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Abstract
In this study, we introduce a method for finding common fixed points of a finite
family of (ηi , ki)-enriched strictly pseudocontractive (ESPC) maps and (ηi ,βi)-enriched
strictly pseudononspreading (ESPN) maps in the setting of real Hilbert spaces. Further,
we prove the strong convergence theorem of the proposed method under mild
conditions on the control parameters. Our main results are also applied in proving
strong convergence theorems for ηi-enriched nonexpansive, strongly inverse
monotone, and strictly pseudononspreading maps. Some nontrivial examples are
given, and the results obtained extend, improve, and generalize several well-known
results in the current literature.
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1 Introduction
The process of finding solutions to real-life problems has continually defied human in-
tellect. To develop an approach for solving nonlinear problems, fixed point algorithmic
technique has emerged as one of the indispensable tools. Consequently, it has drawn the
attention of well-established mathematicians all over the world (see, for instance, [1–9]
and the references therein), considering the vast applications of results obtained through
this means in diverse fields, from pure mathematics to engineering to applied mathemat-
ics.

In this paper, we assume that H, with inner product 〈·, ·〉 and induced norm ‖ · ‖, is a
real Hilbert space, and ∅ �= � ⊂H is closed and convex; N and R will represent the set of
all positive integers and the set of real numbers, respectively. If � : � −→ � is a nonlinear
map, then F(�) = {℘ ∈ � : �℘ = ℘} will denote the set of fixed point of �.

Definition 1.1 Recall that the map � : � −→ �

1. is known as nonexpansive if

‖�ψ – �℘‖ ≤ ‖ψ – ℘‖, ∀ψ ,φ ∈ �; (1.1)
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2. is called quasi-nonexpansive if F(�) �= ∅ and ∀(ψ ,ϑ) ∈ � × F(�), we have

‖�ψ – ϑ‖ ≤ ‖ψ – ϑ‖; (1.2)

3. is called nonspreading [10] if ∀ψ ,℘ ∈ �, we have

2‖�ψ – �℘‖2 ≤ ‖�ψ – ℘‖2 + ‖�℘ – ψ‖2; (1.3)

4. is called β-strictly pseudononspreading [11] if there exists β ∈ [0, 1) such that
∀ψ ,℘ ∈ �,

‖�ψ – �℘‖2 ≤ ‖ψ – ℘‖2 + β‖ψ – �ψ – (℘ – �℘) + 2〈℘ – �℘,ψ – �〉. (1.4)

It is not difficult to show that (1.3) is equivalent to

‖�ψ – �℘‖2 ≤ ‖ψ – ℘‖2 + 2〈℘ – �℘,ψ – �〉. (1.5)

Remark 1.1 It is easy to see from Definition 1.1 [(3)and(4)] that
(a) if (1.3) holds and F(�) �= ∅, then (1.2) surfaces immediately for all ϑ ∈ F(�);
(b) if (1.3) holds, then (1.4) holds with β = 0. However, the opposite is not true, as

shown in the following example.

Example 1.1 Let � : R−→R be defined by

�ψ =

⎧
⎨

⎩

ψ , ψ ∈ (–∞, 0],

–2ψ , ψ ∈ [0,∞),

with the usual norm. Then, � satisfies (1.4), but not (1.3). Thus, the class of maps satisfying
(1.4) is more general than that of (1.3).

In 2011, Osilike and Isiogugu [11] initiated the concept of β-strictly pseudononspread-
ing (SPN) maps and established weak convergence result of Bailion-type similar to that
obtained in [10] and [12]. In addition, using the notion of mean convergence, they ob-
tained strong convergence results similar to the those established in [10] and thus resolved
an open problem posed by Kurokawa and Takahashi [10] for the case where the map � is
averaged.

A map � : K −→H is called ϑ-inverse strongly monotone if there exists a positive num-
ber ϑ such that

〈ψ – �℘,ψ – ℘〉 ≥ ϑ‖�ψ – �℘‖2, ∀ψ ,℘ ∈K. (1.6)

Finding fixed points of nonexpansive, nonspreading, strictly pseudononspreading, and
strictly pseudocontractive maps is an important topic in fixed point theory, and they have
far-reaching applications in applied areas such as signal processing [13], split feasibility
[14], and convex feasibility problems [15]. Subsequently, as an important generation of
the above-mentioned maps, the notion of enriched nonlinear maps was first introduced
by Berinde [16] (see also [17] and [5]) in the setup of a real Hilbert space. This concept
was later extended to the more general Banach space by Saleem [18].
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Definition 1.2 A map � : � −→ � is called 	�-enriched Lipschitizian (or (η,	�)-
enriched Lipshitizian) (see [18]) if for all ψ ,φ ∈ �, there exist η ∈ [0, +∞) and a continuous
nondecreasing function 	� : R+ −→ R+, with 	�(0) = 0, such that

∥
∥η(ψ – φ) + �ψ – �φ

∥
∥ ≤ (η + 1)	�

(‖ψ – φ‖). (1.7)

The following special cases emanating from inequality (1.7) are worth mentioning:
(i) if η = 0, inequality (1.7) reduces to a class of maps known as 	�-Lipschitizian;

(ii) if η = 0 and 	(t) = Lt, for L > 0, then (1.7) reduces to a class of maps called
L-Lipschitizian with L as the Lipschitz constant. In a more special case where η = 0,
	η(t) = Lt and L = 1, 	�-enriched Lipschitizian map immediately reduces to the
class of nonexpansive maps on �;

(iii) if 	�(s) = 1, then inequality (1.7) becomes

∥
∥η(ψ – φ) + �ψ – �φ

∥
∥ ≤ (η + 1)‖ψ – φ‖, (1.8)

which known as an η-enriched nonexpansive map. This class of maps was first
studied by Berinde [5, 17] as a generalization of a well-known class of maps called
nonexpansive.

Note that if 	� is not necessarily nondecreasing and satisfies the condition

	�(t) < t, t > 0,

then we have the class of η-enriched contraction maps.

Definition 1.3 A map � is known as (η, k)-ESPC (see [18]) if for all ψ ,φ ∈ �, there exist
η ∈ [0, +∞) and j(ψ – φ) ∈ J(ψ – φ) such that

〈
η(ψ – φ) + �ψ – �φ, j

(
(η + 1)(ψ – φ)

)〉

≤ (η + 1)2‖ψ – φ‖2 – k
∥
∥ψ – φ – (�ψ – �φ)

∥
∥2, (1.9)

where k = 1
2 (1 – λ) for some λ ∈ [0, 1).

In the setup of a real Hilbert space, inequality (1.9) is equivalent to the following:

∥
∥η(ψ – φ) + �ψ – �φ

∥
∥2 ≤ (η + 1)2‖ψ – φ‖2 + λ

∥
∥ψ – φ – (�ψ – �φ)

∥
∥2, (1.10)

where λ = 1 – 2k.
In [18], Saleem et al. established that if � is a bounded close and convex subset of a real

Banach space and � : � −→ � is a finite family of (η, k)-ESPC maps, then � has a fixed
point in �.

In 2009, Takahashi and Shimoji [19] initiated the concept of W -map developed from
�1,�2, . . . ,�t and α1,α2, . . . ,αt in the following way:

Definition 1.4 Let E be a Banach space and C ⊂ E be convex. Let N ∈N , {�i}N
i=1 : C −→ C

and α1,α2, . . . ,αN be real numbers such that 0 ≤ αk ≤ 1 for very k = 1, 2, . . . , N . Then, the
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map W is defined as follows:

G1 = α1�1 + (1 – α)1I

G2 = α2�2G1 + (1 – α)2I

G3 = α2�3G2 + (1 – α)3I

...a

GN–1 = αN–1�N–1GN–2 + (1 – αN–1)I

W = GN = αN�N GN–1 + (1 – αN )I.

This is known as W -map developed from �1,�2, . . . ,�N and α1,α2, . . . ,αN .

The results obtained using W -map in [19, 20] were generalized in [20, 21] through the
instrument of K-map, while, in [22, 23], the notion of S-map was studied and applied in
generalizing the main results of [20, 21].

More recently, Ke and Ma [24] introduced and studied the following nonlinear maps:

Definition 1.5 Let E be a real Banach space and ∅ �= K ⊂ E . Let {�i}N
i=1 be a finite family

of maps of K into itself. For i = 1, 2, . . . ,N , let τi = (αi,βi,γi, δi), where αi,βi,γi, δi ∈ [0, 1]
and αi + βi + γi + δi = 1. The map D is defined as follows:

G0 = I

G1 = α1�2
1G0 + β1�1G0 + γ1G0 + δ1I

G2 = α2�2
2G1 + β2�1G1 + γ2G1 + δ2I

G3 = α3�2
3G2 + β3�3G2 + γ3G2 + δ3I

...

GN–1 = αN–1�2
,N–1GN–2 + βN–1�N–1GN–2 + γN–1GN–2 + δN–1I

D = GN = αN�2
N GN–1 + βN�N GN–1 + γN GN–1 + δN I.

This is known as a G-map developed from �1,�2, . . . ,�N and τ1, τ2, . . . , τN .

Using this map, they obtained the following main results as a generalization of the results
in [22, 23].

Lemma 1.1 [24] Let H be a real Hilbert space and ∅ �= K ⊂ H be closed and convex. Let
{�i}N

i=1 : K −→ K be ki-strictly pseudocontractive (SPC) maps with
⋂N

i=1 F(�i) �= ∅, and let
τi = (αi,βi,γi, δi), where αi,βi,γi, δi ∈ [0, 1] with αi + βi + γi + δi = 1. Let D be the G-map
developed from the sequences {�i}N

i=1 and {τi}N
i=1. If the following conditions are satisfied:

(a) α1 ≤ β1 < 1 – k1 and (k1 + β1)α1 < β1(1 – α1 – β1);
(b) βi ≥ ki, ki < γi < 1 and kiαi ≤ βiγi – βiki, for i = 1, 2, . . . , N ,

then F(G) =
⋂N

i=1 F(�i), and D is nonexpansive.
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Theorem 1.2 [24] Let H be a real Hilbert space and ∅ �= K ⊂ H be closed and convex.
Let {�i}N

i=1 : K −→ K be ki-SPC maps and S : K −→ K be a β-SPN map for β ∈ [0, 1). Let
τi = (αi,βi,γi, δi), for i = 1, 2, . . . , N , where αi,βi,γi, δi ∈ [0, 1] with αi + βi + γi + δi = 1 such
that

(a) α1 ≤ β1 < 1 – k1 and (k1 + β1)α1 < β1(1 – α1 – β1);
(b) βi ≥ ki, ki < γi < 1 and kiαi ≤ βiγi – βiki, for i = 1, 2, . . . , N .

Let D be the G-map generated by the sequences {�ω,i}N
i=1 and {τi}N

i=1, where �ω,i = (1 – ω)I +
ω�i. Suppose F = F(S) ∩ ⋂N

i=1 F(�i) �= ∅. Let {℘n} be a sequence developed from arbitrary
u,℘0 ∈K by

⎧
⎪⎪⎨

⎪⎪⎩

�n = (1 – πn)℘n + πnPK(1 – λn(I – S))℘n,

wn = (1 – σn)℘n + σnPK(1 – λn(I – S))�n,

℘n+1 = anu + bnwn + cnDwn,

(1.11)

where {πn}, {σn}, {an}, {bn}, {cn} ⊂ [0, 1] and {λn} ⊂ (0, 1 – β) satisfying the conditions:
(i) an + bn + cn = 1;

(ii) limn→∞ an = 0 and
∑∞

n=0 an = ∞;
(iii) lim infn→∞ bn > 0 and lim infn→∞ cn > 0;
(iv)

∑∞
n=0 λn < ∞;

(v)
∑∞

n=0 |λn+1 – λn| < ∞,
∑∞

n=0 |πn+1 – πn| < ∞,
∑∞

n=0 |σn+1 – σn| < ∞,
∑∞

n=0 |an+1 – an| < ∞,
∑∞

n=0 |bn+1 – bn| < ∞,
∑∞

n=0 |cn+1 – cn| < ∞.
Then, {℘n} converges strongly to ℘̄ = PFu.

Considering the results of Ke and Ma [24] and other results in the reviewed works, the
following question arises:

Question 1.1 Could there be a nonlinear map that contains the G-map for which we
would obtain the results in [24] as special cases?

