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1 Introduction
All graphs considered in this paper are finite, simple, and undirected. Let G = (V (G), E(G))
be a graph. For u ∈ V (G) and a non-empty subset T of V (G), NG(u) = {x ∈ V (G) : ux ∈
E(G)} and 〈T〉 denotes the subgraph induced by T . For u, v ∈ V (G), the distance between
u and v in G, denoted by dG(u, v), is equal to the length of the shortest path between u
and v. Let Kn be the complete graph on n vertices and Kn1,n2,...,nk be the complete k-partite
graph. The complement of the graph G, denoted by Gc, is a graph with V (Gc) = V (G) and
E(Gc) = {xy : xy /∈ E(G)}.

Let H be a graph with V (H) = {x1, x2, . . . , xk}. Let F = {G1, G2, . . . , Gk} be a family of
graphs and S = {Ti ⊆ V (Gi) : Ti �= ∅, 1 ≤ i ≤ k}. The H-generalized join of the family of k
graphs F , constrained by the family of vertex subsets S , denoted by

∨
(H,S ) F produces a

graph such that the vertex set V (
∨

(H,S ) F ) =
⋃k

i=1 V (Gi) and the edge set E(
∨

(H,S ) F ) =
(
⋃k

i=1 E(Gi)) ∪ (
⋃

xixj∈E(H)
i�=j

{xy : x ∈ Ti, y ∈ Tj}), see [17]. If Ti = V (Gi) for 1 ≤ i ≤ k, then
∨

(H,S ) F is the H-generalized join, denoted by H[G1, G2, . . . , Gk], of G1, G2, . . . , Gk . If G ∼=
Gi, for 1 ≤ i ≤ k, then H[G1, G2, . . . , Gk] is called the lexicographic product of H and G,
denoted by H[G]. Also if H = K2, then K2[G1, G2] is the join, denoted by G1 ∨ G2, of G1

and G2.
Let H ′ be a graph on � vertices and G1, G2, . . . , G� be a family of graphs. The generalized

corona product, H ′◦̃∧�
i=1 Gi, of H ′, G1, G2, . . . , G� is a graph obtained by taking one copy

of graph H ′, G1, G2, . . . , G� and joining the ith vertex of H ′ to every vertex of Gi, see [9].

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-024-03112-6
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-024-03112-6&domain=pdf
mailto:vinothskv2011@gmail.com
http://creativecommons.org/licenses/by/4.0/


Balamoorthy et al. Journal of Inequalities and Applications         (2024) 2024:34 Page 2 of 17

If G ∼= Gi, for 1 ≤ i ≤ �, then the graph H ′◦̃∧�
i=1 Gi is called corona product of H ′ and

G, denoted by H ′ ◦ G. Several work has been done on the corona product of graphs and
generalized corona of graphs. This can be seen in [9, 14, 15].

Throughout this paper, all rings are finite commutative rings with unity. The nilradical of
a ring R is the set Nil(R) = {x ∈ R : xk = 0, for some positive integer k}. A ring R is reduced
if Nil(R) = (0). For x ∈ R and an ideal I of R, x + I = x is the co-set of I in R with respect to x
and Ann(x : I) = {y ∈ R : xy ∈ I}. If I = (0) is the zero ideal of R, then Ann(x : (0)) = {y ∈ R :
xy = 0}. In short, we use Ann(x) instead of Ann(x : (0)). An element u of R is said to be unit
if there exists an element v of R such that uv = 1. A non-zero element x of R is said to be
zero-divisor if there exists a non-zero element y of R such that xy = 0. Let Z(R) be the set
of all zero-divisors of R. For a positive integer n, Zn denotes the ring of integer modulo n.

Given a ring R, the zero-divisor graph of R, denoted by �(R), is a graph with V (�(R)) =
Z(R) and two distinct vertices x and y are adjacent if and only if xy = 0. For any two
vertices a and b in �(R), define a ∼ b if and only if Ann(a) = Ann(b). One can see that,
the relation ∼ is an equivalence relation. Let Aa1 , Aa2 , . . . , Aak be the equivalence classes
of the relation ∼ with respective representatives are a1, a2, . . . , ak . The compressed zero-
divisor graph, denoted by �E(R) (defined in [19]) is a graph with V (�E(R)) = {a1, a2, . . . , ak}
and two distinct vertices ai and aj are adjacent if and only if aiaj = 0. It is observed
in [18] that, �(R) is a �E(R)-generalized join of 〈Aa1〉, 〈Aa2〉, . . . , 〈Aak 〉, that is �(R) ∼=
�E(R)[〈Aa1〉, 〈Aa2〉, . . . , 〈Aak 〉] and �E(R) is a connected subgraph of �(R) induced by
{a1, a2, . . . , ak}.

The concept of an ideal-based zero-divisor graph was introduced by Redmond [12]. The
ideal-based zero-divisor graph of a ring R with respect to an ideal I , denoted by �I(R), is a
graph with V (�I(R)) = {x ∈ R\I : xy ∈ I, for some y ∈ R\I} and two distinct vertices x and
y are adjacent if and only if xy ∈ I . The ideal-based zero-divisor graph �I(R) is a natural
generalization of the zero-divisor graph. Clearly, �I(R) is empty graph (that is, it has no
vertex) if and only if I is a prime ideal of R. So, throughout this paper we consider only
non-prime ideals. The ideal-based zero-divisor graphs have been studied in [2, 10, 12].

