gadjiev in [19]. The aim is to obtain
approximation properties on infinite intervals. In the context of this study, the following
notations are used for ρ(κ) = 1 + κ

2.
Let Bρ denote the set of all functions z defined on [0,∞) that satisfy the condition

|z(κ)| ≤ Mzρ(κ), where Mz is a constant associated with each z. Consider Cρ as the sub-
space of continuous functions in the space Bρ . Additionally, let C∗

ρ be the subspace of
functions z ∈ Cρ for which the finite limit of limκ→∞ z(κ)

ρ(κ) exists.
The space C∗

ρ can be regarded as a linear normed space with the norm defined as:

‖z‖ρ = sup
κ≥0

|z(κ)|
ρ(κ)

. (5.1)

In this section, the norm defined in (5.1) is used.
Now, for convergence in weighted statistical sense, we recollect Gadjiev’s stated theorem

in [19] as follows:

Theorem 5.1 Let Bi be a positive linear operators sequence from Cρ → Cρ (or Bρ ), which
satisfies the following conditions:

lim
i→∞

∥
∥Bi(er ; .) – er

∥
∥

ρ
= 0; r = 0,1, 2,

then

lim
i→∞

∥
∥Bi(z; .) – z

∥
∥

ρ
= 0

for any function z ∈ C0
ρ , where er = κ

r .
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Lemma 5.2 ([19]) For a positive linear operators sequence, we have Bi : Cρ → Bρ if and
only if

∥
∥Bi(ρ; .)

∥
∥ ≤ Mρ ,

where Mρ is a constant that depends only on ρ .

So, for the operators D[ν]
i

defined by (2.8), we obtain the main result.

Theorem 5.3 Let D[ν]
i

be the sequence of positive linear operators defined by (2.8), then for
all z ∈ C0

ρ , we have

lim
i→∞

∥
∥D[ν]

i
(z; .) – z

∥
∥ = 0,

where ρ(κ) = 1 + κ
2.

Proof To show this, we can prove the condition of Theorem 5.1.
First, we need to show that D[ν]

i
: Cρ → Bρ .

Since ρ(κ) = 1 + κ
2, so by using Lemma 3.1

∥
∥D[ν]

i
(ρ; .)

∥
∥

ρ
≤ ∥

∥D[ν]
i

(1; .)
∥
∥

ρ
+

∥
∥D[ν]

i

(

κ
2; .

)∥
∥

ρ

= sup
κ∈[0,∞)

( |1 + κ
2 + (ν + 2

i
)κ + 1

3i2 |
1 + κ2

)

≤ 1.

So, there exists a positive constant M such that M < 1. Hence,

∥
∥D[ν]

i
(ρ; .)

∥
∥ ≤ M.

Thus, by using Lemma 5.2, we have D[ν]
i

: Cρ → Bρ follows.
Now, since

D[ν]
i

(e0;κ) = 1,

we can clearly say that

st – lim
i→∞

∥
∥D[ν]

i
(e0; .) – e0

∥
∥

ρ
= 0.

Next, by using Lemma 3.1, we have

∥
∥D[ν]

i
(e1; .) – e1

∥
∥

ρ
=
(

sup
κ∈[0,∞)

|D[ν]
i

(e1;κ) – κ|
κ2 + 1

)

≤ κ +
1

2i
– κ

=
1

2i
.
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Clearly, from (3.2)

st – lim
i

(
1

2i

)

= 0.

So,

lim
i→∞

∥
∥D[ν]

i
(e1; .) – e1

∥
∥

ρ
= 0.

Lastly, again from Lemma 3.1,

∥
∥D[ν]

i
(e2; .) – e2

∥
∥

ρ
= sup

κ∈[0,∞)

( |D[ν]
i

(e2; .) – κ
2|

1 + κ2

)

≤ ∣
∣D[ν]

i
(e2; .) – κ

2∣∣

=
(

ν +
2
i

)

κ +
1

3i2
.

Again, by using (3.2), we get

st – lim
i→∞

[(

ν +
2
i

)

κ +
1

3i2

]

= 0.

So,

st – lim
i→∞

∥
∥D[ν]

i
(e2; .) – e2

∥
∥

ρ
= 0.

Hence, by Theorem 5.1, our proof completes. �

6 Applications of modified Kantorovich operators
In this section, we have reviewed various applications in previously published papers on
the applications of Kantorovich form of modified Szász–Mirakyan operators to demon-
strate the significance and potential uses of the operators that have been developed and
used in this research work. Our results can potentially be used for applications in the areas
with analogous trends, which are discussed below.