Ke and Ma [24] considered the G-map and proved Lemma 1.1 and Theorem 1.2 as their
main results in [24]. The results they extended and generalized were consistent with those
from [22, 23]. In this paper, we first introduce a new class of nonlinear maps called η-
enriched D-maps and give some nontrivial examples to demonstrate its existence. Further,
we modify the iterative method studied in [24] and after that give an affirmative answer
to Question 1.1.

2 Preliminaries
Further, in the course of establishing our main results, the following well-known results
should help us. Let H be a real Hilbert space, and let {ψn} ⊂ H. We shall represent weak
convergence of {ψn} to ψ ∈ H by ψn ⇀ ψ and the strong convergence of {ψn} to ψ ∈ H
by ψn → ψ as n → ∞, respectively.

Lemma 2.1 ([11, 24]) Let H be a real Hilbert space. Then, the following results are valid:
(i)

‖℘ + �‖2 = ‖℘‖2 + 2〈℘, �〉 + ‖�‖2, ∀�,℘ ∈H;
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(ii)

‖� + ℘‖2 ≤ ‖�‖2 + 2〈℘, � + ℘〉, ∀�,℘ ∈H;

(iii)

∥
∥
∥
∥
∥

m∑

i=0

βi℘i

∥
∥
∥
∥
∥

2

=
m∑

i=0

βi‖℘i‖2 –
m∑

i=0

βiβj‖℘i – ℘j‖2;

(iv) if {ψn} is a sequence in H such that ψn ⇀ ℘ ∈H, then

lim sup
n→∞

‖ψn – �‖2 = lim sup
n→∞

‖ψn – ℘‖2 + ‖℘ – �‖2.

Definition 2.1 Let H be a real Hilbert space and ∅ �= K ⊂ H be closed and convex. The
nearest point projection PK : H −→ K defined from H onto K is a operator that assigns
to each ψ ∈H its nearest point represented with PKψ in �. Thus, PK is the unique point
in � such that

‖ψ – PKψ‖ ≤ ‖ψ – �‖, ∀� ∈K.

Lemma 2.2 [24] Let H be a real Hilbert space, ∅ �= K ⊂ H be closed and convex and PK :
H −→K be a metric projection. Then,

(i)

‖PK℘ – PK�‖ ≤ 〈℘ – �, PK℘ – PK�〉, ∀℘, � ∈H;

(ii) PK is a nonexpansive map, that is, ‖PK℘ – PK�‖ ≤ ‖℘ – �‖;
(iii)

〈℘ – PK℘, � – PK℘〉 ≤ 0, ∀℘, � ∈K.

Lemma 2.3 ([25]) Let H be a real Hilbert space and ∅ �= K ⊂H be closed and convex. Let
PK : H −→ � be the metric projection of H onto K. Let {ψn} be a sequence in K and

‖ψn+1 – ϑ‖ ≤ ‖ψn – ϑ‖, ∀ϑ ∈K.

Then, {P�ψn} converges strongly.

Lemma 2.4 LetH be a real Hilbert space, ∅ �= K ⊂H be closed and convex and � : K −→K
be a β-ESPN map such that F(�) �= ∅. Let �ξ = ξ I + (1 – ξ )�, ξ ∈ [β , 1). Then, the following
conclusions hold:

1. F(�) = F(�ξ );
2. I – �ξ is demiclosed at zero;
3. ‖�ψ – �ψ‖2 ≤ ‖ψ – φ‖2 + 2

1–ξ
〈ψ – �ψ ,φ – �φ〉;

4. �ξ is quasi-nonexpansive map.
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Lemma 2.5 ([26, 27]) Let {νn} be a sequence of nonnegative real numbers satisfying

νn+1 ≤ (1 – πn)νn + μn,

where {πn} and {μn} are real sequences such that
(i) {πn} ⊂ [0, 1] and

∑∞
n=1 πn = ∞;

(ii) lim supn→∞
μn
πn

≤ 0 or
∑∞

n=0 |μn| < ∞.
Then, limn→∞ νn = 0.

Lemma 2.6 ([26, 27]) Let {νn} ⊂ [0, +∞) be satisfying

νn+1 ≤ (1 – πn)νn + πnμn,

where {πn} and {μn} are real sequences such that
(i) {πn} ⊂ [0, 1] and

∑∞
n=1 πn = ∞;

(ii) lim supn→∞ μn ≤ 0 or
∑∞

n=0 |μn| < ∞.
Then, limn→∞ νn = 0.

Let X be a real Banach space. A map � : D(�) −→ R(�), with domain D(�) and range
R(�) in X , is called demiclosed at a point ϑ (see, for instance, [28]) if whenever {ψn} is
a sequence in D(�) such that ψn ⇀ ψ ∈ D(�) and {�ψn} converges strongly to ℘ , then
�ψ = ℘ .

Lemma 2.7 [22] Let H be a real Hilbert space, ∅ �= K ⊂ H be closed and convex and � :
K −→H be a nonexpansive map. Then, the map I – � is demiclosed at zero.

Lemma 2.8 (Opial property [29]) Let H be a real Hilbert space. Suppose ℘n ⇀ ω, then

lim inf
n→∞ ‖℘n – �‖ > lim inf

n→∞ ‖℘n – ω‖, ∀� ∈H, � �= ω.

3 Results and discussion
Further, we state the following definition.

Definition 3.1 Let H be a real Hilbert space. A map � with domain D(�) and range R(�)
in H is known as (η,β)-ESPN in the sense of Browder and Petryshyn [30] if there exist
η ∈ [0,∞) and β ∈ [0, 1) such that for all (ψ ,φ) ∈D(�),

∥
∥η(ψ – φ) + �ψ – �φ

∥
∥2

≤ (η + 1)2‖ψ – φ‖2 + β
∥
∥ψ – �ψ – (φ – �φ)

∥
∥2 + 2〈ψ – �ψ ,φ – �φ〉. (3.1)

Let ω = 1
η+1 , then it is clear that ω ∈ (0, 1]. In this case, inequality (3.1) becomes

∥
∥
∥
∥

(1 – ω)
ω

(ψ – φ) + �ψ – �φ

∥
∥
∥
∥

2

≤ 1
ω2 ‖ψ – φ‖2 + β

∥
∥ψ – �ψ – (φ – �φ)

∥
∥2 + 2〈ψ – �ψ ,φ – �φ〉,
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which, on simplification, yields

‖�ωψ – �ωφ‖2 ≤ ‖ψ – φ‖2 + β
∥
∥ψ – �ωψ – (φ – �ωφ)

∥
∥2

+ 2〈ψ – �ωψ ,φ – �ωφ〉. (3.2)

Inequality (3.2) is equivalently written as

〈
(I – �ω)ψ – (I – �ω)φ,ψ – φ

〉 ≥ λ
∥
∥ψ – �ωψ – (φ – �ωφ)

∥
∥2

– 〈ψ – �ωψ ,φ – �ωφ〉, (3.3)

where �ω = (1 – ω)I + ω�, λ = 1
2 (1 – β), and I denotes the identity map �. Here, it is not

difficult to see from (3.2) that the average operator �ω is β-SPN.
The following example shows that the class of (η,β)-ESPN maps is larger than the class

of β-SPN maps.

Example 3.1 Let � : [–2, 2] −→ [–2, 2] be defined by

�ψ = –
5
3
ψ , ψ ∈ [–2, 2].

Then, we have

∣
∣η(ψ – φ) + �ψ – �φ

∣
∣2 =

(

η –
5
3

)

|ψ – φ|2,

1
4
∣
∣ψ – �ψ – (φ – �φ)

∣
∣2 =

1
4

∣
∣
∣
∣ψ +

5
3
ψ –

(

φ +
5
3
φ

)∣
∣
∣
∣

2

=
(

1
4

)(
64
9

)

|ψ – φ|2,

2〈ψ – �ψ ,φ – �φ〉 = 2
〈

ψ +
5
3
ψ ,φ +

5
3
φ

〉

=
128

9
ψφ.

Thus, for η = 5
3 , β = 1

4 and �(ψ ,φ) = (η + 1)2|ψ – φ|2 + 1
4 |ψ – �ψ – (φ – �φ)|2 + 2〈ψ –

�ψ ,φ – �φ〉, we get

�(ψ ,φ) =
64
9

|ψ – φ|2 +
(

1
4

)(
64
9

)

|ψ – φ|2 +
128

9
ψφ

=
64
9

[
ψ2 – 2ψφ + φ2] +

(
1
4

)(
64
9

)

|ψ – φ|2 +
128

9
ψφ

=
64
9

[
ψ2 + φ2] +

(
1
4

)(
64
9

)

|ψ – φ|2

> 0

=
∣
∣
∣
∣
5
3

(ψ – φ) –
5
3

(ψ – φ)
∣
∣
∣
∣

2

=
∣
∣η(ψ – φ) + �ψ – �φ

∣
∣2.

Hence, � is ( 5
3 , 1

4 )-ESPN map, but � is not β-SPN since for ψ = 3
2 and φ = – 3

2 , we obtain

‖�ψ – �φ‖2 =
∣
∣
∣
∣�

(
3
2

)

– �
(

–
3
2

)∣
∣
∣
∣

2

=
∣
∣
∣
∣–

5
3

(
3
2

)

+
5
3

(

–
3
2

)∣
∣
∣
∣

2

=
∣
∣
∣
∣–

10
2

∣
∣
∣
∣

2

= 25,
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|ψ – φ|2 =
∣
∣
∣
∣
3
2

–
(

–
3
2

)∣
∣
∣
∣

2

= 9,

β

∣
∣
∣
∣(I – �)

(
3
2

)

– (I – �)
(

–
3
2

)∣
∣
∣
∣

2

=
1
4

∣
∣
∣
∣
3
2

+
5
3

(
3
2

)

–
((

–
3
2

)

+
5
3

(

–
3
2

))∣
∣
∣
∣

2

=
1
4
|8|2 = 16,

and

2
〈

(I – �)
(

3
2

)

, (I – �)
(

–
3
2

)〉

= 2
〈

3
2

+
5
3

(
3
2

)

,
(

–
3
2

)

+
5
3

(

–
3
2

)〉

= 2(4)(–4) = –32.

Therefore,

‖�ψ – �φ‖2 = 25 > 9 + 16 – 32

= ‖ψ – φ‖2 + β
∥
∥ψ – �ψ – (φ – �φ)

∥
∥2 + 2〈ψ – �ψ ,φ – �φ〉,

for β = 1
4 .

The examples below demonstrate the conclusion that the class of (η,λ)-ESPC maps and
the class of maps studied in this paper are independent.

Example 3.2 Let � : R−→R be defined, for each ψ ∈R, by

�ψ =

⎧
⎨

⎩

0, if ψ ∈ (–∞, 2]

1, if ψ ∈ (2,∞),

where R denotes the reals with the usual norm. Then, for all ψ ,φ ∈ (–∞, 2] and for all β ∈
[0, 1), � is (η,β)-ESPN map with η = 0 (see [11] for details). However, � is not (η,λ)-ESPC
map since every (η,λ)-ESPC map satisfies the Lipschitz condition (see, Proposition 3.3
below).

Example 3.3 Let � : R−→R be defined, for each ψ ∈R, by

�ψ = –3ψ , (3.4)

where R denotes the reals with the usual norm. It is shown in [11] that � is (η,λ)-ESPC
map with η = 0. Nevertheless, it is not difficult to see that � is not (η,β)-ESPN map. Indeed,
for η = 0, if ψ = 1

2 and φ = – 1
2 , then

∣
∣η(ψ – φ) + �ψ – �φ

∣
∣2 = 9(η + 1)

= (η + 1)|ψ – φ|2 +
∣
∣ψ – �ψ – (φ – �φ)

∣
∣2

+ 2〈ψ – �ψ ,φ – �φ〉
> (η + 1)|ψ – φ|2 + β

∣
∣ψ – �ψ – (φ – �φ)

∣
∣2

+ 2〈ψ – �ψ ,φ – �φ〉,

for all β ∈ [0, 1).



Agwu et al. Journal of Inequalities and Applications         (2024) 2024:58 Page 10 of 34

Proposition 3.1 Let H be a real Hilbert space and ∅ �= K ⊂ H be closed and convex. Let
� : K −→K be an (η,β)-ESPN map with F(�) �= ∅. Then,

∥
∥η

(
℘n – ℘�

)
+ �℘n – ℘�

∥
∥ ≤ (η + 1)(1 + β)

1 – β

∥
∥℘n – ℘�

∥
∥, ∀(

℘n,℘�
) ∈K× F(�).