We associate with each graph G a numerical value, called the topological index of G.
This index remains invariant under the graph isomorphism. By modelling a chemical sub-
stance with a graph, we can apply these indices and obtain physico-chemical properties of
that substance solely by means of mathematical calculations without any experiments in
laboratory. The topological indices have many applications in the fields of chemical graph
theory, molecular topology and mathematical chemistry. There are several results on the
topological indices have been found in past, see for instant, [3–8, 11, 13, 15, 16, 21].

Here, we consider the following well-known distance-based topological indices.
The Harary index of a graph has been introduced independently by Plavšić et al. [11]

and by Ivanciuc et al. [7], in 1993.
(i) The Harary index of G is defined as H(G) =

∑ 1
dG(u,v) , where the summation runs over

all unordered pairs u and v of vertices of G. The Harary index has been studied extensively
in the past. For instance, see [5, 6, 21].

The hyper-Wiener index of acyclic graphs was introduced by Randic in 1993. Then Klein
et al. generalized Randic’s definition for all connected graphs, as a generalization of the
Wiener index. The Wiener index W (G) of a connected graph G is defined as W (G) =
∑

{u,v}⊆V (G) dG(u, v).
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(ii) The hyper-Wiener index of G is defined as

WW (G) =
1
2

W (G) +
1
2

∑

{u,v}⊆V (G)

d2
G(u, v),

where d2
G(u, v) = (dG(u, v))2.

In [8], Khalifeh et al. computed the exact formula for the hyper-Wiener index of various
graph operations, including join, Cartesian product, lexicographic product. The hyper-
Wiener index has been studied extensively in the past, see some of the references [6, 8, 13].

The paper is organized as follows.
In Sect. 2, we find the Harary index of the H-generalized join of graphs. As a conse-

quence, we obtain the Harary index of the lexicographic product of graphs, join of graphs
and corona product of graphs which are given in [4]. Also, we find the Harary index of
the the ideal-based zero-divisor graph of a ring. Moreover, we calculate the Harary index
of the ideal-based zero-divisor graph of Zn and zero-divisor graph of Zn, where Zn is the
ring of integers modulo n.

In Sect. 3, we determine the hyper-Wiener index of the H-generalized join of graphs. As
a consequence, we obtain the hyper-Wiener index of the lexicographic product of graphs,
and join of graphs which are given in [8]. Further, we give a formula for the hyper-Wiener
index of generalized corona product of graphs and the ideal-based zero-divisor graph of
a ring and zero-divisor graph of a ring. Finally, we compute the hyper-Wiener index of
ideal-based zero-divisor graph of Zn and zero-divisor graph of Zn.

2 Main results
For a non-empty subset T of V (G) and u ∈ V (G), define dG(u, T) = min{dG(u, v) : v ∈ T}.
Note that if u ∈ T , then dG(u, T) = 0. For the positive integers n and k with k ≤ n,

(n
k
)

denotes the number of ways to choose k elements from an n elements set and
(k–1

k
)

= 0.

2.1 Harary index of H-generalized join of graphs
In this subsection, we compute an exact formula for the Harary index of H-generalized
join of graphs.

Lemma 1 Let H be a graph with V (H) = {u1, u2, . . . , uk} and F = {G1, G2, . . . , Gk} be a
family of graphs. Consider a family S = {T1, T2, . . . , Tk} of non-empty sets such that Ti ⊆
V (Gi), for 1 ≤ i ≤ k and G =

∨
(H,S ) F .

(i) If H is connected, then
∨

(H,S ) F is connected if and only if for 1 ≤ i ≤ k, dGi (u, Ti) �= 0,
for all u ∈ V (Gi) \ Ti.

(ii) If G =
∨

(H,S ) F is connected, then

H(G) =
1
2

k∑

i=1

[(|Ti|
2

)

+
∣
∣E

(〈Ti〉
)∣
∣
]

+
k∑

i=1

∑

{u,v}⊆V (Gi)\Ti

1
min{dGi (u, v), dGi (u, Ti) + dGi (v, Ti) + 2}

+
k∑

i=1

∑

u∈V (Gi)\Ti
v∈Ti

1
min{dGi (u, v), dGi (u, Ti) + 2}
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+
∑

1≤i<j≤k

∑

u∈V (Gi)
v∈V (Gj)

1
dGi (u, Ti) + dH (ui, uj) + dGj (v, Tj)

. (2.1)

Proof Proof of (i) is straightforward.
For proving (ii), let us first observe the following.
For u, v ∈ V (G) with u �= v,

dG(u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if u, v ∈ Ti, uv /∈ E(G),

min{dGi (u, v), dGi (u, Ti) + dGi (v, Ti) + 2}
if u, v ∈ V (Gi) \ Ti,

min{dGi (u, v), dGi (u, Ti) + 2}
if u ∈ V (Gi) \ Ti, v ∈ Ti,

dGi (u, Ti) + dH (ui, uj) + dGj (v, Tj)

if u ∈ V (Gi), v ∈ V (Gj), i �= j.

