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Abstract
The Ruscheweyh derivative operator is used in this paper to introduce and investigate
interesting general subclasses of the function class �m ofm-fold symmetric
bi-univalent analytic functions. Estimates of the initial Taylor-Maclaurin coefficients
|am+1| and |a2m+1| are obtained for functions of the subclasses introduced in this
study, and the consequences of the results are discussed. Additionally, the
Fekete-Szegö inequalities for these classes are investigated. The results presented
could generalize and improve some recent and earlier works. In some cases, our
estimates are better than the existing coefficient bounds. Furthermore, within the
engineering domain, the utilization of the Ruscheweyh derivative operator can
encompass a broad spectrum of engineering applications, including the robotic
manipulation control, optimizing optical systems, antenna array signal processing,
image compression, and control system filter design. It emphasizes the potential for
innovative solutions that can significantly enhance the reliability and effectiveness of
engineering applications.
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1 Introduction
Let A denote the class of the functions f that are analytic in the open unit disk U = {z ∈C :
|z| < 1}, normalized by the conditions f (0) = f ′(0) – 1 = 0 of the Taylor-Maclaurin series
expansion

f (z) = z +
∞∑

k=2

akzk . (1.1)
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Assume that S is the subclass of A that contains all univalent functions in U of the form
(1.1), and P is the subclass of all functions h(z) of the form

h(z) = 1 + h1z + h2z2 + h3z3 + · · · , (1.2)

which is analytic in the open unit disk U and Re(h(z)) > 0, z ∈U.
For a function f ∈A defined by (1.1), the Ruscheweyh derivative operator [1] is defined

by

Rδf (z) = z +
∞∑

k=2

�(δ, k)akzk ,

where δ ∈N0 = {0, 1, 2, . . .} = N∪ {0}, z ∈ U, and

�(δ, k) =
�(δ + k)

�(k)�(δ + 1)
.

The Koebe 1/4-theorem [2] asserts that every univalent function f ∈ S has an inverse
f –1 defined by

f –1(f (z)
)

= z (z ∈U) and f
(
f –1(w)

)
= w

(
|w| < r0(f ), r0(f ) � 1

4

)
.

The inverse function g = f –1 has the form

g(w) = f –1(w) = w – a2w2 +
(
2a2

2 – a3
)
w3 –

(
5a3

2 – 5a2a3 + a4
)
w4 + · · · . (1.3)

A function f ∈ A is said to be bi-univalent if both f and f –1 are univalent. The class of
bi-univalent functions in U is denoted by �. The following are some examples of functions
in the class �:

z
1 – z

, – log(1 – z) and
1
2

log

(
1 + z
1 – z

)
,

with the corresponding inverse functions:

w
1 + w

,
ew – 1

ew and
e2w – 1
e2w + 1

,

respectively.
Estimates on the bounds of the Taylor-Maclaurin coefficients |an| are an important con-

cern problem in geometric function theory because they provides information about the
geometric properties of these functions. Lewin [3] studied the class � of bi-univalent func-
tions and discovered that |a2| < 1.51 for the functions belonging to the class �. Later on,
Brannan and Clunie [4] conjectured that |a2|�

√
2. Subsequently, Netanyahu [5] showed

that max |a2| = 4/3 for f ∈ �. Recently, many works have appeared devoted to studying the
bi-univalent functions class � and obtaining non-sharp bounds on the Taylor-Maclaurin
coefficients |a2| and |a3|. In fact, in their pioneering work, Srivastava et al. [6] have revived
and significantly improved the study of the analytic and bi-univalent function class � in
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recent years. They also discovered bounds on |a2| and |a3| and were followed by such au-
thors (see, for example, [7–14] and references therein). The coefficient estimates on the
bounds of |an| (n ∈ {4, 5, 6, . . .}) for a function f ∈ � defined by (1.1) remains an unsolved
problem. In fact, for coefficients greater than three, there is no natural way to obtain an
upper bound. There are a few articles where the Faber polynomial techniques were used
to find upper bounds for higher-order coefficients (see, for example, [15–18]).