6.1 Applications in the area of convergence in sustainability
In the cited work, [31] Turturean et al. explain the convergence in the long-term viability
of the economies of the EU’s constituent nations. The sustainability and economic pol-
icy factors have been examined in terms of both beta and sigma convergence. In order to
estimate the beta equation, conditional beta convergence takes into account both abso-
lute convergence and the factors that influence economic growth. Baumol established a
methodology for the analyzing beta convergence in 1986 [32], and Sala-i-Martin proposed
the idea of sigma convergence for the very first time in his PhD dissertation in 1990 [33].
This was also the very first time that it was employed. The phrase “sigma convergence”
refers to the gradual shrinking of the difference between the mean of a set of countries or
regions and their means over time. The phrase “sigma convergence” refers to the gradual



Bhardwaj et al. Journal of Inequalities and Applications         (2024) 2024:71 Page 13 of 16

reduction over time of the gap between the mean of a collection of countries or regions
and their means.

However, as discussed in [34], it is not possible to calculate or measure limits or statis-
tical limits with absolute precision. Various mathematical methodologies, like fuzzy set
theory, fuzzy logic, interval analysis, set-valued analysis, etc., have been created to reflect
and describe this imprecision. Among these methods is the neoclassical analysis. Fuzzy
concepts, such as fuzzy limits, fuzzy continuity, and fuzzy derivatives, are applied to study
various ordinary analysis structures, including functions, sequences, series, and operators.
In neoclassical analysis, for instance, the set of fuzzy continuous functions encompasses
the set of continuous functions studied in classical analysis. The techniques of traditional
calculus are extended by neoclassical analysis to account for uncertainties that exist in
computations and observations.

6.2 Applications in the area of medical diagnosis
Costarelli and Vinti [35] utilized sampling Kantorovich operators in enhancing the diag-
nosis of certain vascular apparatus disorders in the medical field. A concrete example is
provided by processing a section of a CT (computerized tomography) image representing
theaorta artery. The family of bivariate sampling Kantorovich operators permits picture
reconstruction and enhancement. A precise diagnosis of vascular apparatus pathology
can be made using augmented biomedical imaging. The region of interest is the vessel’s
lumen, which is essential from a medical standpoint since it helps doctors identify throm-
botic zones(areas of blood clot)from the vessel’s lumen and correct diagnoses of diseases.
The aforementioned problem could be solved by using a contrast medium, which is used
to improve images of the inside of the body in CT investigations; however, we can make a
more accurate diagnosis from the original CT pictures taken without contrast media, as
contrast medium is too invasive to utilize. The primary objective of image processing is
to highlight the lumen in the vessel (Fig. 2), which is delineated by the red square (240240
pixels) on the CT image (Fig. 1). Figure 3 depicts the augmented image produced by oper-
ators. The increase of the final image relative to the original image indicates that the final
image has been built with twice the resolution (960960 pixels). Figure 3 is generally more
detailed than the image in Fig. 2. The image reconstructed using Kantorovich algorithm
depicts the lumen of the blood artery more accurately. Enhancing images with sampling
Kantorovich operators is extremely beneficial from a medical standpoint, enabling doctors
to make more accurate diagnoses.

7 Findings and implications
The convergence in statistical sense of Kantorovich form of modified Szász–Mirakyan
operators has been obtained in classical and weighted space. The finding is important in
medical applications and traditional mathematics; one way to get a close approximation
of the Riemann integrable functions is through the use of the Kantorovich modification
of positive linear operators. According to the discussion of Sect. 6, the use of Kantorovich
operators is tremendously helpful from a medical standpoint; in this work, the rate of
convergence has been approximated through modulus of continuity. The obtained results
in this study can be compared with other approximation results that were obtained using
different tools for the same operators.
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Figure 1 Depicting a CT scan of the abdomen without contrast medium, with a red square highlighting the
aorta artery

Figure 2 Focusing on the ROI of the CT image, specifically on the aorta artery, enhanced to better visualize
the area

8 Conclusion
We examined the convergence in statistical sense of the modified Szász–Mirakyan oper-
ators in the Kantorovich form. The rate of convergence of the operators is determined for
those functions that are continuous and bounded on the interval [0,∞) as well as those
that belong to the Lipschitz class. Functional analysis is significantly aided by the contribu-
tions made by the theory and practice of summability. Therefore, it would be worthwhile
to investigate various convergence in statistical sense and summability approaches for the
operators. Additionally, we also consider the topic of convergence in statistical sense of
the operators in a weighted space.

The potential future applications of this study might include looking at the convergence
in statistical sense rate of a Bézier variation of the operators that have been established, as
well as their respective blended forms in weighted space. With the assistance of functions
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Figure 3 Showing an enhanced version of Fig. 2, Kantorovich operators is used to enhance Fig. 2 with more
clarity and detail

that belong to the Lipschitz class LipM(). The discovery has implications in both traditional
mathematics and medical applications; the Kantorovich modification of positive linear
operators is one way to closely approximate the Riemann integrable functions. The finding
is useful in both medical applications and traditional mathematics.
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