(2.2)

Then by the definition of G,

H(G) =
k∑

i=1

∑

{u,v}⊆V (Gi)

1
dG(u, v)

+
∑

1≤i<j≤k

∑

u∈V (Gi)
v∈V (Gj)

1
dG(u, v)

=
k∑

i=1

[ ∑

{u,v}⊆Ti

1
dG(u, v)

+
∑

{u,v}⊆V (Gi)\Ti

1
dG(u, v)

+
∑

u∈V (Gi)\Ti
v∈Ti

1
dG(u, v)

]

+
∑

1≤i<j≤k

∑

u∈V (Gi)
v∈V (Gj)

1
dG(u, v)

.

For u, v ∈ Ti,

dG(u, v) =

⎧
⎨

⎩

1 if uv ∈ E(Gi),

2 otherwise.
(2.3)

Hence
∑

{u,v}⊆Ti
1

dG(u,v) = |E(〈Ti〉)| + 1
2 [

(|Ti|
2

)
– |E(〈Ti〉)|]. The result follows from Equation

(2.2). �

The following result gives a formula for the Harary index of H-generalized join of graphs.

Proposition 1 Let H be a connected graph with V (H) = {u1, u2, . . . , uk}. Let G1, G2, . . . , Gk

be a collection of graphs with |V (Gi)| = νi, |E(Gi)| = εi, for i = 1, 2, . . . , k and G = H[G1, G2,
. . . , Gk]. Then the Harary index of G is given by

H(G) =
1
2

k∑

i=1

[(
νi

2

)

+ εi

]

+
∑

1≤i<j≤k

νiνj
1

dH (ui, uj)
. (2.4)
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Proof If Ti = V (Gi), then
∨

(H,S ) F = H[G1, G2, . . . , Gk] and V (Gi) \ Ti = ∅. Therefore, the
2nd and 3rd terms of Equation (2.1) in Lemma 1 become zero. Hence the result follows. �

Next, we recall the following equivalence relation defined in [1]. For a graph G, we de-
fine a relation ∼G on V (G) as follows. For any x, y ∈ V (G), define x ∼G y if and only if
NG(x) = NG(y). Clearly, the relation ∼G is an equivalence relation on V (G). Let [x] be
the equivalence class containing x and D be the set of all equivalence classes of this re-
lation ∼G. Based on this equivalence classes, we define the reduced graph H of a graph
G as follows. The reduced graph H of G is the graph with V (H) = D and two distinct
vertices [u] and [v] are adjacent in H if and only if u and v are adjacent in G. Note that
if V (H) = {[u1], [u2], . . . , [uk]}, then G is the H-generalized join of 〈[u1]〉, 〈[u2]〉, . . . , 〈[uk]〉,
that is, G ∼= H[〈[u1]〉, 〈[u2]〉, . . . , 〈[uk]〉] and each [ui] is an independent subset (that is, 〈[ui]〉
has no edge) of G. Clearly, H is isomorphic to a subgraph of G induced by {u1, u2, . . . , uk}.
Note that G is connected if and only if its reduced graph is connected.

The following result is a consequence of Proposition 1.

Corollary 1 Let G be a connected graph and H be the reduced graph of G with V (H) =
{[u1], [u2], . . . , [uk]}. Then

H(G) =
1
4

k∑

i=1

(
ν2

i – νi
)

+
∑

1≤i<j≤k

νiνj
1

dH ([ui], [uj])
,

where νi = |[ui]|, for 1 ≤ i ≤ k.

Proof As G ∼= H[〈[u1]〉, 〈[u2]〉, . . . , 〈[uk]〉] and |E(〈[ui]〉)| = 0 for i = 1, 2, . . . , k, the result fol-
lows. �

The next result is an immediate consequence of Corollary 1.

Corollary 2 Let G = Kν1,ν2,...,νk be a complete k-partite graph. Then

H(G) =
1
4

k∑

i=1

(
ν2

i – νi
)

+
∑

1≤i<j≤k

νiνj.

Proof As Kν1,ν2,...,νk
∼= Kk[Kc

ν1 , Kc
ν2 , . . . , Kc

νk
], we have dKk ([ui], [uj]) = 1 and hence the result

follows. �

Example 1 Let G = Kν1,ν2,...,νk , where νi = ν for 1 ≤ i ≤ k. Then

H(G) =
1
4
(
2k2ν2 – kν – kν2).

Using Proposition 1, we deduce the following results in [4].

Corollary 3 (Theorem 3, [4]) Let G1 and G2 be the two graphs with |V (Gi)| = νi and
|E(Gi)| = εi, for i = 1, 2. Then H(G1 ∨ G2) = 1

2 (ν1ν2 + ε1 + ε2) + 1
4 (ν1 + ν2)(ν1 + ν2 – 1).

Proof As K2[G1, G2] = G1 ∨ G2, the proof directly follows from Proposition 1. �
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Corollary 4 (Theorem 10, [4]) Let G1 and G2 be two connected graphs with |V (Gi)| = νi

and |E(Gi)| = εi, for i = 1, 2. Then H(G1[G2]) = 1
4ν1ν2(ν2 – 1) + 1

2ν1ε2 + ν2
2H(G1).

Proof Clearly, the lexicographic product of G1 and G2 is the G1-generalized join of
H1, H2, . . . , Hk , where Hi ∼= G2, for 1 ≤ i ≤ k. So, G1[G2] ∼= G1[H1, H2, . . . , Hk]. By Proposi-
tion 1,

H
(
G1[G2]

)
=

ν1

2

[(
ν2

2

)

+ ε2

]

+ ν2
2H(G1).