For each function f ∈ S , the function

h(z) =
(
f
(
zm)) 1

m , (z ∈ U, m ∈N) (1.4)

is univalent and maps the unit disk into a region with m-fold symmetry. A function f is said
to be m-fold symmetric (see [19]) and is denoted by Am if it has the following normalized
form:

f (z) = z +
∞∑

k=1

amk+1zmk+1, (z ∈U, m ∈ N). (1.5)

Assume that Sm denotes the class of m-fold symmetric univalent functions in U that
are normalized by the series expansion (1.5). In fact, the functions in class S are 1-fold
symmetric. According to Koepf [19], the m-fold symmetric function h ∈P has the form

h(z) = 1 + hmzm + h2mz2m + h3mz3m + · · · . (1.6)

Analogous to the concept of m-fold symmetric univalent functions, Srivastava et al. [20]
defined the concept of m-fold symmetric bi-univalent function in a direct way. Each func-
tion f ∈ � generates an m-fold symmetric bi-univalent function for each m ∈N. The nor-
malized form of f is given as (1.5), and the extension g = f –1 is given by as follows:

g(w) = w – am+1wm+1 +
[
(m + 1)a2

m+1 – a2m+1
]
w2m+1

–
[

1
2

(m + 1)(3m + 2)a3
m+1 – (3m + 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · · . (1.7)

We denote the class of m-fold symmetric bi-univalent functions in U by �m. For m = 1,
the series (1.7) coincides with the series expansion (1.3) of the class �. Following are some
examples of m-fold symmetric bi-univalent functions:

[
zm

1 – zm

] 1
m

,
[
– log

(
1 – zm)] 1

m and
[

1
2

log

(
1 + zm

1 – zm

)] 1
m

,

with the corresponding inverse functions:

(
wm

1 + wm

) 1
m

,
(

ewm – 1
ewm

) 1
m

and
(

e2wm – 1
e2wm + 1

) 1
m

,

respectively.
Recently, authors have expressed an interest in studying the m-fold symmetric bi-

univalent functions class �m (see, for example, [21–24]) and obtaining non-sharp bounds
estimates on the first two Taylor-Maclaurin coefficients |am+1| and |a2m+1|.
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For a function f ∈Am defined by (1.5), one can think of the m-fold Ruscheweyh deriva-
tive operator Rδ : Am →Am, which is analogous to the Ruscheweyh derivative Rδ : A→
A and can define as follows:

Rδf (z) = z +
∞∑

k=1

�(δ + k + 1)
�(k + 1)�(δ + 1)

amk+1zmk+1, (δ ∈ N0, m ∈ N, z ∈U).

In engineering, optimizing optical systems and designing effective control systems pose
enormous challenges. Describing complex wavefronts necessitates the use of analytic and
univalent functions tailored to specific optical constraints, while in signal processing for
antenna arrays, employing m-fold symmetric univalent functions is crucial for beamform-
ing amidst electromagnetic wave complexities, demanding innovation and precision. Con-
trol systems engineering utilizes univalent functions for filter design, where achieving the
desired frequency response must align with system stability and minimal phase distor-
tion, posing a continual challenge. Additionally, modeling complex mechanical systems
requires leveraging the Ruscheweyh derivative operator to analyze functions represent-
ing system dynamics, facilitating critical parameter identification for system performance
optimization. In robotics, univalent functions aid in controlling manipulators while navi-
gating constraints related to joint angles and velocities. Moreover, in image compression
and transmission for communication systems, the use of m-fold symmetric bi-univalent
functions offers the potential for optimizing compression ratios while preserving image
quality, representing an ongoing engineering challenge (see, for example, [25, 26]).

This paper aims to introduce new general subclasses of m-fold symmetric bi-univalent
functions in U applying the m-fold Ruscheweyh derivative operator, obtain estimates
on initial coefficients |am+1| and |a2m+1| for functions in subclasses Q�m (τ ,λ,γ , δ;α) and

�m (τ ,λ,γ , δ;β), and improve many recent works. Moreover, we have derived the Fekete-
Szegö inequalities for these classes. To derive our main results, we need to use the follow-
ing lemmas that will be useful in proving the basic theorems in Sects. 2 and 3.

Lemma 1 [2] If h ∈P with h(z) given by (1.2), then

|hk| ≤ 2, k ∈N.

Lemma 2 [27] If h ∈P with h(z) given by (1.2) and μ is a complex number, then

∣∣h2 – μh2
1
∣∣ ≤ 2 max

{
1, |2μ – 1|}.

2 Coefficient bounds for the function class Q�m (δ,λ,γ , n;α)
In this section, we assume that

λ � 0, 0 � γ � 1, 0 < α � 1, τ ∈C\{0}, δ ∈N0 and m ∈N.

For a function h ∈ P given by (1.2). If K(z) is any complex-valued function such that
K(z) = [h(z)]α , then

∣∣arg
(
K(z)

)∣∣ = α
∣∣arg

(
h(z)

)∣∣ <
απ

2
.
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Definition 1 A function f ∈ �m given by (1.5) is called in the class Q�m (τ ,λ,γ , δ;α) if it
satisfies the following conditions:

∣∣∣∣arg

(
1 +

1
τ

[
(1 – λ)(1 – γ )

Rδf (z)
z

+
(
λ(γ + 1) + γ

)(
Rδf (z)

)′

+ λγ
(
z
(
Rδf (z)

)′′ – 2
)

– 1
])∣∣∣∣ <

απ

2
, (2.1)

and
∣∣∣∣arg

(
1 +

1
τ

[
(1 – λ)(1 – γ )

Rδg(w)
z

+
(
λ(γ + 1) + γ

)(
Rδg(w)

)′

+ λγ
(
w

(
Rδg(w)

)′′ – 2
)

– 1
])∣∣∣∣ <

απ

2
, (2.2)

where z, w ∈U and the function g = f –1 is given by (1.7).