Proof Since � is an (η,β)-ESPN, we get

∥
∥η

(
℘n – ℘�

)
+ �℘n – ℘�

∥
∥2 ≤ (η + 1)2∥∥℘n – ℘�

∥
∥2 + β

∥
∥℘n – ℘� –

(�℘n – �℘�
)∥
∥2

+
〈
℘n – �℘n,℘� – �℘�

〉

= (η + 1)2∥∥℘n – ℘�
∥
∥2

+ β
∥
∥(η + 1)

(
℘n – ℘�

)
–

[
η
(
℘n – ℘�

)
+

(�℘n – �℘�
)]∥

∥2

+
〈
℘n – �℘n,℘� – �℘�

〉

= (η + 1)2∥∥℘n – ℘�
∥
∥2 + β

[
(η + 1)2∥∥℘n – ℘�

∥
∥2

+
∥
∥η

(
℘n – ℘�

)
+ �℘n – �℘�

∥
∥2

– 2(η + 1)
〈
℘n – ℘�,�℘n – ℘�

〉]
,

from which

(1 – β)
∥
∥η

(
℘n – ℘�

)
+ �℘n – ℘�

∥
∥2 ≤ (η + 1)2(1 + β)

∥
∥℘n – ℘�

∥
∥2

+ 2β(η + 1)
∥
∥℘n – ℘�

∥
∥
∥
∥�℘n – ℘�

∥
∥. (3.5)

Set C = ‖η(℘n – ℘�) + �℘n – ℘�‖ and D = ‖℘n – ℘�‖ in (3.5) so that

0 ≥ (1 – β)C2 – (η + 1)2(1 + β)D2 – 2β(η + 1)CD

= (1 – β)C2 – (η + 1)2(1 + β)D2 –
[
(η + 1)2(1 + β)D2 + β(η + 1)CD

]

= (1 – β)C2 – (η + 1)2(1 + β)D2 + (η + 1)CD –
[
(η + 1)2(1 + β)D2

+ β(η + 1)CD + (η + 1)CD
]

= (η + 1)(1 – β)
(

C2

η + 1
+ CD

)

–
[

(η + 1)2(1 + β)
(

D2 +
CD
η + 1

)]

= (η + 1)(1 – β)C
(

C
η + 1

+ D
)

–
[

(η + 1)2(1 + β)D
(

D +
C

η + 1

)]

.

The last inequality implies that

C ≤ (η + 1)(1 + β)
1 – β

D, (3.6)

and this completes the proof. �

Proposition 3.2 Let H be a real Hilbert space and ∅ �= K ⊂ H be closed and convex. Let
� : K −→K be an (η,β)-ESPN map with F(�) �= ∅. Then, F(�) = VI(K, (I – �)).
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Proof It is not difficult to see that F(�) ⊆ VI(K, (I – �)). Let A = I – �, ℘ ∈ VI(K, (I – �))
and ℘� ∈ F(�). Since ℘ ∈ VI(K, A), it follows that

〈� – ℘, A℘〉 ≥ 0, ∀� ∈K. (3.7)

Since � is an (η,β)-ESPN map with F(�) �= ∅, it follows that

∥
∥η

(
℘ – ℘�

)
+ �℘n – ℘�

∥
∥2 =

∥
∥η

(
℘ – ℘�

)
+ (I – A)℘n – (I – A)℘�

∥
∥2

=
∥
∥(η + 1)

(
℘ – ℘�

)
–

(
A℘n – A℘�

)∥
∥2

= (η + 1)2∥∥℘ – ℘�
∥
∥ + ‖A℘n – A℘�)‖2

– 2(η + 1)
〈
℘ – ℘�, A℘ – A℘�

〉

= (η + 1)2∥∥℘ – ℘�
∥
∥ + ‖A℘n‖2

– 2(η + 1)
〈
℘ – ℘�, A℘

〉

≤ (η + 1)2∥∥℘ – ℘�
∥
∥ + β

∥
∥(I – �)℘ – (I – �)℘�

∥
∥2

+ 2
〈
℘ – �℘,℘� – �℘�

〉

= (η + 1)2∥∥℘ – ℘�
∥
∥ + β

∥
∥(I – �)℘

∥
∥2,

from which

(1 – β)‖℘ – �℘‖2 ≤ 2(η + 1)
〈
℘ – ℘�,℘ – �℘

〉

= –2(η + 1)
〈
℘� – ℘,℘ – �℘

〉

≤ 0 (by (3.7)).

Consequently, ℘ ∈ F(�) and VI(K, A) ⊆ F(�). Hence, VI(K, A) = F(�). �

Remark 3.1 From Lemma 2.2 and (3.7), we obtain

F(�) = F
(
PK

(
I – λ(I – �)

))
, ∀λ > 0.

Proposition 3.3 ([31]) Let E be a normed space and � : D(�) ⊆ E −→ E be an (η, k)-SPC
map. Then, � is an L-Lipschitizian map.

Proof Since � is an (η, k)-SPC map, ∃k ∈ [0, 1) such that ∀ψ ,φ ∈ d(�),

∥
∥η(ψ – φ) + �ψ – �φ

∥
∥2 ≤ (η + 1)2‖ψ – φ‖2 + k

∥
∥ψ – �ψ – (φ – �φ)

∥
∥2.

From the above inequality, we obtain

∥
∥η(ψ – φ) + �ψ – �φ

∥
∥2

≤ (η + 1)2‖ψ – φ‖2 + k
∥
∥ψ – �ψ – (φ – �φ)

∥
∥2

≤ [
(η + 1)‖ψ – φ‖2 +

√
k
∥
∥ψ – �ψ – (φ – �φ)

∥
∥
]2
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≤ (η + 1)‖ψ – φ‖2 +
√

k
∥
∥(η + 1)(ψ – φ) –

[
η(ψ – φ) + �ψ – �φ

]∥
∥

≤ (η + 1)‖ψ – φ‖2 +
√

k(η + 1)‖ψ – φ‖2 +
√

k
∥
∥η(ψ – φ) + �ψ – �φ

∥
∥.

Therefore,

∥
∥η(ψ – φ) + �ψ – �φ

∥
∥2 ≤ L‖ψ – φ‖,

with L = (η+1)(1+
√

k)
1–

√
k

. �

Proposition 3.4 ([31]) Let H be a real Hilbert space, ∅ �= � ⊂ H and � : � −→ � be an
(η,β)-ESPN map. Then, (I – �) is demiclosed at 0.

Proof Let {ψn} be a sequence in �, which converges weakly to ϑ and {ψn –�ψn} converges
strongly to 0. We want to show that ϑ ∈ F(�). Now, since {ψn} converges weakly, it is
bounded.

For each ψ ∈H, define f : H −→ [0,∞) by

f (ψ) = lim sup
n→∞

‖ψn – ψ‖2.

Then, using Lemma 2.1(iii), we get

f (ψ) = lim sup
n→∞

‖ψn – ϑ‖2 + ‖ϑ – ψ‖2, ∀ψ ∈H.

Consequently,

f (ψ) = f (ϑ) + ‖ϑ – ψ‖2, ∀ψ ∈H,

and

f (�ω) = f (ϑ) + ‖ϑ – �ωϑ‖2 = f (ϑ) +
1

(η + 1)2 ‖ϑ – �ϑ‖2, ∀ψ ∈H. (3.8)

Observe that

f (�ω) = lim sup
n→∞

‖ψn – �ωϑ‖2

= lim sup
n→∞

‖ψn – �ωψn + �ωψn – �ωϑ‖2

= lim sup
n→∞

∥
∥ψn –

[
(1 – ω)ψn + ω�ψn

]
+ (1 – ω)ψn + ω�ψn –

[
(1 – ω)ϑ + ω�ϑ

]∥
∥2

= lim sup
n→∞

∥
∥ω(ψn – �ψn) + (1 – ω)(ψn – ϑ) + ω(�ψn – �ϑ)

∥
∥2

= lim sup
n→∞

∥
∥
∥
∥

η

η + 1
(ψn – ϑ) +

1
η + 1

(�ψn – �ϑ)
∥
∥
∥
∥

2

=
1

(η + 1)2 lim sup
n→∞

∥
∥η(ψn – ϑ) + �ψn – �ϑ

∥
∥2

≤ 1
(η + 1)2 lim sup

n→∞
[
(η + 1)2‖ψn – ϑ‖2 + β‖ϑ – �ϑ‖2]
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= f (ϑ) +
β

(η + 1)2 ‖ϑ – �ϑ‖2. (3.9)

Then, (3.8) and (3.9) give that

(1 – β)‖ϑ – �ϑ‖ ≤ 0

so that ϑ ∈ F(�) as required. �

Proposition 3.5 ([31]) Let H be a real Hilbert space, ∅ �= � ⊂ H and � : � −→ � be an
(η,β)-ESPN map. Then, F(�) is closed and convex.

Proof Let {ψn} be a sequence in �, which converges to ψ . We want to show that ψ ∈ F(�).
Since

‖�ωψ – ψ‖ = ω‖�ψ – ψ‖
≤ ω‖�ψ – �ψn‖ + ω‖ψn – ψ‖ ≤ ω‖ψ – ψn‖ → 0 as n → ∞,

which follows that ψ = �ψ . Hence, ψ ∈ F(�).
Next, let ϑ1,ϑ2 ∈ F(�). We prove that λϑ1 + (1 – λ)ϑ2 ∈ F(�). Set ℘ = λϑ1 + (1 – λ)ϑ2.

Then, ϑ1 – ℘ = (1 – λ)(ϑ1 – ϑ2) and ϑ2 – ℘ = λ(ϑ2 – ϑ1). Since

ω2‖�℘ – ℘‖2 = ‖℘ – �ω℘‖2

=
∥
∥λϑ1 + (1 – λ)ϑ2 – �ω℘

∥
∥2

=
∥
∥λ(ϑ1 – �ω℘) + (1 – λ)(ϑ2 – �ω℘)

∥
∥2

= λ‖ϑ1 – �ω℘‖2 + (1 – λ)‖ϑ2 – �ω℘‖2 – λ(1 – λ)‖ϑ1 – ϑ2‖2

= λ
∥
∥(1 – ω)ϑ1 + ω�ϑ1 –

[
(1 – ω)℘ + ω�℘

]∥
∥2

+ (1 – λ)
∥
∥(1 – ω)ϑ2 + ω�ϑ2 –

[
(1 – ω)℘ + ω�℘

]∥
∥2

– λ(1 – λ)‖ϑ1 – ϑ2‖2

=
∥
∥(1 – ω)(ϑ1 – ℘) + ω(�ϑ1 – �℘)

∥
∥2

+ (1 – λ)
∥
∥(1 – ω)(ϑ2 – ℘) + ω(�ϑ2 – �℘)

∥
∥2

– λ(1 – λ)‖ϑ1 – ϑ2‖2

=
λ

(η + 1)2

∥
∥η(ϑ1 – ℘) + �ϑ1 – �℘

∥
∥2

+
1 – λ

(η + 1)2

∥
∥η(ϑ2 – ℘) + �ϑ2 – �℘

∥
∥2 – λ(1 – λ)‖ϑ1 – ϑ2‖2

≤ λ

(η + 1)2

[
(η + 1)2‖ϑ1 – ℘‖2 + β‖℘ – �℘‖2]

+
1 – λ

(η + 1)2

[
(η + 1)2‖ϑ2 – ℘‖2 + β‖℘ – �℘‖2]

– λ(1 – λ)‖ϑ1 – ϑ2‖2

= λ(1 – λ)2‖ϑ1 – ϑ2‖2 +
β

(η + 1)2 ‖℘ – �℘‖2
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+ (1 – λ)λ2‖ϑ2 – ϑ1‖2 – λ(1 – λ)‖ϑ1 – ϑ2‖2

= λ(1 – λ)[1 – λ + λ]‖ϑ1 – ϑ2‖2 +
β

(η + 1)2 ‖℘ – �℘‖2

– λ(1 – λ)‖ϑ1 – ϑ2‖2,

it follows that (1 – β)‖℘ – �℘‖ ≤ 0. Therefore, ℘ = �℘ and ℘ ∈ F(�) as required. �

Definition 3.2 Let E be a real Banach space and ∅ �= K ⊂ E . Let {�i}N
i=1 be a finite family

of maps of K into itself. For i = 1, 2, . . . ,N , let τi = (αi,βi,γi, δi), where αi,βi,γi, δi ∈ [0, 1]
with αi + βi + γi + δi = 1. The map D : K −→K is defined as follows:

G0 = I

G1 = α1�2
ω,1G0 + β1�ω,1G0 + γ1G0 + δ1I

G2 = α2�2
ω,2G1 + β2�ω,1G1 + γ2G1 + δ2I

G3 = α3�2
ω,3G2 + β3�ω,3G2 + γ3G2 + δ3I

...