Hence the result. �

We now observe that the generalized corona product of graphs, H ′◦̃∧�
i=1 Gi can be re-

alized as H-generalized join of some graphs.
Let H ′ be a graph with V (H ′) = {u1, u2, . . . , u�} and G1, G2, . . . , G� be a family of graphs.

We define a graph H with V (H) = V (H ′) ∪ {u�+1, u�+2, . . . , u2�} and E(H) = E(H ′) ∪ {uiu�+i :
1 ≤ i ≤ �}. From the definition of generalized corona product of graphs and H-generalized
join of graphs, we have

Note 1 H ′◦̃∧�
i=1 Gi ∼= H[H1, H2, . . . , H�, H�+1, H�+2, . . . , H2�], where Hi ∼= K1 and H�+i ∼= Gi,

for i = 1, 2, . . . ,�.

Using Proposition 1 and Note 1, we find a formula for the Harary index of generalized
corona product of graphs.

Theorem 1 Let H ′ be a connected graph on � vertices and G = H ′◦̃∧�
i=1 Gi, where Gi is a

graph with |V (Gi)| = νi and |E(Gi)| = εi, for i = 1, 2, . . . ,�. Then

H(G) =
1
2

∑

1≤i≤�

[(
νi

2

)

+ εi

]

+ H
(
H ′) +

∑

�+1≤i<j≤2�

νiνj
1

dH′ (ui–�, uj–�) + 2

+
∑

1≤i≤�
�+1≤j≤2�

i�=j–�

νj
1

dH′ (ui, uj–�) + 1
+

∑

1≤i≤�
�+1≤j≤2�

i=j–�

νj.

Proof By Note 1, G = H ′◦̃∧�
i=1 Gi ∼= H[H1, H2, . . . , H�, H�+1, H�+2, . . . , H2�], where Hi ∼= K1

and H�+i = Gi for i = 1, 2, . . . ,� and also H is defined in the Note 1. Then it is easy to observe
that

dG(u, v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dH′ (ui, uj) if u ∈ V (Hi), v ∈ V (Hj), 1 ≤ i < j ≤ �,

2 if u, v ∈ V (Hi), uv /∈ E(Hi),� + 1 ≤ i ≤ 2�,

dH′ (ui, uj–�) + 1 if u ∈ V (Hi), v ∈ V (Hj), 1 ≤ i ≤ �,� + 1 ≤ j ≤ 2�,

dH′ (ui–�, uj–�) + 2 if u ∈ V (Hi), v ∈ V (Hj),� + 1 ≤ i < j ≤ 2�.

(2.5)

Then

H(G) =
2�∑

i=1

∑

{u,v}⊆V (Hi)

1
dG(u, v)

+
∑

1≤i<j≤2�

∑

u∈V (Hi)
v∈V (Hj)

1
dG(u, v)
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=
2�∑

i=�+1

∑

{u,v}⊆V (Hi)

1
dG(u, v)

+
∑

1≤i<j≤�

∑

u∈V (Hi)
v∈V (Hj)

1
dG(u, v)

+
∑

�+1≤i<j≤2�

∑

u∈V (Hi)
v∈V (Hj)

1
dG(u, v)

+
∑

1≤i≤�
�+1≤j≤2�

∑

u∈V (Hi)
v∈V (Hj)

1
dG(u, v)

=
∑

�+1≤i≤2�

1
2

[(
νi

2

)

+ εi

]

+
∑

1≤i<j≤�

1
dH′ (ui, uj)

+
∑

�+1≤i<j≤2�

νiνj
1

dH′ (ui–�, uj–�) + 2
+

∑

1≤i≤�
�+1≤j≤2�

νj
1

dH′ (ui, uj–�) + 1
,

by Proposition 1 and Equation (2.5).

=
∑

�+1≤i≤2�

1
2

[(
νi

2

)

+ εi

]

+ H
(
H ′) +

∑

�+1≤i<j≤2�

νiνj
1

dH′ (ui–�, uj–�) + 2

+
∑

1≤i≤�
�+1≤j≤2�

i�=j–�

νj
1

dH′ (ui, uj–�) + 1
+

∑

1≤i≤�
�+1≤j≤2�

i=j–�

νj.

Hence the result. �

By Theorem 1, we deduce the following result in [4].

Corollary 5 (Theorem 4, [4]) Let H1 and H2 be the graphs with |V (Hi)| = νi and |E(Hi)| =
εi, for i = 1, 2. Then the Harary index of the corona product of H1 and H2 is given by
H(H1 ◦ H2) = H(H1) + ν2H1(H1) + ν2

2H2(H1) + 1
4 (ν2 + 3)ν1ν2 + 1

2ν1ε2, where H1(H1) =
∑

{ui ,uj}⊆V (H1)
1

dH1 (ui ,uj)+1 , H2(H1) =
∑

{ui ,uj}⊆V (H1)
1

dH1 (ui ,uj)+2 and ui’s are the vertices of H1.

Proof By the definition of corona product of H1 and H2, H1 ◦ H2 = H1◦̃∧ν1
i=1 Gi, where

Gi = H2 for 1 ≤ i ≤ ν1. By Theorem 1, we have

H(H1 ◦ H2) =
ν1

2

[(
ν2

2

)

+ ε2

]

+ H(H1) + ν2
2

∑

�+1≤i<j≤2�

1
dH1 (ui–ν1 , uj–ν1 ) + 2

+ ν2
∑

1≤i≤�
�+1≤j≤2�

i�=j–ν1

1
dH1 (ui, uj–ν1 ) + 1

+ ν1ν2

= H(H1) + ν2H1(H1) + ν2
2H2(H1) +

1
4
[
ν1ν2(ν2 – 1)

]

+ ν1ν2 +
1
2
ν1ε2.