Theorem 1 Let f ∈ Q�m (τ ,λ,γ , δ;α) be given by (1.5). Then,

|am+1|� 2
√

2|τ |α√
(δ + 1)|τα(δ + 2)(m + 1)1(λ,γ , m) + 2(1 – α)(δ + 1)2(λ,γ , m)| , (2.3)

and

|a2m+1|� 2|τ |α
(δ + 1)(δ + 2)1(λ,γ , m)

+
2|τ |2α2(m + 1)

(δ + 1)22(λ,γ , m)
, (2.4)

where

1(λ,γ , m) = 1 + 2(λ + γ )m + λγ
(
(2m + 1)2 + 1

)
, (2.5)

and

2(λ,γ , m) =
(
1 + (λ + γ )m + λγ

(
(m + 1)2 + 1

))2. (2.6)

Proof It follows from (2.1) and (2.2) that

1 +
1
τ

[
(1 – λ)(1 – γ )

Rδf (z)
z

+
(
λ(γ + 1) + γ

)(
Rδf (z)

)′

+ λγ
(
z
(
Rδf (z)

)′′ – 2
)

– 1
]

=
[
p(z)

]α , (2.7)

and

1 +
1
τ

[
(1 – λ)(1 – γ )

Rδg(w)
z

+
(
λ(γ + 1) + γ

)(
Rδg(w)

)′

+ λγ
(
w

(
Rδg(w)

)′′ – 2
)

– 1
]

=
[
q(w)

]α , (2.8)



Srivastava et al. Journal of Inequalities and Applications         (2024) 2024:47 Page 6 of 18

where p, q ∈P have the following representations

p(z) = 1 + pmzm + p2mz2m + p3mz3m + · · · , (2.9)

and

q(w) = 1 + qmwm + q2mw2m + q3mw3m + · · · . (2.10)

Clearly, we have

[
p(z)

]α = 1 + αpmzm +
(

1
2
α(α – 1)p2

m + αp2m

)
z2m

+
(

1
6
α(α – 1)(α – 2)p3

m + α(1 – α)pmp2m + αp3m

)
z3m + · · · , (2.11)

and

[
q(w)

]α = 1 + αqmwm +
(

1
2
α(α – 1)q2

m + αq2m

)
w2m

+
(

1
6
α(α – 1)(α – 2)q3m

m + α(1 – α)qmq2m + αq3m

)
w3m + · · · . (2.12)

We also find that

1 +
1
τ

[
(1 – λ)(1 – γ )

Rδf (z)
z

+
(
λ(γ + 1) + γ

)(
Rδf (z)

)′ + λγ
(
z
(
Rδf (z)

)′′ – 2
)

– 1
]

= 1 +
(1 + m(λ + γ ) + λγ ((m + 1)2 + 1))(δ + 1)

τ
am+1zm

+
(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))(δ + 1)(δ + 2)

2τ
a2m+1z2m + · · · , (2.13)

and

1 +
1
τ

[
(1 – λ)(1 – γ )

Rδg(w)
z

+
(
λ(γ + 1) + γ

)(
Rδg(w)

)′ + λγ
(
w

(
Rδg(w)

)′′ – 2
)

– 1
]

= 1 –
(1 + m(λ + γ ) + λγ ((m + 1)2 + 1))(δ + 1)

τ
am+1wm

+
(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))(δ + 1)(δ + 2)

2τ

× [
(m + 1)a2

m+1 – a2m+1
]
w2m + · · · . (2.14)

Comparing the corresponding coefficients of (2.13) and (2.14) yields

(1 + m(λ + γ ) + λγ ((m + 1)2 + 1))(δ + 1)
τ

am+1 = αpm, (2.15)

(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))(δ + 1)(δ + 2)
2τ

a2m+1 =
α(α – 1)

2
p2

m + αp2m, (2.16)

–
(1 + m(λ + γ ) + λγ ((m + 1)2 + 1))(δ + 1)

τ
am+1 = αqm, (2.17)
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and

(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))(δ + 1)(δ + 2)
2τ

[
(m + 1)a2

m+1 – a2m+1
]

=
α(α – 1)

2
q2

m + αq2m. (2.18)