GN–1 = αN–1�2
ω,N–1GN–2 + βN–1�ω,N–1GN–2 + γN–1GN–2 + δN–1I

D = GN = αN�2
ω,N GN–1 + βN�ω,N GN–1 + γN GN–1 + δN I,

where �ω,i = (1 – ω)I + ω�i, i = 1, 2, . . . , N . This is known as an η-enriched D-map devel-
oped from �ω,1,�ω,2, . . . ,�ω,N and τ1, τ2, . . . , τN .

Remark 3.2 If η = 0, then ω = 1 and η-enriched D-map become G-map; if η = 0 and for
every i = 1, 2, . . . , N , αi = 0, then η-enriched D-map becomes S-map; if η = 0 and for every
i = 1, 2, . . . , N , αi = 0 and γi = 0, then η-enriched D-map becomes W -map, and if η = 0 and
for every i = 1, 2, . . . , N , αi = 0 and δi = 0, then η-enriched D-map becomes K-map.

Lemma 3.6 Let H be a real Hilbert space and ∅ �= K ⊂ H be closed and convex. Let
{�i}N

i=1 : K −→K be (ηi,βi)-ESPN maps with
⋂N

i=1 F(�i) �= ∅, and let τi = (αi,βi,γi, δi), where
αi,βi,γi, δi ∈ [0, 1] and αi + βi + γi + δi = 1. Let D be an η-enriched D-map developed from
the sequences {�i}N

i=1 and {τi}N
i=1. If the following conditions are satisfied:

(a) α1 ≤ β1 < 1 – k1 and β1γ1 < β1(1 – α1 – β1);
(b) βi ≥ ki, ki < γi < 1 and ηi ≤

√
βiγi–(αi+βi)ki

αi
, for i = 1, 2, . . . , N .

Then, F(D) =
⋂N

i=1 F(�i) and D is nonexpansive.

Proof It is not difficult to see that
⋂N

i=1 F(�i) ⊆ F(D). So, it suffices for us to show that
F(D) ⊆ ⋂N

i=1 F(�i). Let ℘0 ∈ F(D) and ℘� ∈ ⋂N
i=1 F(�i) so that

∥
∥℘0 – ℘�

∥
∥2 =

∥
∥D℘0 – ℘�

∥
∥2

=
∥
∥αN

(�2
ω,N GN–1℘0 – ℘�

)
+ βN

(�ω,N GN–1℘0 – ℘�
)

+ γN
(
GN–1℘0 – ℘�

)

+ δN
(
℘0 – ℘�

)∥
∥2

= αN
∥
∥�2

ω,N GN–1℘0 – ℘�
∥
∥2 + βN

∥
∥�ω,N GN–1℘0 – ℘�

∥
∥2
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+ γN
∥
∥GN–1℘0 – ℘�

∥
∥2

+ δN
∥
∥℘0 – ℘�

∥
∥2 – αNβN

∥
∥�2

ω,N Gn–℘0 – �ω,N GN–1℘0
∥
∥2

– αNγN
∥
∥�2

ω,N Gn–℘0 – GN–1℘0
∥
∥2 – αNδN

∥
∥�2Gn–℘0 – ℘0

∥
∥2

– βNγN‖�ω,N Gn–℘0 – GN–1℘0‖2 – βNδN‖�ω,N Gn–℘0 – ℘0‖2

– γNδN‖GN–1℘0 – ℘0‖2

≤ αN
∥
∥�2

ω,N GN–1℘0 – ℘�
∥
∥2 + βN

∥
∥�ω,N GN–1℘0 – ℘�

∥
∥2

+ γN
∥
∥GN–1℘0 – ℘�

∥
∥2

+ δN
∥
∥℘0 – ℘�

∥
∥2 – αNβN

∥
∥�2

ω,N Gn–℘0 – �ω,N GN–1℘0
∥
∥2

– βNγN‖�ω,N Gn–℘0 – GN–1℘0‖2. (3.10)

Since

∥
∥�2

ω,N GN–1℘0 – ℘�
∥
∥2 =

∥
∥(1 – ω)�N GN–1℘0 + ω�2

N GN–1℘0 –
[
(1 – ω)℘� + ω�N℘�

0
]∥
∥2

=
1

(ηN + 1)2

∥
∥ηN

(�N GN–1℘0 – ℘�
)

+ �2
N GN–1℘0 – �N℘�

0
∥
∥2

and

∥
∥�ω,N GN–1℘0 – ℘�

∥
∥2 =

∥
∥(1 – ω)GN–1℘0 + ω�N GN–1℘0 –

[
(1 – ω)℘� + ω�N℘�

0
]∥
∥2

=
1

(ηN + 1)2

∥
∥ηN

(
GN–1℘0 – ℘�

)
+ �N GN–1℘0 – �N℘�

0
∥
∥2,

it follows from (3.10) that

∥
∥℘0 – ℘�

∥
∥2 ≤ αN

(ηN + 1)2

∥
∥ηN

(�N GN–1℘0 – ℘�
)

+ �2
N GN–1℘0 – �N℘�

0
∥
∥2

+
βN

(ηN + 1)2

∥
∥ηN

(
GN–1℘0 – ℘�

)
+ �N GN–1℘0 – �N℘�

0
∥
∥2

+ γN
∥
∥Gn–1℘0 – ℘�

∥
∥2 + δN

∥
∥℘0 – ℘�

∥
∥2

–
αNβN

(ηN + 1)2

∥
∥�N (�N GN–1℘0) – �N GN–1℘0

∥
∥2

–
βNγN

(ηN + 1)2 ‖GN–1℘0 – �N GN–1℘0‖2

≤ αN

(ηN + 1)2

[
(ηN + 1)2∥∥�N GN–1℘0 – ℘�

∥
∥2 + kN

∥
∥(I – �N )�N Gn–1℘0

∥
∥2]

+
βN

(ηN + 1)2

∥
∥ηN

(
GN–1℘0 – ℘�

)
+ �N GN–1℘0 – �N℘�

0
∥
∥2

+ γN
∥
∥Gn–1℘0 – ℘�

∥
∥2 + δN

∥
∥℘0 – ℘�

∥
∥2

–
αNβN

(ηN + 1)2

∥
∥�N (�N GN–1℘0) – �N GN–1℘0

∥
∥2

–
βNγN

(ηN + 1)2 ‖GN–1℘0 – �N GN–1℘0‖2
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≤ αN

(ηN + 1)2

∥
∥ηN

(
GN–1℘0 – ℘�

)
+ �N GN–1℘0 – �N℘�

0

– ηN (GN–1℘0 – �N GN–1℘0)
∥
∥2 +

αN kN

(ηN + 1)2

∥
∥(I – �N )�N Gn–1℘0

∥
∥2

+
βN

(ηN + 1)2

∥
∥ηN

(
GN–1℘0 – ℘�

)
+ �N GN–1℘0 – �N℘�

0
∥
∥2

+ γN
∥
∥Gn–1℘0 – ℘�

∥
∥2 + δN

∥
∥℘0 – ℘�

∥
∥2

–
αNβN

(ηN + 1)2

∥
∥�N (�N GN–1℘0) – �N GN–1℘0

∥
∥2

–
βNγN

(ηN + 1)2 ‖GN–1℘0 – �N GN–1℘0‖2

≤ αN

(ηN + 1)2

∥
∥ηN

(
GN–1℘0 – ℘�

)
+ �N GN–1℘0 – �N℘�

0
∥
∥2

+
αNη2

N
(ηN + 1)2 ‖GN–1℘0 – �N GN–1℘0)‖2

+
αN kN

(ηN + 1)2

∥
∥(I – �N )�N Gn–1℘0

∥
∥2

+
βN

(ηN + 1)2

∥
∥ηN

(
GN–1℘0 – ℘�

)
+ �N GN–1℘0 – �N℘�

0
∥
∥2

+ γN
∥
∥Gn–1℘0 – ℘�

∥
∥2 + δN

∥
∥℘0 – ℘�

∥
∥2

–
αNβN

(ηN + 1)2

∥
∥�N (�N GN–1℘0) – �N GN–1℘0

∥
∥2

–
βNγN

(ηN + 1)2 ‖GN–1℘0 – �N GN–1℘0‖2n

=
αN + βN

(ηN + 1)2

∥
∥ηN

(
GN–1℘0 – ℘�

)
+ �N GN–1℘0 – �N℘�

0
∥
∥2

+
αN (kN – βN )

(ηN + 1)2

∥
∥(I – �N )�N Gn–1℘0

∥
∥2

+
αNη2

N – βNγN

(ηN + 1)2 ‖GN–1℘0 – �N GN–1℘0‖2

+ γN
∥
∥Gn–1℘0 – ℘�

∥
∥2 + δN

∥
∥℘0 – ℘�

∥
∥2

≤ αN + βN

(ηN + 1)2

[
(ηN + 1)2∥∥GN–1℘0 – ℘�

∥
∥2 + kN‖GN–1℘0 – �N GN–1℘0‖2]

+
αN (kN – βN )

(ηN + 1)2

∥
∥(I – �N )�N Gn–1℘0

∥
∥2

+
αNη2

N – βNγN

(ηN + 1)2 ‖GN–1℘0 – �N GN–1℘0‖2

+ γN
∥
∥Gn–1℘0 – ℘�

∥
∥2 + δN

∥
∥℘0 – ℘�

∥
∥2

= (1 – δN )
∥
∥GN–1℘0 – ℘�

∥
∥2 +

(
1 – (1 – δN )

)∥
∥℘0 – ℘�

∥
∥2

+
αN (kN – βN )

(ηN + 1)2

∥
∥(I – �N )�N GN–1℘0

∥
∥2

+
(αN + βN )kN + αNη2

N – βNγN

(ηN + 1)2 ‖GN–1℘0 – �N GN–1℘0‖2
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≤ (1 – δN )
∥
∥GN–1℘0 – ℘�

∥
∥2 +

(
1 – (1 – δN )

)∥
∥℘0 – ℘�

∥
∥2

...

≤ (1 – δN )
[
(1 – δN–1)

∥
∥GN–1℘0 – ℘�

∥
∥2 +

(
1 – (1 – δN–1)

)∥
∥℘0 – ℘�

∥
∥2]

+
(
1 – (1 – δN )

)∥
∥℘0 – ℘�

∥
∥2

= (1 – δN )(1 – δN–1)
∥
∥GN–1℘0 – ℘�

∥
∥2

+
(
1 – (1 – δN )(1 – δN–1)

)∥
∥℘0 – ℘�

∥
∥2

...