Hence the result follows. �

2.2 Harary index of the ideal-based zero-divisor graph
In this subsection, we compute a formula for the Harary index of the ideal-based zero-
divisor graph of a ring.
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We recall some observations and results given in [3]. We define a relation ∼I on V (�I(R))
as follows. For x, y ∈ V (�I(R)), define x ∼I y if and only if Ann(x : I) = Ann(y : I). Clearly, the
relation ∼I is an equivalence relation on V (�I(R)). Let Aa1 , Aa2 , . . . , Aak be the equivalence
classes of the relation ∼I with respective representatives are a1, a2, . . . , ak .

Observation 1 The subgraph 〈Aai〉 induced by Aai of �I(R) is either complete or totally
disconnected (that is, it has no edge). In fact, 〈Aai〉 is complete if and only if a2

i ∈ I and 〈Aai〉
is totally disconnected if and only if a2

i /∈ I .

The ideal-based compressed zero-divisor graph �E
I (R) of R is a graph with V (�E

I (R)) =
{a1, a2, . . . , ak} and two distinct vertices ai and aj are adjacent if and only if aiaj ∈ I .

In [3], it is observed that, �I(R) is a �E
I (R)-generalized join of 〈Aa1〉, 〈Aa2〉, . . . , 〈Aak 〉, that

is,

�I(R) ∼= �E
I (R)

[〈Aa1〉, 〈Aa2〉, . . . , 〈Aak 〉
]

(2.6)

and �E
I (R) is a connected subgraph of �I(R) induced by {a1, a2, . . . , ak}.

We recall the following results in [3].

Lemma 2 ([3]) For x, y ∈ V (�I(R)), x ∼I y in V (�I(R)) if and only if x ∼ y in V (�( R
I )), where

the relation ∼ is defined on V (�( R
I )) in the introduction.

Lemma 3 ([3]) Let a ∈ V (�E
I (R)). If x ∈ Aa, then the co-set x + I ⊆ Aa. In particular, Aa is

the disjoint union of |Aa| co-sets of I and |Aa| = |Aa||I|, where Aa is the equivalence class of
a under the relation ∼ defined on V (�( R

I )).

Now we are ready to give a formula for the Harary index of the ideal-based zero-divisor
graph of a ring.

Theorem 2 If I is an ideal of R and H = �E
I (R), then the Harary index of �I(R) is given by

H
(
�I(R)

)
=

∑

1≤i≤k
a2

i ∈I

(|Aai ||I|
2

)

+
1
2

∑

1≤i≤k
a2

i /∈I

(|Aai ||I|
2

)

+ |I|2
∑

1≤i<j≤k

|Aai ||Aaj |
1

dH (ai, aj)
,

where ai’s are the vertices of H .

Proof Let G = �I(R). Then

H
(
�I(R)

)
=

k∑

i=1

∑

{u,v}⊆Aai

1
dG(u, v)

+
∑

1≤i<j≤k

∑

u∈Aai
v∈Aaj

1
dG(u, v)

. (2.7)
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Note that the first term of Equation (2.7) is divided into two terms, that is

k∑

i=1

∑

{u,v}⊆Aai

1
dG(u, v)

=
∑

1≤i≤k
a2

i ∈I

∑

{u,v}⊆Aai

1
dG(u, v)

+
∑

1≤i≤k
a2

i /∈I

∑

{u,v}⊆Aai

1
dG(u, v)

.

By Observation 1, it is clear that

dG(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if u, v ∈ Aai , a2
i ∈ I,

2 if u, v ∈ Aai , a2
i /∈ I,

dH (ai, aj) if u ∈ Aai , v ∈ Aaj , i �= j.

(2.8)

Therefore

H
(
�I(R)

)
=

∑

1≤i≤k
a2

i ∈I

(|Aai |
2

)

+
1
2

∑

1≤i≤k
a2

i /∈I

(|Aai |
2

)

+
∑

1≤i<j≤k

|Aai ||Aaj |
1

dH (ai, aj)
.

Hence by Lemma 3, the result follows. �

In particular, if I = (0) is the zero ideal of R, then the following result gives a formula for
the Harary index of the zero-divisor graph of R.

Corollary 6 Let R be a ring and H = �E(R). Then

H
(
�(R)

)
=

∑

1≤i≤k
a2

i =0

(|Aai |
2

)

+
1
2

∑

1≤i≤k
a2

i �=0

(|Aai |
2

)

+
∑

1≤i<j≤k

|Aai ||Aaj |
1

dH (ai, aj)
,

where ai’s are the vertices of H .

Proof If I = (0), then |I| = 1 and �I(R) ∼= �(R). Hence by Lemma 3, |Aai | = |Aai |, for 1 ≤ i ≤
k. Therefore, the result follows from Theorem 2. �

2.3 Harary index of �I(Zn)
In this subsection, we find the Harary index of �I(Zn) and �(Zn), where Zn is the ring of
integers modulo n.