In view of (2.15) and (2.17), we find that

pm = –qm, (2.19)

and

2(1 + m(λ + γ ) + λγ ((m + 1)2 + 1))2(δ + 1)2

τ 2 a2
m+1 = α2(p2

m + q2
m
)
. (2.20)

Adding (2.16) to (2.18) and substituting the value of p2
m + q2

m form (2.20), we obtain

(δ + 1)(δ + 2)(m + 1)1(λ,γ , m)
2τ

a2
m+1

=
(α – 1)(δ + 1)22(λ,γ , m)

τ 2α
a2

m+1 + α(p2m + q2m), (2.21)

where 1(λ,γ , m) and 2(λ,γ , m) are given by (2.5) and (2.6), respectively.
Further computations using (2.21) yield

a2
m+1 =

2τ 2α2(p2m + q2m)
(δ + 1)[τα(δ + 2)(m + 1)1(λ,γ , m) + 2(1 – α)(δ + 1)2(λ,γ , m)]

. (2.22)

Taking the absolute value of (2.22) and applying Lemma 1 for the coefficients p2m and
q2m, we deduce that

|am+1|� 2
√

2|τ |α√
(δ + 1)|τα(δ + 2)(m + 1)1(λ,γ , m) + 2(1 – α)(δ + 1)2(λ,γ , m)| .

Next, to determine the bound on |a2m+1|, by subtracting (2.18) from (2.16), we obtain

(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))(δ + 1)(δ + 2)
τ

a2m+1

–
(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))(δ + 1)(δ + 2)(m + 1)

2τ
a2

m+1

=
α(α – 1)

2
(
p2

m – q2
m
)

+ α(p2m – q2m). (2.23)

Now, substituting the value of a2
m+1 from (2.20) into (2.23) and using (2.19), we conclude

that

a2m+1 =
τα(p2m – q2m)

2(δ + 1)(δ + 2)1(λ,γ , m)
+

τ 2α2(m + 1)(p2
m + q2

m)
4(δ + 1)22(λ,γ , m)

. (2.24)
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Finally, taking the absolute value of (2.24) and applying Lemma 1 once again for the
coefficients pm, p2m, qm, and q2m, we deduce that

|a2m+1|� 2|τ |α
(δ + 1)(δ + 2)1(λ,γ , m)

+
2|τ |2α2(m + 1)

(δ + 1)22(λ,γ , m)
.

This completes the proof. �

Theorem 2 Let f ∈ Q�m (τ ,λ,γ , δ;α) be given by (1.5). Then,

∣∣a2m+1 – μa2
m+1

∣∣ ≤ α|τ ||4μτασ2 – σ1|
σ1σ2

max

{
1,

∣∣∣∣
τασ1σ2(m + 1)

(4μτασ2 – σ1)σ3
– 1

∣∣∣∣

}

+
α|τ ||4μτασ2 + σ1|

σ1σ2
max

{
1,

∣∣∣∣
τασ1σ2(m + 1)

(4μτασ2 + σ1)σ3
– 1

∣∣∣∣

}
(2.25)

where

σ1 = (δ + 1)
[
τα(δ + 2)(m + 1)

(
1 + 2(λ + γ )m + λγ

(
(2m + 1)2 + 1

))

+ 2(1 – α)(δ + 1)
(
1 + (λ + γ )m + λγ

(
(m + 1)2 + 1

))2],
(2.26)

σ2 = (δ + 1)(δ + 2)
(
1 + 2(λ + γ )m + λγ

(
(2m + 1)2 + 1

))
, (2.27)

and

σ3 = (δ + 1)2(1 + (λ + γ )m + λγ
(
(m + 1)2 + 1

))2. (2.28)

Proof For μ ∈C, using equations (2.22) and (2.24) and arranging, we find

a2m+1 – μa2
m+1 =

(
ατ

2σ2
–

2μτ 2α2

σ1

)
p2m +

τ 2α2(m + 1)
4σ3

p2
m

–
(

ατ

2σ2
+

2μτ 2α2

σ1

)
q2m +

τ 2α2(m + 1)
4σ3

q2
m (2.29)

where σ1, σ2, and σ3 are given by (2.26), (2.27), and (2.28), respectively.
Further computations using (2.29) yield

a2m+1 – μa2
m+1 =

ατ (4μτασ2 – σ1)
2σ1σ2

[
p2m –

τασ1σ2(m + 1)
2(4μτασ2 – σ1)σ3

p2
m

]

–
ατ (4μτασ2 + σ1)

2σ1σ2

[
q2m –

τασ1σ2(m + 1)
2(4μτασ2 + σ1)σ3

q2
m

]
. (2.30)

If we take

μ1 =
τασ1σ2(m + 1)