≤
N∏

k=3

(1 – δk)
∥
∥G2℘0 – ℘�

∥
∥2 +

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2

≤
N∏

k=3

(1 – δk)
[

(1 – δ2)
∥
∥G1℘0 – ℘�

∥
∥2 + δ2

∥
∥℘0 – ℘�

∥
∥2

+
α2(k2 – β2)

(η2 + 1)2

∥
∥(I – �2)�2G1℘0

∥
∥2

+
(α2 + β2)k2 + α2η

2
2 – β2γ2

(η2 + 1)2 ‖G1℘0 – �2GN–1℘0‖2
]

+

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2 (3.11)

≤
N∏

k=2

(1 – δk)
∥
∥G1℘0 – ℘�

∥
∥2 +

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2

≤
N∏

k=2

(1 – δk)
{
α1

∥
∥�2

ω,1℘0 – ℘�
∥
∥2

+ β1
∥
∥�ω,1℘0 – ℘�

∥
∥2 + (1 – α1 – β1)

∥
∥℘0 – ℘�

∥
∥2

– α1β1
∥
∥�2

ω,1℘0 – �ω,1℘0
∥
∥2 – α1(1 – α1 – β1)

∥
∥�2

ω,1℘0 – ℘0
∥
∥2

– β1(1 – α1 – β1)‖�ω,1℘0 – ℘0‖2} +

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2

≤
N∏

k=2

(1 – δk)
{
α1

∥
∥�2

ω,1℘0 – ℘�
∥
∥2 + β1

∥
∥�ω,1℘0 – ℘�

∥
∥2

+ (1 – α1 – β1)
∥
∥℘0 – ℘�

∥
∥2

– α1β1
∥
∥�2

ω,1℘0 – �ω,1℘0
∥
∥2 – β1(1 – α1 – β1)‖�ω,1℘0 – ℘0‖2}

+

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2

=
N∏

k=2

(1 – δk){ α1

(η1 + 1)2

∥
∥η1

(�1℘0 – ℘�
)

+ �2
1℘0 – ℘�

∥
∥2

+
β1

(η1 + 1)2

∥
∥η1

(
℘0 – ℘�

)
+ �1℘0 – ℘�

∥
∥2 + (1 – α1 – β1)

∥
∥℘0 – ℘�

∥
∥2
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–
α1β1

(η1 + 1)2

∥
∥(I – �1)�1℘0

∥
∥2 –

β1(1 – α1 – β1)
(η1 + 1)2 ‖�1℘0 – ℘0‖2}

+

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2

≤
N∏

k=2

(1 – δk)
{

α1

(η1 + 1)2

[
(η1 + 1)2∥∥�1℘0 – ℘�

∥
∥2 + k1

∥
∥(I – �1)�1℘0

∥
∥2]

+
β1

(η1 + 1)2

∥
∥η1

(
℘0 – ℘�

)
+ �1℘0 – ℘�

∥
∥2 + (1 – α1 – β1)

∥
∥℘0 – ℘�

∥
∥2

–
α1β1

(η1 + 1)2

∥
∥(I – �1)�1℘0

∥
∥2 –

β1(1 – α1 – β1)
(η1 + 1)2 ‖�1℘0 – ℘0‖2

}

+

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2

=
N∏

k=2

(1 – δk)
{

α1

(η1 + 1)2 ‖[η1
(
℘0 – ℘�

)
+ �1℘0 – ℘� – η1(℘0 – �1℘0)‖2]

+
α1k1

(η1 + 1)2 (η1 + 1)2∥∥(I – �1)�1℘0
∥
∥2]

+
β1

(η1 + 1)2

∥
∥η1

(
℘0 – ℘�

)
+ �1℘0 – ℘�

∥
∥2 + (1 – α1 – β1)

∥
∥℘0 – ℘�

∥
∥2

–
α1β1

(η1 + 1)2

∥
∥(I – �1)�1℘0

∥
∥2 –

β1(1 – α1 – β1)
(η1 + 1)2 ‖�1℘0 – ℘0‖2

}

+

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2

≤
N∏

k=2

(1 – δk)
{

α1

(η1 + 1)2

∥
∥η1

(
℘0 – ℘�

)
+ �1℘0 – ℘�

∥
∥2

+
α1η

2
1

(η1 + 1)2 ‖℘0 – �1℘0‖2

+
α1k1

(η1 + 1)2

∥
∥(I – �1)�1℘0

∥
∥2

+
β1

(η1 + 1)2

∥
∥η1

(
℘0 – ℘�

)
+ �1℘0 – ℘�

∥
∥2 + (1 – α1 – β1)

∥
∥℘0 – ℘�

∥
∥2

–
α1β1

(η1 + 1)2

∥
∥(I – �1)�1℘0

∥
∥2 –

β1(1 – α1 – β1)
(η1 + 1)2 ‖�1℘0 – ℘0‖2

}

+

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2

=
N∏

k=2

(1 – δk)
{

α1 + β1

(η1 + 1)2

∥
∥η1

(
℘0 – ℘�

)
+ �1℘0 – ℘�

∥
∥2

+
α1(k1 – β1)

(η1 + 1)2

∥
∥(I – �1)�1℘0

∥
∥2

+
α1η

2
1 – β1(1 – α1 – β1)

(η1 + 1)2 ‖�1℘0 – ℘0‖2 + (1 – α1 – β1)
∥
∥℘0 – ℘�

∥
∥2

}
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+

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2

≤
N∏

k=2

(1 – δk){ α1 + β1

(η1 + 1)2

[
(η1 + 1)2∥∥℘0 – ℘�

∥
∥2 + k1

∥
∥(I – �1)℘0

∥
∥2]

+
α1(k1 – β1)

(η1 + 1)2

∥
∥(I – �1)�1℘0

∥
∥2 +

α1η
2
1 – β1(1 – α1 – β1)

(η1 + 1)2 ‖�1℘0 – ℘0‖2

+ (1 – α1 – β1)
∥
∥℘0 – ℘�

∥
∥2} +

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2

=
N∏

k=2

(1 – δk)
{
∥
∥℘0 – ℘�

∥
∥2 +

α1(k1 – β1)
(η1 + 1)2

∥
∥(I – �1)�1℘0

∥
∥2

+
α1η

2
1 + (α1 + β1)k1 – β1(1 – α1 – β1)

(η1 + 1)2 ‖�1℘0 – ℘0‖2
}

+

(

1 –
N∏

k=3

(1 – δk)

)
∥
∥℘0 – ℘�

∥
∥2. (3.12)

If we set

U1 =
α1(k1 – β1)

(η1 + 1)2

∥
∥(I – �1)�1℘0

∥
∥2

+
α1η

2
1 + (α1 + β1)k1 – β1(1 – α1 – β1)

(η1 + 1)2 ‖�1℘0 – ℘0‖2,

then by conditions [(a) and (b)], we obtain

U1 ≤ 0. (3.13)

Using (3.12) and the fact that δk < 1 for k = 1, 2, . . . , N , it follows that

U1 ≥ 0. (3.14)

(3.13) and (3.14) imply that

‖�1℘0 – ℘0‖ = 0. (3.15)

Consequently, �1℘0 = ℘0, that is, ℘0 ∈ F(�1) = F(�ω,1). Using the definition G1 and the
fact that �ω,1 = (1 – ω)I + ω�1, we obtain

G1℘0 = α1�2
ω,1G0℘0 + β1�ω,1G0℘0 + γ1G0℘0 + δ1℘0

= α1�2
ω,1℘0 + β1�ω,1℘0 + γ1℘0 + δ1℘0

= α1�ω,1℘0 + β1℘0 + γ1℘0 + δ1℘0

= α1℘0 + β1℘0 + γ1℘0 + δ1℘0 = ℘0. (3.16)
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Again, set

U2 =
α2(k2 – β2)

(η2 + 1)2

∥
∥(I – �2)�2G1℘0

∥
∥2

+
(α2 + β2)k2 + α2η

2
2 – β2γ2

(η2 + 1)2 ‖G1℘0 – �2G1℘0‖2,

then by (3.12), (3.16), and the fact that δk < 1 for k = 3, 4, . . . , N , we obtain

U2 =
α2(k2 – β2)

(η2 + 1)2

∥
∥(I – �2)�2

∥
∥2 +

(α2 + β2)k2 + α2η
2
2 – β2γ2

(η2 + 1)2 ‖℘0 – �2℘0‖2,

≥ 0 (3.17)

Using condition [(a) and (b)], it follows that

‖℘0 – �2℘0‖ = 0.

Hence, �2℘0 = ℘0; that is, ℘0 ∈ F(�2) = F(�ω,2). By the definition G2, we obtain

G2℘0 = ℘0. (3.18)

Continuing in this manner, we obtain

℘0 ∈ F(�i) = F(�ω,i). (3.19)

Consequently,

F(D) ⊆
N⋂

i=1

F(�i) =
N⋂

i=1

F(�ω,i).

Next, we show that D is nonexpansive. Indeed, for any ℘, � ∈K, we have

‖D℘ – D�‖2 =
∥
∥αN

(�2
ω,N GN–1℘ – �2

ω,N GN–1�
)

+ βN (�ω,N GN–1℘ – �ω,N GN–1�)

+ γN (GN–1℘ – GN–1�) + δN (℘ – �)
∥
∥2

= αN
∥
∥�2

ω,N GN–1℘ – �2
ω,N GN–1�

∥
∥2 + βN‖�ω,N GN–1℘ – �ω,N GN–1�‖2

+ γN‖GN–1℘ – GN–1�‖2 + δN‖℘ – �‖2

– αNβN
∥
∥(I – �ω,N )�ω,N GN–1℘ – (I – �ω,N )�ω,N GN–1�

∥
∥2

– βNγN
∥
∥(I – �ω,N )GN–1℘ – (I – �ω,N )GN–1�

∥
∥2

=
αN

(ηN + 1)2

∥
∥ηN (�N GN–1℘ – �N GN–1�) + �2

N GN–1℘ – �2
N GN–1�

∥
∥2

+
βN

(ηN + 1)2

∥
∥ηN (GN–1℘ – GN–1�) + �N GN–1℘ – �N GN–1�

∥
∥2

+ γN‖GN–1℘ – GN–1�‖2 + δN‖℘ – �‖2

– αNβN
∥
∥ω(1 – ω)

[
(I – �N )�N GN–1℘ – (I – �N )�N GN–1�

]



Agwu et al. Journal of Inequalities and Applications         (2024) 2024:58 Page 21 of 34

+ ω
[
(I – �N )�N GN–1℘ – (I – �N )�N GN–1�

]∥
∥2

–
βNγN

(ηN + 1)2

∥
∥(I – �N )GN–1℘ – (I – �N )GN–1�

∥
∥2

≤ αN

(ηN + 1)2

∥
∥ηN (�N GN–1℘ – �N GN–1�) + �2

N GN–1℘ – �2
N GN–1�

∥
∥2

+
βN

(ηN + 1)2

∥
∥ηN (GN–1℘ – GN–1�) + �N GN–1℘ – �N GN–1�

∥
∥2

+ γN‖GN–1℘ – GN–1�‖2 + δN‖℘ – �‖2

–
αNβN

(ηN + 1)2

∥
∥(I – �N )�N GN–1℘ – (I – �N )�N GN–1�

∥
∥2

–
βNγN

(ηN + 1)2

∥
∥(I – �N )GN–1℘ – (I – �N )GN–1�

∥
∥2

≤ αN

(ηN + 1)2

[
(ηN + 1)2‖�N GN–1℘ – �N GN–1�‖2

+ kN
∥
∥(I – �N )�N GN–1℘ – (I – �N )�N GN–1�

∥
∥2]

+
βN

(ηN + 1)2

∥
∥ηN (GN–1℘ – GN–1�) + �N GN–1℘ – �N GN–1�

∥
∥2

+ γN‖GN–1℘ – GN–1�‖2 + δN‖℘ – �‖2

–
αNβN

(ηN + 1)2

∥
∥(I – �N )�N GN–1℘ – (I – �N )�N GN–1�

∥
∥2

–
βNγN

(ηN + 1)2

∥
∥(I – �N )GN–1℘ – (I – �N )GN–1�

∥
∥2

=
αN

(ηN + 1)2

[∥
∥ηN (GN–1℘ – GN–1�) + �N GN–1℘ – �N GN–1�

– ηN
[
(GN–1℘ – GN–1�) – �N GN–1℘ + �N GN–1�

]∥
∥2 (3.20)

+ kN
∥
∥(I – �N )�N GN–1℘ – (I – �N )�N GN–1�

∥
∥2]

+
βN

(ηN + 1)2

∥
∥ηN (GN–1℘ – GN–1�) + �N GN–1℘ – �N GN–1�

∥
∥2

+ γN‖GN–1℘ – GN–1�‖2 + δN‖℘ – �‖2

–
αNβN

(ηN + 1)2

∥
∥(I – �N )�N GN–1℘ – (I – �N )�N GN–1�

∥
∥2

–
βNγN

(ηN + 1)2

∥
∥(I – �N )GN–1℘ – (I – �N )GN–1�

∥
∥2

=
αN + βN

(ηN + 1)2

∥
∥ηN (GN–1℘ – GN–1�) + �N GN–1℘ – �N GN–1�

∥
∥2

+
αN (kN – βN )

(ηN + 1)2

∥
∥(I – �N )�N GN–1℘ – (I – �N )�N GN–1�

∥
∥2

+ γN‖GN–1℘ – GN–1�‖2 + δN‖℘ – �‖2

+
αNη2

N – βNγN

(ηN + 1)2

∥
∥(I – �N )GN–1℘ – (I – �N )GN–1�

∥
∥2

≤ αN + βN

(ηN + 1)2

[
(ηN + 1)2‖GN–1℘ – GN–1�‖2

+ kN
∥
∥(I – �N )GN–1℘ – (I – �N )GN–1�

∥
∥2∥∥2]
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+
αN (kN – βN )

(ηN + 1)2

∥
∥(I – �N )�N GN–1℘ – (I – �N )�N GN–1�

∥
∥2

+ γN‖GN–1℘ – GN–1�‖2 + δN‖℘ – �‖2

+
αNη2

N – βNγN

(ηN + 1)2

∥
∥(I – �N )GN–1℘ – (I – �N )GN–1�

∥
∥2

= (1 – δN )‖GN–1℘ – GN–1�‖2 +
(
1 – (1 – δN )

)‖℘ – �‖2

+
αN (kN – βN )

(ηN + 1)2

∥
∥(I – �N )�N GN–1℘ – (I – �N )�N GN–1�

∥
∥2

+
αNη2

N + (αN + βN )kN – βNγN

(ηN + 1)2

∥
∥(I – �N )GN–1℘ – (I – �N )GN–1�

∥
∥2

= (1 – δN )‖GN–1℘ – GN–1�‖2 +
(
1 – (1 – δN )

)‖℘ – �‖2

...