Let n = pα1
1 pα2

2 · · ·pαk
k be a composite number and m = pγ1

1 pγ2
2 · · ·pγk

k be a proper divisor
of n, where pi’s are distinct prime numbers. If I is an ideal of Zn generated by the element
m, then it is well known that, the quotient ring Zn

I
∼= Zm.

It is observed in [3] that �E
I (Zn) ∼= �E(Zn

I ) ∼= �E(Zm). Also, it is proved in [20] that a ∈
V (�E(Zm)) if and only if a is a proper divisor of m. For a ∈ V (�E(Zm)), we define S(a) =
{k ∈ Zm : gcd(k, m) = a}, where gcd(k, m) is the greatest common divisor of integers k and
m.

We recall the following results in [3, 18, 20].

Proposition 2 ([20]) For a proper divisor a of m, |S(a)| = φ( m
a ), where φ denotes Euler’s

totient function.
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Lemma 4 ([3]) For a ∈ V (�E(Zm)), |Aa| = φ( m
a )|I|.

Lemma 5 ([18]) Let ai, aj ∈ V (�E(Zm)) with i �= j and H = �E(Zm). Then
dH (ai, aj) ∈ {1, 2, 3}, for all ai, aj ∈ V (�E(Zm)), i �= j.
(i) m|aiaj ⇔ dH (ai, aj) = 1 ⇔ aiaj ∈ E(�E(Zm)).
(ii) m � aiaj and gcd(ai, aj) �= 1 ⇔ dH (ai, aj) = 2.
(iii) m � aiaj and gcd(ai, aj) = 1 ⇔ dH (ai, aj) = 3.

It is observed in [3] that �I(Zn) ∼= �E(Zm)[〈Aa1〉, 〈Aa2〉, . . . , 〈Aak 〉].
Using the above results, we find the Harary index of �I(Zn).

Theorem 3 If I is an ideal of Zn generated by m, then the Harary index of �I(Zn)is given
by

H
(
�I(Zn)

)
=

∑

m|a2
i

(
φ( m

ai
)|I|

2

)

+
1
2

∑

m�a2
i

(
φ( m

ai
)|I|

2

)

+ |I|2
[ ∑

m|aiaj

φ

(
m
ai

)

φ

(
m
aj

)

+
1
2

∑

m�aiaj
gcd(ai ,aj) �=1

φ

(
m
ai

)

φ

(
m
aj

)

+
1
3

∑

m�aiaj
gcd(ai ,aj)=1

φ

(
m
ai

)

φ

(
m
aj

)]

,

where ai’s are the proper divisors of m.

Proof Note that if a|m, then m|a2 if and only if a2 is the 0th element of Zm. Hence the
result follows from Theorem 2, Lemmas 4 and 5. �

As the zero ideal I = (0) of Zn is generated by the 0th element n of Zn, we have the
following result.

Corollary 7 The Harary index of �(Zn) is

H
(
�(Zn)

)
=

∑

n|a2
i

(
φ( n

ai
)

2

)

+
1
2

∑

n�a2
i

(
φ( n

ai
)

2

)

+
∑

n|aiaj

φ

(
n
ai

)

φ

(
n
aj

)

+
1
2

∑

n�aiaj
gcd(ai ,aj) �=1

φ

(
n
ai

)

φ

(
n
aj

)

+
1
3

∑

n�aiaj
gcd(ai ,aj)=1

φ

(
n
ai

)

φ

(
n
aj

)

,

where ai’s are the proper divisors of n.

Proof Clearly, the zero ideal I = (0) is generated by the 0th element n = pα1
1 pα2

2 . . . pαk
k (= m).

As �I(Zn) ∼= �(Zn) and by Theorem 3, the result follows. �

3 Hyper-Wiener index of H-generalized join of graphs
In this section, we find a formula for the hyper-Wiener index of H-generalized join of
graphs. We first recall the following result in [3].

Proposition 3 ([3]) Let G1, G2, . . . , Gk be the graphs with |V (Gi)| = νi and |E(Gi)| =
εi, for i = 1, 2, . . . , k. Let H be a connected graph with V (H) = {x1, x2, . . . , xk} and G =
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H[G1, G2, . . . , Gk]. Then the Wiener index of G is given by

W (G) =
k∑

i=1

[

2
(

νi

2

)

– εi

]

+
∑

1≤i<j≤k

νiνjdH (xi, xj).

The following result yields a formula for the hyper-Wiener index of H-generalized join
of graphs.

Proposition 4 Let H be a connected graph with V (H) = {u1, u2, . . . , uk}. Let G1, G2, . . . , Gk

be a collection of graphs with |V (Gi)| = νi, |E(Gi)| = εi, for i = 1, 2, . . . , k and G = H[G1, G2,
. . . , Gk]. Then the hyper-Wiener index of G is given by

WW (G) =
3
2

k∑

i=1

(

νi
2 – νi –

4
3
εi

)

+
1
2

∑

1≤i<j≤k

νiνj
[
dH (ui, uj) + d2

H (ui, uj)
]
. (3.1)

Proof By Proposition 3, it is enough to find
∑

{u,v}⊆V (G) d2
G(u, v). Note that, let u, v ∈ V (Gi).