2(4μτασ2 – σ1)σ3
(2.31)

and

μ2 =
τασ1σ2(m + 1)

2(4μτασ2 + σ1)σ3
, (2.32)
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then from (2.30), we get

∣∣a2m+1 – μa2
m+1

∣∣ ≤ α|τ ||4μτασ2 – σ1|
2σ1σ2

∣∣p2m – μ1p2
m
∣∣

+
α|τ ||4μτασ2 + σ1|

2σ1σ2

∣∣q2m – μ2q2
m
∣∣. (2.33)

Hence, applying Lemmas 2 and (2.33) yields the Fekete-Szegö inequality for the class
Q�m (τ ,λ,γ , δ;α), as given by (2.25). �

3 Coefficient bounds for the function class ��m (τ ,λ,γ ,δ;β)
In this section, we assume that

λ � 0, 0 � γ � 1, 0 � β < 1, τ ∈C\{0}, δ ∈N0 and m ∈N.

If L(z) is any complex-valued function such that L(z) = β + (1 – β)h(z), then

Re
(
L(z)

)
= β + (1 – β) Re

(
h(z)

)
> β .

Definition 2 A function f ∈ �m given by (1.5) is called in the class 
�m (τ ,λ,γ , δ;β) if it
satisfies the following conditions:

Re

(
1 +

1
τ

[
(1 – λ)(1 – γ )

Rδ f (z)
z

+
(
λ(γ + 1) + γ

)(
Rδf (z)

)′

+ λγ
(
z
(
Rδf (z)

)′′ – 2
)

– 1
])

> β , (3.1)

and

Re

(
1 +

1
τ

[
(1 – λ)(1 – γ )

Rδg(w)
z

+
(
λ(γ + 1) + γ

)(
Rδg(w)

)′

+ λγ
(
w

(
Rδg(w)

)′′ – 2
)

– 1
])

> β , (3.2)

where z, w ∈U and the function g = f –1 is given by (1.7).

Theorem 3 Let f ∈ 
�m (τ ,λ,γ , δ;β) be given by (1.5). Then,

|am+1| � min

{
2|τ |(1 – β)

(δ + 1)(1 + m(λ + γ ) + λγ ((m + 1)2 + 1))
,

2

√
2|τ |(1 – β)

(δ + 1)(δ + 2)(m + 1)1(λ,γ , m)

}
, (3.3)

and

|a2m+1|� 4|τ |(1 – β)
(δ + 1)(δ + 2)(1 + 2(λ + γ )m + λγ ((2m + 1)2 + 1))

(3.4)

where 1(λ,γ , m) is defined by (2.5).
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Proof It follows from (3.1) and (3.2) that

1 +
1
τ

[
(1 – λ)(1 – γ )

Rδf (z)
z

+
(
λ(γ + 1) + γ

)(
Rδf (z)

)′

+ λγ
(
z
(
Rδf (z)

)′′ – 2
)

– 1
]

= β + (1 – β)p(z), (3.5)

and

1 +
1
τ

[
(1 – λ)(1 – γ )

Rδg(w)
z

+
(
λ(γ + 1) + γ

)(
Rδg(w)

)′

+ λγ
(
w

(
Rδg(w)

)′′ – 2
)

– 1
]

= β + (1 – β)q(z), (3.6)

where p(z) and q(w) have the forms (2.9) and (2.10), respectively.
Clearly, we have

β + (1 – β)p(z) = 1 + (1 – β)pmzm + (1 – β)p2mz2m + (1 – β)p3mz3m + · · · (3.7)

and

β + (1 – β)q(w) = 1 + (1 – β)qmwm + (1 – β)q2mw2m + (1 – β)q3mw3m + · · · . (3.8)

Equating the corresponding coefficients of (3.5) and (3.6) yields

(1 + m(λ + γ ) + λγ ((m + 1)2 + 1))(δ + 1)
τ

am+1 = (1 – β)pm, (3.9)

(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))(δ + 1)(δ + 2)
2τ

a2m+1 = (1 – β)p2m, (3.10)

–
(1 + m(λ + γ ) + λγ ((m + 1)2 + 1))(δ + 1)

τ
am+1 = (1 – β)qm, (3.11)

and

(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))(δ + 1)(δ + 2)
2τ

[
(m + 1)a2

m+1 – a2m+1
]

= (1 – β)q2m. (3.12)

In view of (3.9) and (3.11), we find that

pm = –qm, (3.13)

and

2(1 + m(λ + γ ) + λγ ((m + 1)2 + 1))2(δ + 1)2

τ 2 a2
m+1 = (1 – β)2(p2

m + q2
m
)
. (3.14)
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Adding (3.10) to (3.12), we obtain