≤ (1 – δN )
[
(1 – δN–1)‖GN–1℘ – GN–1�‖2 +

(
1 – (1 – δN–1)

)‖℘ – �‖2]

+
(
1 – (1 – δN )

)‖℘ – �‖2

= (1 – δN )(1 – δN–1)‖GN–1℘ – GN–1�‖2

+
(
1 – (1 – δN )(1 – δN–1)

)‖℘ – �‖2

≤
N∏

k=2

(1 – δk)‖GN–1℘ – GN–1�‖2 +

(

1 –
N∏

k=2

(1 – δk)

)

‖℘ – �‖2

=
N∏

k=2

(1 – δk)
∥
∥α1

(�2
ω,1℘ – �2

ω,1�
)

+ β1(�ω,1℘ – �ω,1�)

+ (1 – α1 – β1)(℘ – �)
∥
∥2

+

(

1 –
N∏

k=2

(1 – δk)

)

‖℘ – �‖2

=
N∏

k=2

(1 – δk)
[
α1

∥
∥�2

ω,1℘ – �2
ω,1�

∥
∥2 + β1‖�ω,1℘ – �ω,1�‖2

+ (1 – α1 – β1)‖℘ – �‖2

– α1β1
∥
∥(I – �ω,1)�ω,1℘ – (I – �ω,1)�ω,1�

∥
∥2

– β1(1 – α1 – β1)
∥
∥(I – �ω,1)℘ – (I – �ω,1)�

∥
∥2]

+

(

1 –
N∏

k=2

(1 – δk)

)

‖℘ – �‖2

=
N∏

k=2

(1 – δk)[
α1

(η1 + 1)2

∥
∥η1(�1℘ – �1�) + �2

1℘ – �2
1�

∥
∥2

+
β1

(η1 + 1)2

∥
∥η1(℘ – �) + �1℘ – �1�

∥
∥2 + (1 – α1 – β1)‖℘ – �‖2

– α1β1
∥
∥(I – �ω,1)�ω,1℘ – (I – �ω,1)�ω,1�

∥
∥2
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–
β1(1 – α1 – β1)

(η1 + 1)2

∥
∥(I – �1)℘ – (I – �1)�

∥
∥2]

+

(

1 –
N∏

k=2

(1 – δk)

)

‖℘ – �‖2

=
N∏

k=2

(1 – δk)
[

α1

(η1 + 1)2

[
(η1 + 1)2‖�1℘ – �1�‖2

+ k1
∥
∥(I – �1)℘ – (I – �1)�

∥
∥2]

+
β1

(η1 + 1)2

∥
∥η1(℘ – �) + �1℘ – �1�

∥
∥2 + (1 – α1 – β1)‖℘ – �‖2

–
α1β1

(η1 + 1)2

∥
∥(I – �1)�1℘ – (I – �ω,1)�ω,1�

∥
∥2

–
β1(1 – α1 – β1)

(η1 + 1)2

∥
∥(I – �1)℘ – (I – �1)�

∥
∥2

]

+

(

1 –
N∏

k=2

(1 – δk)

)

‖℘ – �‖2

=
N∏

k=2

(1 – δk)
[

α1

(η1 + 1)2

[∥
∥η1(℘ – �) + �1℘

– �1� – η1
[
(℘ – �) – �1℘ + �1�

]∥
∥2

+ k1
∥
∥(I – �1)℘ – (I – �1)�

∥
∥2]

+
β1

(η1 + 1)2

∥
∥η1(℘ – �) + �1℘ – �1�

∥
∥2 + (1 – α1 – β1)‖℘ – �‖2

–
α1β1

(η1 + 1)2

∥
∥(I – �1)�1℘ – (I – �ω,1)�ω,1�

∥
∥2

–
β1(1 – α1 – β1)

(η1 + 1)2

∥
∥(I – �1)℘ – (I – �1)�

∥
∥2

]

+

(

1 –
N∏

k=2

(1 – δk)

)

‖℘ – �‖2

≤
N∏

k=2

(1 – δk)
[

α1 + β1

(η1 + 1)2

∥
∥η1(℘ – �) + �1℘ – �1�

∥
∥2

+
α1(k1 – β1)

(η1 + 1)2

∥
∥(I – �1)℘ – (I – �1)�

∥
∥2 + (1 – α1 – β1)‖℘ – �‖2

+
α1η

2
1 – β1(1 – α1 – β1)

(η1 + 1)2

∥
∥(I – �1)℘ – (I – �1)�

∥
∥2

]

+

(

1 –
N∏

k=2

(1 – δk)

)

‖℘ – �‖2

≤
N∏

k=2

(1 – δk)
[

α1 + β1

(η1 + 1)2

[
(η1 + 1)2‖℘ – �‖2 + k1

∥
∥(I – �1)℘ – (I – �1)�

∥
∥2]

+
α1(k1 – β1)

(η1 + 1)2

∥
∥(I – �1)℘ – (I – �1)�

∥
∥2 + (1 – α1 – β1)‖℘ – �‖2
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+
α1η

2
1 – β1(1 – α1 – β1)

(η1 + 1)2

∥
∥(I – �1)℘ – (I – �1)�

∥
∥2

]

+

(

1 –
N∏

k=2

(1 – δk)

)

‖℘ – �‖2

=
N∏

k=2

(1 – δk)
[

‖℘ – �‖2 +
α1(k1 – β1)

(η1 + 1)2

∥
∥(I – �1)℘ – (I – �1)�

∥
∥2

+
α1η

2
1 + (α1β1)k1 – β1(1 – α1 – β1)

(η1 + 1)2

∥
∥(I – �1)℘ – (I – �1)�

∥
∥2

]

+

(

1 –
N∏

k=2

(1 – δk)

)

‖℘ – �‖2

≤
N∏

k=2

(1 – δk)‖℘ – �‖2 +

(

1 –
N∏

k=2

(1 – δk)

)

‖℘ – �‖2 = ‖℘ – �‖2. (3.21)

�

Remark 3.3 Since F(D) =
⋂N

i F(�i) �= ∅, it follows that the map D is quasi-nonexpansive,
that is,

∥
∥D℘ – ℘�

∥
∥ ≤ ∥

∥℘ – ℘�
∥
∥, ∀(

℘,℘�
) ∈K× F(D). (3.22)

Example 3.4 Let �1,�2 : R−→R be defined as follows:

�1℘ =

⎧
⎨

⎩

℘, ℘ ∈ (–∞, 0],

– 3
2℘, ℘ ∈ [0, +∞),

and

�2℘ =

⎧
⎨

⎩

–2℘, ℘ ∈ (–∞, 0],

℘, ℘ ∈ [0, +∞).

Then, F(�1) = (–∞, 0] and F(�2) = [0, +∞). Consequently, F(�1) ∩ F(�2) = {0}. Also, it is
shown in [24] that �1 is a (0, k1)-ESPC map (with k1 = 1

5 ) and �2 is a (0, k2)-ESPC map
(with k2 = 1

3 ). Further, if we set τ1 = ( 1
5 , 1

5 , 2
5 , 1

5 ), which satisfies condition (a) of Lemma 3.1,
then it follows from

�2
1℘ =

⎧
⎨

⎩

℘, ℘ ∈ (–∞, 0],

– 3
2℘, ℘ ∈ [0, +∞),

that

G1℘ =
1
5
�2

ω,1℘ +
1
5
�ω,1℘ +

2
5
℘ +

1
5
℘.

Since �1 is (0, k1)-ESPC, it follows that η1 = 0 so that ω = 1
η1+1 = 1. Thus,

�2
ω,1℘ = �2

1,1℘ = (1 – ω)℘ + ω�2
1℘ = �2

1℘,
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and

�ω,1℘ = �2
1,1℘ = (1 – ω)℘ + ω�1℘ = �1℘.

Hence,

G1℘ =
1
5
�2

1℘ +
1
5
�1℘ +

2
5
℘ +

1
5
℘ =

⎧
⎨

⎩

℘, ℘ ∈ (–∞, 0],

0, ℘ ∈ [0, +∞).

Again, if we set τ2 = ( 1
7 , 1

3 , 1
2 , 1

42 ), which satisfies condition (b) of Lemma 3.1, then it follows
from

�2
2℘ =

⎧
⎨

⎩

–2℘, ℘ ∈ (–∞, 0],

0, ℘ ∈ [0, +∞),

that

D℘ = G1℘ =
1
7
�2

ω,1G1℘ +
1
3
�ω,1G1℘ +

1
2

g1℘ +
1

42
℘.

Since �2 is (0, k2)-ESPC, it follows that η2 = 0 so that ω = 1
η2+1 = 1. Thus,

�2
ω,2℘ = �2

1,2℘ = (1 – ω)℘ + ω�2
2℘ = �2

2℘,

and

�ω,2℘ = �2
1,2℘ = (1 – ω)℘ + ω�2℘ = �2℘.

Hence,

D℘ = G2℘ =
1
7
�2

2G1℘ +
1
3
�2G1℘ +

1
2

G1℘ +
1

42
℘

=
1
7
�2

2℘ +
1
3
�2℘ +

1
2
℘ +

1
42

℘ =

⎧
⎨

⎩

– 3
7℘, ℘ ∈ (–∞, 0],

1
42℘, ℘ ∈ [0, +∞).

Using the above information, it is not difficult to see that F(D) = {0} = F(�1) ∩ F(�2). It has
also been demonstrated in [24] that D is nonexpansive.

Theorem 3.7 Let H be a real Hilbert space and ∅ �= K ⊂ H be closed and convex. Let
{�i}N

i=1 : K −→ K be (ηi, ki)-ESPC maps and S : K −→ K be an (η,β)-ESPN map for β ∈
[0, 1). Let τi = (αi,βi,γi, δi), for i = 1, 2, . . . , N , where αi,βi,γi, δi ∈ [0, 1] with αi +βi +γi +δi = 1
such that

(a) αi ≤ βi < 1 – ki; βiγi < βi(1 – αi – βi) for i = 1, 2, . . . , N ;
(b) βi ≥ ki, ki < γi < 1 and ηi ≤

√
βiγi–(αi+βi)ki

αi
, for i = 1, 2, . . . , N .