If uv /∈ E(Gi), then dG(u, v) = 2 and if u ∈ V (Gi), v ∈ V (Gj), with i �= j, then dG(u, v) =
dH (ui, uj). Therefore

∑

{u,v}⊆V (G)

d2
G(u, v) =

k∑

i=1

∑

{u,v}⊆V (Gi)

d2
G(u, v) +

∑

1≤i<j≤k

∑

u∈V (Gi)
v∈V (Gj)

d2
G(u, v)

=
k∑

i=1

[

4
(

νi

2

)

– 3εi

]

+
∑

1≤i<j≤k

νiνjd2
H (ui, uj).

Hence the result follows. �

The following results are a direct consequence of Proposition 4.

Corollary 8 Let G be a connected graph and H be the reduced graph of G with V (H) =
{[u1], [u2], . . . , [uk]}. Then

WW (G) =
3
2

k∑

i=1

(
νi

2 – νi
)

+
1
2

∑

1≤i<j≤k

νiνj
[
dH

(
[ui], [uj]

)
+ d2

H
(
[ui], [uj]

)]
,

where νi = |[ui]|, for 1 ≤ i ≤ k.

Proof As εi = |E(〈[ui]〉)| = 0 for 1 ≤ i ≤ k, the result follows from Proposition 4. �

Corollary 9 Let G = Kν1,ν2,...,νk be a complete k-partite graph. Then

WW (G) =
3
2

k∑

i=1

(
ν2

i – νi
)

+
∑

1≤i<j≤k

νiνj.

In particular, WW (G) = 5
4
∑k

i=1(ν2
i – νi) + H(G).
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Proof As Kν1,ν2,...,νk
∼= Kk[Kc

ν1 , Kc
ν2 , . . . , Kc

νk
], we have dKk ([ui], [uj]) = 1 and hence the result

follows. �

The following results in [8] are a direct consequence of Proposition 4.

Corollary 10 (Theorem 3, [8]) Let H and G be connected graphs with |V (H)| = ν1,
|E(H)| = ε1, |V (G)| = ν2 and |E(G)| = ε2. Then

WW
(
H[G]

)
= ν2

2 WW (H) +
3
2
ν1

[

ν2
2 – ν1ν2 –

4
3
ε2

]

.

Proof Let V (H) = {u1, u2, . . . , uν1} and G1, G2, . . . Gν1 be a collection of ν1 graphs with
|V (Gi)| = ni, |E(Gi)| = mi, for 1 ≤ i ≤ ν1. Clearly, H[G] ∼= H[G1, G2, . . . , Gν1 ], where G ∼= Gi,
for 1 ≤ i ≤ ν1. Therefore, ni = ν2 and mi = ε2, for i = 1, 2, . . . ,ν1. By Proposition 4,

WW
(
H[G]

)
=

1
2

[
ν1∑

i=1

[

2
(

ni

2

)

– mi

]

+
∑

1≤i<j≤ν1

ninjdH (ui, uj)

]

+
1
2

[
ν1∑

i=1

[

4
(

ni

2

)

– 3mi

]

+
∑

1≤i<j≤ν1

ninjd2
H (ui, uj)

]

.

Hence the result follows. �

Corollary 11 (Theorem 2, [8]) Let G and H be the graphs with |V (G)| = ν1, |E(G)| = ε1,
|V (H)| = ν2 and |E(H)| = ε2. Then

WW (G ∨ H) =
3
2
ν2

1 +
3
2
ν2

2 – 2ε2 – 2ε1 –
3
2
ν1 –

3
2
ν2 + ν1ν2.

Proof As K2[G, H] = G ∨ H , the proof directly follows from Proposition 4. �

Next, let us find the hyper-Wiener index of generalized corona product of graphs.

Theorem 4 Let H ′ be a connected graph on � vertices and G = H ′◦̃∧�
i=1 Gi, where Gi is a

graph with |V (Gi)| = νi and |E(Gi)| = εi, for i = 1, 2, . . . ,�. Then the hyper-Wiener index of
G is given by

WW (G) =
3
2

∑

1≤i≤�

[

νi
2 – νi –

4
3
εi

]

+ WW
(
H ′) +

3
2

∑

1≤i≤�
�+1≤j≤2�

i�=j–�

νjdH′ (ui, uj–�)

+
1
2

∑

1≤i≤�
�+1≤j≤2�

i�=j–�

νjd2
H′ (ui, uj–�) +

∑

1≤i≤�
�+1≤j≤2�

i�=j–�

νj +
∑

1≤i≤�
�+1≤j≤2�

i=j–�

νj

+
1
2

∑

�+1≤i<j≤2�

νiνjd2
H′ (ui–�, uj–�) +

5
2

∑

�+1≤i<j≤2�

νiνjdH′ (ui–�, uj–�)

+ 3
∑

�+1≤i<j≤2�

νiνj.
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Proof By Note 1, we have G = H ′◦̃∧�
i=1 Gi ∼= H[H1, H2, . . . , H�, H�+1, H�+2, . . . , H2�], where

Hi ∼= K1 and H�+i = Gi for i = 1, 2, . . . ,� and also H is defined in the Note 1. Then the first
term of Equation (3.1) in Proposition 4 is equal to 3

2
∑

1≤i≤�[νi
2 – νi – 4

3εi] and the second
term of the Equation (3.1) is

1
2

∑

1≤i<j≤2�

νiνj
[
dG(ui, uj) + d2

G(ui, uj)
]

=
1
2

[ ∑

1≤i<j≤�

[
dG(ui, uj) + d2

G(ui, uj)
]