(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))(m + 1)(δ + 1)(δ + 2)
2τ

a2
m+1

= (1 – β)(p2m + q2m). (3.15)

Hence, we find from (3.14) and (3.15) that

a2
m+1 =

τ 2(1 – β)2(p2
m + q2

m)
2(δ + 1)2(1 + m(λ + γ ) + λγ ((m + 1)2 + 1))2 , (3.16)

and

a2
m+1 =

2τ (1 – β)(p2m + q2m)
(δ + 1)(δ + 2)(m + 1)(1 + 2(λ + γ )m + λγ ((2m + 1)2 + 1))

, (3.17)

respectively. By taking the absolute value of (3.16) and (3.17) and applying Lemma 1 for
the coefficients pm, p2m, qm, and q2m, we deduce that

|am+1|� 2|τ |(1 – β)
(δ + 1)(1 + (λ + γ )m + λγ ((m + 1)2 + 1))

,

and

|am+1|� 2

√
2|τ |(1 – β)

(δ + 1)(δ + 2)(m + 1)(1 + 2(λ + γ )m + λγ ((2m + 1)2 + 1))2 ,

respectively. To determine the bound on |a2m+1|, by subtracting (3.12) from (3.10), we get

(δ + 1)(δ + 2)(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))
τ

a2m+1

–
(δ + 1)(δ + 2)(m + 1)(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))

2τ
a2

m+1

= (1 – β)(p2m – q2m). (3.18)

Upon substituting the value of a2
m+1 from (3.16) and (3.17) into (3.18), we conclude that

a2m+1 =
τ 2(1 – β)2(m + 1)(p2

m + q2
m)

4(δ + 1)2(1 + m(λ + γ ) + λγ ((m + 1)2 + 1))2

+
τ (1 – β)(p2m – q2m)

(δ + 1)(δ + 2)1(λ,γ , m)
(3.19)

and

a2m+1 =
2τ (1 – β)p2m

(δ + 1)(δ + 2)(1 + 2(λ + γ )m + λγ ((2m + 1)2 + 1))
. (3.20)

Now, taking the absolute value of (3.19) and (3.20) and applying Lemma 1 once again
for the coefficients pm, p2m, qm, and q2m, we deduce that

|a2m+1|� 2|τ |2(1 – β)2(m + 1)
(δ + 1)2(1 + (λ + γ )m + λγ ((m + 1)2 + 1))2 +

4|τ |(1 – β)
(δ + 1)(δ + 2)1(λ,γ , m)

,
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and

|a2m+1|� 4|τ |(1 – β)
(δ + 1)(δ + 2)(1 + 2(λ + γ )m + λγ ((2m + 1)2 + 1))

,

respectively. This completes the proof. �

Next, we derive the Fekete-Szegö inequality for the class 
�m (τ ,λ,γ , δ;β).

Theorem 4 Let f ∈ 
�m (τ ,λ,γ , δ;β) be given by (1.5). Then,

∣∣a2m+1 – μa2
m+1

∣∣ ≤ 2|τ |(1 – β)
ρ1

[
max

{
1,

∣∣∣∣
τ (1 – β)(2μ – m – 1)

2ρ2
– 1

∣∣∣∣

}

+ max

{
1,

∣∣∣∣
τ (1 – β)(1 + m – 2μ)

2ρ2
– 1

∣∣∣∣

}]
(3.21)

where

ρ1 = (δ + 1)(δ + 2)
(
1 + 2(λ + γ )m + λγ

(
(2m + 1)2 + 1

))
(3.22)

and

ρ2 = (δ + 1)2(1 + m(λ + γ ) + λγ
(
(m + 1)2 + 1

))2. (3.23)

Proof For ν ∈C, using equations (3.16) and (3.19) and arranging, we have

a2m+1 – νa2
m+1 =

τ (1 – β)
ρ1

[
p2m –

τ (1 – β)(2ν – m – 1)ρ1

4ρ2
p2

m

]

–
τ (1 – β)

ρ1

[
q2m –

τ (1 – β)(1 + m – 2ν)ρ1

4ρ2
q2

m

]
(3.24)

where ρ1 and ρ2 are given by (2.29) and (3.23), respectively.
If we take

ν1 =
τ (1 – β)(2ν – m – 1)ρ1

4ρ2

and

ν2 =
τ (1 – β)(1 + m – 2ν)ρ1

4ρ2
,

then from (3.24), we get

∣∣a2m+1 – νa2
m+1

∣∣ ≤ |τ |(1 – β)
ρ1

∣∣p2m – ν1p2
m
∣∣ +

|τ |(1 – β)
ρ1

∣∣q2m – ν2q2
m
∣∣. (3.25)

Hence, our result follows from (3.25) by applying Lemma 2. �
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4 Corollaries and consequences
This section is devoted to demonstrating of some special cases of the definitions and the-
orems. These results are given in the form of remarks and corollaries.