Let D be the D-map generated by the sequences {�ω,i}N
i=1 and {τi}N

i=1, where �ω,i = (1 – ω)I +
ω�i. Suppose F = F(S) ∩ ⋂N

i=1 F(�i) �= ∅. Let {℘n} be a sequence as defined in (1.11) with
the conditions (i) – (v). Then, {℘n}∞n=0 converges strongly to ℘̄ = PFu.
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Proof First, we show that (I – λnA)℘n, where A = I – S, is nonexpansive. Now, since S is
(η,β)-ESPN map, it follows from Definition 3.1 that

〈
η(℘ – �) + S℘ – S�,η(℘ – �) + S℘ – S�

〉 ≤ 〈
(η + 1)(℘ – �), (η + 1)(℘ – �)

〉

+ β
∥
∥℘ – S℘ – (� – S�)

∥
∥2

+ 2〈℘ – S℘, � – S�〉,

or equivalently

〈
℘ – S℘ – (� – S�),℘ – S℘ – (� – S�)

〉 ≤ β
∥
∥℘ – S℘ – (� – S�)

∥
∥2

+ 2〈℘ – S℘, � – S�〉

so that

1 – β

2
β
∥
∥℘ – S℘ – (� – S�)

∥
∥2 ≤ 〈℘ – S℘, � – S�〉,

which, when A = I – S, yields

1 – β

2
‖A℘ – A�‖2 ≤ 〈A℘, A�〉. (3.23)

Also, since

〈A℘, A�〉 =
〈
℘ – � + A℘ – (℘ – �), –(A℘ – A�) + A℘

〉

= –〈℘ – � + A℘, A℘ – A�〉 + 〈℘ – �, A℘ – A�〉
–

〈
℘ – � –

[
(℘ – �) – A℘

]
, A℘

〉

= –‖℘ – � + A℘‖‖A℘ – A�‖ + 〈℘ – �, A℘ – A�〉
– ‖℘ – � – [(℘ – �) – A℘‖‖A℘‖

= –‖℘ – � + A℘‖‖A℘ – A�‖ + 〈℘ – �, A℘ – A�〉 – ‖A℘‖2,

it follows from (3.23) that

1 – β

2
‖A℘ – A�‖2 ≤ –‖℘ – � + A℘‖‖A℘ – A�‖ + 〈℘ – �, A℘ – A�〉 – ‖A℘‖2

≤ 〈℘ – �, A℘ – A�〉. (3.24)

Thus, if S is an (η,β)-ESPN, then A = I – S is 1–β

2 -inverse strongly monotone map. From
(3.24), we obtain, for any � = ℘̄� ∈ F(S), that

∥
∥(I – λnA)℘n – (I – λnA)℘�

∥
∥2 =

∥
∥
(
℘n – ℘�

)
– λn

(
A℘n – A℘�

)∥
∥2

=
∥
∥℘n – ℘�

∥
∥2 – λn

〈
℘n℘

�, A℘n
〉
+ λ2

n‖A℘n‖2

≤ ∥
∥℘n – ℘�

∥
∥2 – λn

(
(1 – β) – λn

)‖A℘n‖2

≤ ∥
∥℘n – ℘�

∥
∥2. (3.25)
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Next, we set

Q = max
{‖u‖,‖℘n‖,‖wn‖,‖Dwn‖,

∥
∥PK

(
1 – λn(I – S)

)
℘n

∥
∥,‖PK

(
1 – λn(I – S)

)
�n,

∥
∥(I – �)℘n – (I – �)℘n–1

∥
∥,

∥
∥(I – �)�n – (I – �)�n–1

∥
∥,

∥
∥(I – �)℘n

∥
∥,

∥
∥(I – �)�n

∥
∥
}

and then show that Q is bounded. To do this, let ℘� ∈ F (�) be arbitrarily chosen. Then,
using (1.11), we get

∥
∥℘n+1 – ℘�

∥
∥ =

∥
∥anu + bnwn + cnDwn – ℘�

∥
∥

=
∥
∥an

(
u – ℘�

)
+ bn

(
wn – ℘�

)
+ cn

(
Dwn – ℘�

)∥
∥

≤ an
∥
∥u – ℘�

∥
∥ + bn

∥
∥wn – ℘�

∥
∥ + cn

∥
∥Dwn – ℘�

∥
∥

≤ an
∥
∥u – ℘�

∥
∥ + bn

∥
∥wn – ℘�

∥
∥ + cn

∥
∥wn – ℘�

∥
∥

= an
∥
∥u – ℘�

∥
∥ + (1 – an)

∥
∥wn – ℘�

∥
∥. (3.26)

Using Lemma 2.2(ii) and (3.25), we also obtain from (1.11) that

∥
∥wn – ℘�

∥
∥ =

∥
∥(1 – σn)℘n + σnPK

(
1 – λn(I – S)

)
�n – ℘�

∥
∥

≤ (1 – σn)
∥
∥℘n – ℘�

∥
∥ + σn

∥
∥PK

(
1 – λn(I – S)

)
�n – ℘�

∥
∥

≤ (1 – σn)
∥
∥℘n – ℘�

∥
∥ + σn

∥
∥
(
1 – λn(I – S)

)
�n – ℘�

∥
∥

≤ (1 – σn)
∥
∥℘n – ℘�

∥
∥ + σn

∥
∥�n – ℘�

∥
∥, (3.27)

and

∥
∥�n – ℘�

∥
∥ =

∥
∥(1 – πn)℘n + πnPK

(
1 – λn(I – S)

)
℘n – ℘�

∥
∥

≤ (1 – πn)
∥
∥℘n – ℘�

∥
∥ + πn

∥
∥PK

(
1 – λn(I – S)

)
℘n – ℘�

∥
∥

≤ (1 – πn)
∥
∥℘n – ℘�

∥
∥ + πn

∥
∥
(
1 – λn(I – S)

)
℘n – ℘�

∥
∥

≤ (1 – πn)
∥
∥℘n – ℘�

∥
∥ + πn

∥
∥℘n – ℘�

∥
∥

=
∥
∥℘n – ℘�

∥
∥. (3.28)

Thus, (3.26), (3.27), and (3.28) imply that

∥
∥℘n+1 – ℘�

∥
∥ ≤ an

∥
∥u – ℘�

∥
∥ + (1 – an)

∥
∥℘n – ℘�

∥
∥. (3.29)

It is now easy to see using (3.29) and inductional hypothesis that

∥
∥℘n+1 – ℘�

∥
∥ ≤ max

{∥
∥u – ℘�

∥
∥,

∥
∥℘n – ℘�

∥
∥
}

, (3.30)

which consequently implies that {℘n} is bounded. In addition, {�n}, {wn}, and {Dwn} are
also bounded. Now, from Remark 3.1, we have ℘� ∈ F(PK(I – λ(I – �))), and from the
nonexpansiveness of PK, we obtain

∥
∥PK

(
I – λ(I – �)

)
℘n – ℘�

∥
∥2 =

∥
∥PK

(
I – λ(I – �)

)
℘n – PK

(
I – λ(I – �)

)
℘�

∥
∥2
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≤ ∥
∥
(
I – λ(I – �)

)
℘n –

(
I – λ(I – �)

)
℘�

∥
∥2

≤ ∥
∥℘n – ℘�

∥
∥2(by (3.25)).

Thus, using the boundedness of {℘n} and {�n}, it will not be difficult to see that {PK(I –
λ(I – �))℘n} and {PK(I – λ(I – �))�n} are bounded. From Proposition 3.1, we also obtain
that {(I –�)℘n –(I –�)℘n–1} and {(I –�)�n –(I –�)�n–1} are bounded. Hence, Q is bounded.

Next, we show that limn→∞ ‖℘n+1 – ℘n‖ = 0. Using (1.11), we obtain the following esti-
mates

‖℘n+1 – ℘n‖
=

∥
∥anu + bnwn + cnDwn – (an–1u + bn–1wn–1 + cn–1Dwn–1)

∥
∥

=
∥
∥(an – an–1)u + bn(wn – wn–1) + (bn – bn–1)wn–1 + cn(Dwn – Dwn–1)

+ (cn – cn–1)Dwn–1
∥
∥

= |an – an–1|‖u‖ + bn‖wn – wn–1‖ + |bn – bn–1|‖wn–1‖ + cn‖Dwn – Dwn–1‖
+ |cn – cn–1|‖Dwn–1‖

≤ |an – an–1|Q + bn‖wn – wn–1‖ + |bn – bn–1|Q + cn‖wn – wn–1‖
+ |cn – cn–1|Q

= (1 – an)‖wn – wn–1‖ + |an – an–1|Q + |bn – bn–1|Q
+ |cn – cn–1|Q, (3.31)

‖wn+1 – wn‖
=

∥
∥(1 – σn)℘n + σnPK

(
1 – λn(I – S)

)
�n –

(
(1 – σn–1)℘n–1

+ σn–1PK
(
1 – λn–1(I – S)

)
�n–1

)∥
∥

≤ ∥
∥(1 – σn)℘n – (1 – σn–1)℘n–1

∥
∥ +

∥
∥σnPK

(
1 – λn(I – S)

)
�n

– σn–1PK
(
1 – λn–1(I – S)

)
�n–1

∥
∥

≤ (1 – σn)‖℘n – ℘n–1‖ + |σn – σn–1|‖℘n–1‖ + σn
∥
∥PK

(
1 – λn(I – S)

)
�n

– PK
(
1 – λn(I – S)

)
�n–1

∥
∥ + |σn – σn–1|}PK

(
1 – λn–1(I – S)

)
�n–1‖

≤ (1 – σn)‖℘n – ℘n–1‖ + |σn – σn–1|Q + σn
∥
∥
(
1 – λn(I – S)

)
�n

–
(
1 – λn(I – S)

)
�n–1

∥
∥ + |σn – σn–1|Q

≤ (1 – σn)‖℘n – ℘n–1‖ + 2|σn – σn–1|Q + σn‖�n – �n–‖
+ σn‖λn(I – S)�n – λn(I – S))�n–1 + λn(I – S))�n–1 – λn–1(I – S))�n–1‖

≤ (1 – σn)‖℘n – ℘n–1‖ + 2|σn – σn–1|Q + σn‖�n – �n–‖
+ σnλn‖(I – S)�n – (I – S))�n–1‖ + |λn – λn–1|‖(I – S))�n–1‖

≤ (1 – σn)‖℘n – ℘n–1‖ + 2|σn – σn–1|Q + σn‖�n – �n–‖
+ σnλnQ + |λn – λn–1|Q, (3.32)
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and

‖�n+1 – �n‖ =
∥
∥(1 – πn)℘n + πnPK

(
1 – λn(I – S)

)
℘n –

(
(1 – πn–1)℘n–1

+ πn–1PK
(
1 – λn–1(I – S)

)
℘n–1

)∥
∥

≤ ∥
∥(1 – πn)℘n – (1 – πn–1)℘n–1

∥
∥ +

∥
∥πnPK

(
1 – λn(I – S)

)
℘n

– πn–1PK
(
1 – λn–1(I – S)

)
℘n–1

∥
∥

≤ (1 – πn)‖℘n – ℘n–1‖ + |πn – πn–1|‖℘n–1‖
+ πn

∥
∥PK

(
1 – λn(I – S)

)
℘n – PK

(
1 – λn(I – S)

)
℘n–1

∥
∥

+ |πn – πn–1|
∥
∥PK

(
1 – λn–1(I – S)

)
℘n–1

∥
∥

≤ (1 – πn)‖℘n – ℘n–1‖ + |πn – πn–1|Q
+ πn

∥
∥PK

(
1 – λn(I – S)

)
℘n – PK

(
1 – λn(I – S)

)
℘n–1

∥
∥

+ |πn – πn–1|Q
≤ (1 – πn)‖℘n – ℘n–1‖ + 2|πn – πn–1|Q

+ πn‖℘n – ℘n–‖ + πn
∥
∥λn(I – S)℘n – λn(I – S)℘n–1

+ λn(I – S)℘n–1 – λn–1(I – S)℘n–1
∥
∥

≤ (1 – πn)‖℘n – ℘n–1‖ + 2|πn – πn–1|Q
+ πn‖℘n – ℘n–‖ + πnλn

∥
∥(I – S)℘n – (I – S)℘n–1

∥
∥

+ πn|λn – λn–1|
∥
∥(I – S)℘n–1

∥
∥

≤ ‖℘n – ℘n–1‖ + 2|πn – πn–1|Q + πnλnQ

+ πN |λn – λn–1|Q. (3.33)

Using (3.32) and (3.33) in (3.31), we infer

‖℘n+1 – ℘n‖ ≤ (1 – an)
[
(1 – σn)‖℘n – ℘n–1‖ + 2|σn – σn–1|Q

+ σn
(‖℘n – ℘n–1‖ + 2|πn – πn–1|Q + πnλnQ

+ πn|λn – λn–1|Q
)

+ σnλnQ + |λn – λn–1|Q
]

+ |an – an–1|Q
+ |bn – bn–1|Q + |cn – cn–1|Q

= (1 – an)
[
(1 – σn)‖℘n – ℘n–1‖ + 2|σn – σn–1|Q

+ σn‖℘n – ℘n–1| + 2σn|πn – πn–1|Q + σnπnλnQ

+ σnπn|λn – λn–1|Q + σnλnQ + |λn – λn–1|Q
]

+ |an – an–1|Q
+ |bn – bn–1|Q + |cn – cn–1|Q

= (1 – an)‖℘n – ℘n–1‖ + 2(1 – an)|σn – σn–1|Q
+ 2(1 – an)σn|πn – πn–1|Q + σn(1–an)πnλnQ

+ (1 – an)σnπn|λn – λn–1|Q + (1 – an)σnλnQ + (1 – an)|λn – λn–1|Q
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+ |an – an–1|Q + |bn – bn–1|Q + |cn – cn–1|Q
= (1 – an)‖℘n – ℘n–1‖ + �n, (3.34)

where

�n = 2(1 – an)|σn – σn–1|Q + 2(1 – an)σn|πn – πn–1|Q + σn(1–an)πnλnQ

+ (1 – an)σnπn|λn – λn–1|Q + (1 – an)σnλnQ + (1 – an)|λn – λn–1|Q
+ |an – an–1|Q + |bn – bn–1|Q + |cn – cn–1|Q.