Remark 1 It should be noted that the classes Q�m (τ ,λ,γ , δ;α) and 
�m (τ ,λ,γ , δ;β) are
generalizations of well-known classes considered earlier. These classes are:

1. For δ = γ = 0 and τ = λ = 1, the classes Q�m (τ ,λ,γ , δ;α) and 
�m (τ ,λ,γ , δ;β) reduce
to the classes Hα

�,m and H�,m(β), respectively, which were given by Srivastava et al.
[20].

2. For δ = γ = 0 and τ = 1, the classes Q�m (τ ,λ,γ , δ;α) and 
�m (τ ,λ,γ , δ;β) reduce to
the classes Aα,λ

�,m and Aλ
�,m(β), respectively, which were recently investigated by Eker

[21].
3. For γ = 0 and τ = 1, the class 
�m (τ ,λ,γ , δ;β) reduces to the class ��m (λ, δ;β),

which was studied by Sabir et al. [28].
4. For δ = 0, the classes Q�m (τ ,λ,γ , δ;α) and 
�m (τ ,λ,γ , δ;β) reduce to the classes

WS�m (λ,γ , τ ;α) and WS∗
�m (λ,γ , τ ;β), respectively, which were considered recently

by Srivastava and Wanas [29].
5. For δ = γ = 0, the classes Q�m (τ ,λ,γ , δ;α) and 
�m (τ ,λ,γ , δ;β) reduce to the classes

B�m (τ ,λ;α) and B∗
�m (τ ,λ;β), respectively, which were recently introduced by

Srivastava et al. [30].

Remark 2 In Theorem 1, if we choose
1. δ = 0, then we obtain the results, which were proven by Srivastava and Wanas [29,

Theorem 2.1].
2. δ = 0 and γ = 0, then we obtain the results, which were given by Srivastava et al. [30,

Theorem 2.1].
3. δ = 0, γ = 0 and τ = 1, then we obtain the results, which were obtained by Eker [21,

Theorem 1].
4. δ = 0, γ = 0, λ = 1 and τ = 1, then we obtain the results, which were proven by

Srivastava et al. [20, Theorem 2].

By taking δ = 0 in Theorem 3, we conclude the following result.

Corollary 1 Let f ∈ 
�m (τ ,λ,γ ;β) be given by (1.5). Then,

|am+1| � min

{
2|τ |(1 – β)

1 + m(λ + γ ) + λγ ((m + 1)2 + 1)
,

2

√
|τ |(1 – β)

(m + 1)(1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1))

}
,

and

|a2m+1|� 2|τ |(1 – β)
1 + 2m(λ + γ ) + λγ ((2m + 1)2 + 1)

.

Remark 3 The bounds on |am+1| and |a2m+1| given in Corollary 1 are better than those
given in [29, Theorem 3.1].
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By taking γ = 0 in Corollary 1, we conclude the following result.

Corollary 2 Let f ∈ 
�m (τ ,λ;β) be given by (1.5). Then,

|am+1|� min

{
2|τ |(1 – β)

1 + mλ
, 2

√
|τ |(1 – β)

(m + 1)(1 + 2mλ)

}
,

and

|a2m+1|� 2|τ |(1 – β)
1 + 2mλ

.

Remark 4 The bounds on |am+1| and |a2m+1| given in Corollary 2 are better than those
given in [30, Theorem 3.1].

By setting γ = 0 and τ = 1 in Corollary 1, we conclude the following result.

Corollary 3 Let f ∈ 
�m (λ;β) be given by (1.5). Then,

|am+1|� min

{
2(1 – β)
1 + mλ

, 2

√
(1 – β)

(m + 1)(1 + 2mλ)

}
,

and

|a2m+1|� 2(1 – β)
1 + 2mλ

.

Remark 5 The bounds on |am+1| and |a2m+1| given in Corollary 3 are better than those
given in [21, Theorem 2].

By setting γ = 0 and λ = τ = 1 in Corollary 1, we conclude the following result.

Corollary 4 Let f ∈ 
�m (β) be given by (1.5). Then,

|am+1|� min

{
2(1 – β)

1 + m
, 2

√
(1 – β)

(m + 1)(1 + 2m)

}
,

and

|a2m+1|� 2(1 – β)
1 + 2m

.

Remark 6 The bounds on |am+1| and |a2m+1| given in Corollary 4 are better than those
given in [20, Theorem 3].