Since
∑∞

n=0 �n < ∞ (by conditions [(iv) and (v)]), it follows from Lemma 2.5 and (3.34) that

lim
n→∞‖℘n+1 – ℘n‖ = 0. (3.35)

Next, we show that limn→∞ ‖Dwn – wn‖ = 0 and limn→∞ ‖℘n – wn‖ = 0. Since, from (1.11),
(3.32), (3.33) and Lemma 2.1,

∥
∥℘n+1 – ℘�

∥
∥2 =

∥
∥anu + bnwn + cnDwn – ℘�

∥
∥2

=
∥
∥an

(
u – ℘�

)
+ bn

(
wn – ℘�

)
+ cn

(
Dwn – ℘�

)∥
∥2

= an
∥
∥u – ℘�

∥
∥2 + bn

∥
∥wn – ℘�

∥
∥2 + cn

∥
∥Dwn – ℘�

∥
∥2 – anbn‖u – wn‖2

– ancn‖u – Dwn‖2 – bncn‖Dwn – wn‖2

≤ an
∥
∥u – ℘�

∥
∥2 + bn

∥
∥wn – ℘�

∥
∥2 + cn

∥
∥wn – ℘�

∥
∥2 – bncn‖Dwn – wn‖2

≤ an
∥
∥u – ℘�

∥
∥2 + (1 – an)

∥
∥℘n – ℘�

∥
∥2 – bncn‖Dwn – wn‖2.

≤ an
∥
∥u – ℘�

∥
∥2 +

∥
∥℘n – ℘�

∥
∥2 – bncn‖Dwn – wn‖2

and

∥
∥℘n – ℘�

∥
∥2 –

∥
∥℘n+1 – ℘�

∥
∥2

= ‖℘n – ℘n+1‖2 + 2‖℘n – ℘n+1‖
∥
∥℘n+1 – ℘�

∥
∥

=
(‖℘n – ℘n+1‖ + 2

∥
∥℘� – ℘n+1

∥
∥
)‖℘n – ℘n+1‖

≤ (∥
∥℘n – ℘�

∥
∥ +

∥
∥℘� – ℘n+1

∥
∥ + 2

∥
∥℘n+1 – ℘�

∥
∥
)‖℘n – ℘n+1‖

≤ (∥
∥℘n – ℘�

∥
∥ + 3

∥
∥℘n+1 – ℘�

∥
∥
)‖℘n – ℘n+1‖,

it follows that

bncn‖Dwn – wn‖2 ≤ an
∥
∥u – ℘�

∥
∥2 +

∥
∥℘n – ℘�

∥
∥2 –

∥
∥℘n+1 – ℘�

∥
∥2

= an
∥
∥u – ℘�

∥
∥2 +

(∥
∥℘n – ℘�

∥
∥ + 3

∥
∥℘n+1 – ℘�

∥
∥
)

× ‖℘n – ℘n+1‖. (3.36)

Using conditions [(ii) and (iii)], the boundedness of ‖u – ℘�‖ and {℘n} and the fact that
limn→∞ ‖℘n+1 – ℘n‖ = 0, we obtain from (3.36) that

lim
n→∞‖Dwn – wn‖ = 0. (3.37)
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Also, since

‖℘n – wn‖ ≤ ‖℘n – ℘n+1‖ + ‖℘n+1 – wn‖
= ‖℘n – ℘n+1‖ + ‖anu + bnwn + cnDwn – wn‖
≤ ‖℘n – ℘n+1‖ + an‖u – wn‖ + +cn‖Dwn – wn‖,

it follows that

lim
n→∞‖℘n – wn‖ = 0. (3.38)

Next, let ℘̄ = PFu. Then, we show that lim supn→∞〈u – ℘̄,℘n – ℘̄〉 ≤ 0. Consider a subse-
quence {℘nk } of {℘n} such that

lim sup
n→∞

〈u – ℘̄,℘n – ℘̄〉 = lim
n→∞〈u – ℘̄,℘nk – ℘̄〉. (3.39)

From the boundedness of {℘n}, we can find a subsequence {℘nk } that converges weakly
to a point of K. Without loss of generality, we may consider that ℘nk ⇀ ℘�. Hence, from
(3.38), we get wnk ⇀ ℘�. Using Lemma 2.7 and (3.37), we also obtain D℘� = ℘�; or equiv-
alently, ℘� ∈ F(D). Since wnk ⇀ ℘�, it follows that ℘� ∈ F(S). Now, suppose otherwise and
consider ℘� ∈ F(S). Then,

(
I – λnk (I – S)

)
℘� �= ℘�

and by Lemma 2.8, we obtain

lim inf
n→∞

∥
∥℘nk – ℘�

∥
∥ < lim inf

n→∞
∥
∥℘nk –

(
I – λn(I – S)

)
℘�

∥
∥

≤ lim inf
n→∞

(∥
∥℘nk – ℘�

∥
∥ + λnk

∥
∥(I – S)℘�

∥
∥
)

≤ lim inf
n→∞

∥
∥℘nk – ℘�

∥
∥,

which is a contradiction. Consequently,

℘� ∈ F(S) ∩
N⋂

i=1

F(�i). (3.40)

From (3.40) in combination with the property of metric projection, we get

lim sup
n→∞

〈u – ℘̄,℘n – ℘̄〉 = lim
n→∞〈u – ℘̄,℘nk – ℘̄〉 =

〈
u – ℘̄,℘� – ℘̄

〉 ≤ 0. (3.41)

Last, we shall prove that ℘n → ℘� as n → ∞. Now, from (1.11)

‖℘n+1 – ℘̄‖2 = 〈anu + bnwn + cnDwn – ℘̄,℘n+1 – ℘̄〉
=

〈
an(u – ℘̄) + bn(wn – ℘̄) + cn(Dwn – ℘̄),℘n+1 – ℘̄

〉

≤ an〈u – ℘̄,℘n+1 – ℘̄〉 + bn‖wn – ℘̄‖‖℘n+1 – ℘̄‖



Agwu et al. Journal of Inequalities and Applications         (2024) 2024:58 Page 32 of 34

+ cn‖Dwn – ℘̄‖‖℘n+1 – ℘̄‖
≤ an〈u – ℘̄,℘n+1 – ℘̄〉 + bn‖wn – ℘̄‖‖℘n+1 – ℘̄‖

+ cn‖wn – ℘̄‖‖℘n+1 – ℘̄‖

≤ an〈u – ℘̄,℘n+1 – ℘̄〉 +
bn

2
(
2‖℘n – ℘̄‖‖℘n+1 – ℘̄‖)

+
cn

2
(
2‖℘n – ℘̄‖‖℘n+1 – ℘̄‖)

≤ an〈u – ℘̄,℘n+1 – ℘̄〉 +
1 – an

2
(‖℘n – ℘̄‖2 + ‖℘n+1 – ℘̄‖2),

it follows that

‖℘n+1 – ℘̄‖ ≤
(

1 – an

1 + an

)

‖℘n – ℘̄‖2 +
an

1 + an
〈u – ℘̄,℘n+1 – ℘̄〉

=
(

1 –
2an

1 + an

)

‖℘n – ℘̄‖2 +
an

1 + an
〈u – ℘̄,℘n+1 – ℘̄〉. (3.42)

It is not difficult to see that
∑∞

n=0
2an

1+an
= ∞. Using this fact, together with (3.41), (3.42) and

Lemma 2.6, we get that ℘n → ℘̄ as n → ∞. The proof is completed. �

4 Application
The following theorems can easily be obtained from Theorem 3.7.

Theorem 4.1 Let H be a real Hilbert space and ∅ �= K ⊂ H be closed and convex. Let
{�i}N

i=1 : K −→ K be ηi-enriched nonexpansive maps and S : K −→ K be an (η,β)-ESPN
map for β ∈ [0, 1). Let τi = (αi,βi,γi, δi), for i = 1, 2, . . . , N , where αi,βi,γi, δi ∈ [0, 1] with
αi + βi + γi + δi = 1 and the conditions (a) and (b) in Theorem 3.7.

Let D be the D-map generated by the sequences {�ω,i}N
i=1 and {τi}N

i=1, where �ω,i = (1 –
ω)I + ω�i. Suppose F = F(S) ∩ ⋂N

i=1 F(�i) �= ∅. Let {℘n} be a sequence as defined in (1.11)
with the conditions (i)–(v) . Then, {℘n}∞n=0 converges strongly to ℘̄ = PFu.

Lemma 4.2 [24] Let H be a real Hilbert space and ∅ �= K ⊂ H be closed and convex. Let
� : K −→H be ϑ-inverse strongly monotone map. Then, for all ℘, � ∈K and ν > 0,

∥
∥(I – ν�)℘ – (I – ν�)�

∥
∥2 =

∥
∥℘ – � – ν(�℘ – ��)

∥
∥2

= ‖℘ – �‖2 – 2ν〈�℘ – ��,℘ – �〉 + ν2‖�℘ – ��‖2

≤ ‖℘ – �‖2 – 2ν(ν – 2ϑ)〈�℘ – ��,℘ – �‖�℘ – ��〉. (4.1)

Thus, if 0 < ν ≤ 2ϑ , then I – ν� is a nonexpansive map.

Using (4.1) and Lemma 4.2, the following result emerges as an immediate consequence
of Theorem 4.1.

Theorem 4.3 Let H be a real Hilbert space and ∅ �= K ⊂ H be closed and convex. Let
{Bi}N

i=1 : K −→H be an ϑi-inverse strongly monotone maps and let S : K −→K be an (η,β)-
ESPN map for β ∈ [0, 1). Let {�i}N

i=1 : K −→ K be defined �i℘ = PK(I – νiBi)℘ for every
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℘ ∈K and νi ∈ (0, 2ϑ), and let τi = (αi,βi,γi, δi), for i = 1, 2, . . . , N , where αi,βi,γi, δi ∈ [0, 1]
with αi + βi + γi + δi = 1 and the conditions (a) and (b) in Theorem 3.7.

Let D be the D-map generated by the sequences {�ω,i}N
i=1 and {τi}N

i=1, where �ω,i = (1 –
ω)I + ω�i. Suppose F = F(S) ∩ ⋂N

i=1 F(�i) �= ∅. Let {℘n} be a sequence as defined in (1.11)
with the conditions (i)–(v) . Then, {℘n} converges strongly to ℘̄ = PFu.

5 Conclusion
In this paper, a method for finding common fixed points of a finite family of (ηi, ki)-ESPC
maps and (ηi,βi)-ESPN maps have been introduced in the setup of a real Hilbert space.
Further, strong convergence theorems of the proposed method under mild conditions on
the control parameters have been established. The main results have been applied in prov-
ing strong convergence theorems for ηi-enriched nonexpansive, strongly inverse mono-
tone, and strictly pseudononspreading maps. Some nontrivial examples have also been
constructed to demonstrate the effectiveness of the proposed method.
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31. Agwu, I.K., Işık, H., Igbokwe, D.I.: Weak and strong convergence theorems for a new class of enriched strictly

pseudononspreading mappings in Hilbert spaces. (Submitted)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Fixed point results involving a ﬁnite family of enriched strictly pseudocontractive and pseudononspreading mappings
	Abstract
	Mathematics Subject Classiﬁcation
	Keywords

	A
	b
	c
	Application
	Conclusion
	Author contributions
	Funding
	Data availability
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher's Note