Remark 7 For 1-fold symmetric bi-univalent functions, the classes Q�1 (τ ,λ,γ , δ;α) ≡
Q�(τ ,λ,γ , δ;α) and 
�1 (τ ,λ,γ , δ;β) ≡ 
�(τ ,λ,γ , δ;β) are special cases of these classes
illustrated below:

1. For δ = 0, the classes Q�(τ ,λ,γ , δ;α) and 
�(τ ,λ,γ , δ;β) reduce to the classes
WS�(λ,γ , τ ;α) and WS∗

�(λ,γ , τ ;β), respectively, which were recently introduced by
Srivastava and Wanas [29].
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2. For δ = γ = 0 and τ = 1, the classes Q�(τ ,λ,γ , δ;α) and 
�(τ ,λ,γ , δ;β) reduce to the
classes B�(α,λ) and B�(β ,λ), respectively, which were recently investigated by
Frasin and Aouf [8].

3. For δ = γ = 0 and τ = λ = 1, the classes Q�(τ ,λ,γ , δ;α) and 
�(τ ,λ,γ , δ;β) reduce to
the classes H�(α) and H�(β), respectively, which were given by Srivastava et al. [6].

For 1-fold symmetric bi-univalent functions, Theorem 1 reduces to the following corol-
lary:

Corollary 5 Let

f ∈Q�(τ ,λ,γ , δ;α)
(
λ � 0, 0 � γ � 1, 0 < α � 1, τ ∈C\{0}, δ ∈N0

)

be given by (1.1). Then,

|a2|� 2|τ |α√
(δ + 1)|τα(δ + 2)(1 + 2(λ + γ + 5λγ )) + (1 – α)(δ + 1)(1 + λ + γ + 5λγ )2| ,

and

|a3|� 2|τ |α
(δ + 1)(δ + 2)(1 + 2(λ + γ + 5λγ ))

+
4|τ |2α2

(δ + 1)2(1 + λ + γ + 5λγ )2 .

Remark 8 In Corollary 5, if we choose
1. δ = 0, then we obtain the results, which were given by Srivastava and Wanas [29,

Corollary 2.1].
2. δ = 0, γ = 0 and τ = 1, then we obtain the results, which were proven by Frasin and

Aouf [8, Theorem 2.2].
3. δ = 0, γ = 0, λ = 1 and τ = 1, then we obtain the results, which were obtained by

Srivastava et al. [6, Theorem 1].

For 1-fold symmetric bi-univalent functions, Theorem 3 reduces to the following corol-
lary:

Corollary 6 Let

f ∈ 
�(τ ,λ,γ , δ;β)
(
λ� 0, 0 � γ � 1, 0 � β < 1, τ ∈C\{0}, δ ∈N0

)

be given by (1.1). Then,

|a2|� min

{
2|τ |(1 – β)

(δ + 1)(1 + λ + γ + 5λγ )
, 2

√
|τ |(1 – β)

(δ + 1)(δ + 2)(1 + 2(λ + γ + 5λγ ))

}
,

and

|a3|� 4|τ |(1 – β)
(δ + 1)(δ + 2)(1 + 2(λ + γ + 5λγ ))

.

By taking δ = 0 in Corollary 6, we have the following result.
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Corollary 7 Let

f ∈ 
�(τ ,λ,γ ;β)
(
λ� 0, 0 � γ � 1, 0 � β < 1, τ ∈C\{0})

be given by (1.1). Then,

|a2|� min

{
2|τ |(1 – β)

1 + λ + γ + 5λγ
,

√
2|τ |(1 – β)

1 + 2(λ + γ + 5λγ )

}
,

and

|a3|� 2|τ |(1 – β)
1 + 2(λ + γ + 5λγ )

.

Remark 9 The bounds on |a2| and |a3| given in Corollary 7 are better than those given in
[29, Corollary 3.1].

By setting δ = γ = 0 and τ = 1 in Corollary 6, we conclude the following result.

Corollary 8 Let

f ∈ 
�(λ;β) (λ � 0, 0 � β < 1)

be given by (1.1). Then,

|a2|� min

{
2(1 – β)

1 + λ
,
√

2(1 – β)
1 + 2λ

}
,

and

|a3|� 2(1 – β)
1 + 2λ

.

Remark 10 The bounds on |a2| and |a3| given in Corollary 8 are better than those given
in [8, Theorem 3.2].

By setting δ = γ = 0 and λ = τ = 1 in Corollary 6, we conclude the following result.

Corollary 9 Let f ∈ 
�(β) (0 � β < 1) be given by (1.1). Then,

|a2|� min

{
1 – β ,

√
2(1 – β)

3

}
,

and

|a3|� 2(1 – β)
3

.

Remark 11 The bounds on |a2| and |a3| given in Corollary 9 are better than those given
in [6, Theorem 2].
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