+
∑

1≤i≤�
�+1≤j≤2�

νj
[
dG(ui, uj) + d2

G(ui, uj)
]

+
∑

�+1≤i<j≤2�

νiνj
[
dG(ui, uj) + d2

G(ui, uj)
]
]

=
1
2

[ ∑

1≤i<j≤�

[
dH′ (ui, uj) + d2

H′ (ui, uj)
]

+
∑

1≤i≤�
�+1≤j≤2�

νj
[
dH′ (ui, uj–�) + 1) +

(
dH′ (ui, uj–�) + 1

)2]

+
∑

�+1≤i<j≤2�

νiνj
[(

dH′ (ui–�, uj–�) + 2
)

+
(
dH′ (ui–�, uj–�) + 2

)2]
]

by Equation (2.5). (3.2)

Therefore

WW (G) =
3
2

∑

1≤i≤�

(

νi
2 – νi –

4
3
εi

)

+
1
2

( ∑

1≤i<j≤�

dH′ (ui, uj) +
∑

1≤i<j≤�

d2
H′ (ui, uj)

+
∑

1≤i≤�
�+1≤j≤2�

νj
[
dH′ (ui, uj–�) + 1

]
+

∑

1≤i≤�
�+1≤j≤2�

νj
(
dH′ (ui, uj–�) + 1

)2

+
∑

�+1≤i<j≤2�

νiνj
[
dH′ (ui–�, uj–�) + 2

]
+

∑

�+1≤i<j≤2�

νiνj
[
dH′ (ui–�, uj–�) + 2

]2
)

=
3
2

∑

�+1≤i≤2�

[

νi
2 – νi –

4
3
εi

]

+ WW
(
H ′)

+
1
2

([ ∑

1≤i≤�
�+1≤j≤2�

i�=j–�

νjdH′ (ui, uj–�) +
∑

1≤i≤�
�+1≤j≤2�

i�=j–�

νj +
∑

1≤i≤�
�+1≤j≤2�

i=j–�

νj

]

+
[ ∑

1≤i≤�
�+1≤j≤2�

i�=j–�

νjd2
H′ (ui, uj–�) + 2

∑

1≤i≤�
�+1≤j≤2�

i�=j–�

νjdH′ (ui, uj–�)

+
∑

1≤i≤�
�+1≤j≤2�

i�=j–�

νj +
∑

1≤i≤�
�+1≤j≤2�

i=j–�

νj

]

+
[ ∑

�+1≤i<j≤2�

νiνjdH′ (ui–�, uj–�) + 2
∑

�+1≤i<j≤2�

νiνj

]



Balamoorthy et al. Journal of Inequalities and Applications         (2024) 2024:34 Page 14 of 17

+
[ ∑

�+1≤i<j≤2�

νiνjd2
H′ (ui–�, uj–�) + 4

∑

�+1≤i<j≤2�

νiνjdH′ (ui–�, uj–�)

+ 4
∑

�+1≤i<j≤2�

νiνj

])

.

Hence the result. �

The following result is a direct consequence of Theorem 4.

Corollary 12 If H1 and H2 are two graphs with |V (Hi)| = νi and |E(Hi)| = εi for i = 1, 2,
then the hyper-Wiener index, WW (H1 ◦ H2), of the corona product of H1 and H2 is given
by

WW (H1)(1 + ν2)2 + 3
2ν1[ν2

2 – ν2 – 4
3ε2] + ν2[2W (H1)(1 + ν2) + (ν1

2 – ν1)(1 + 3
2ν2) + ν1].

Proof By the definition of the corona product of H1 and H2, H1 ◦ H2 = H1◦̃∧ν1
i=1 Gi, where

Gi = H2 for 1 ≤ i ≤ ν1. By Theorem 4, we have

WW (H1 ◦ H2) = 3ν1

(
ν2

2

)

– 2ν1ε1 + WW (H1) +
3
2
ν2

[
2W (H1)

]

+
ν2

2
∑

1≤i≤�
�+1≤j≤2�

i�=j–�

d2
H1 (ui, uj–�) +

(
ν1

2 – ν1
)
ν2 + ν1ν2

+
1
2
ν2

2
∑

�+1≤i<j≤2�

d2
H1 (ui–�, uj–�)

+
5
2
ν2

2
∑

�+1≤i<j≤2�

dH1 (ui–�, uj–�) + 3ν2
2

(
ν1

2

)

.

Hence the result follows. �

3.1 Hyper-Wiener index of an ideal-based zero-divisor graph
In this subsection, we give a formula for the hyper-Wiener index of the ideal-based zero-
divisor graph of ring.

Theorem 5 If I is an ideal of R and H = �E
I (R), then the hyper-Wiener index of �I(R) is

given by

WW
(
�I(R)

)
=

∑

1≤i≤k
a2

i ∈I

(|Aai ||I|
2

)

+ 3
∑

1≤i≤k
a2

i /∈I

(|Aai ||I|
2

)

+
1
2
|I|2

( ∑

1≤i<j≤k

|Aai ||Aaj |
[
dH (ai, aj) + d2

H (ai, aj)
]
)

,

where ai’s are the vertices of H .
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Proof Let G = �I(R). By Equation (2.6), we have G ∼= �E
I (R)[〈Aa1〉, 〈Aa2〉, . . . , 〈Aak 〉]. Then

WW (G) =
1
2

[∑

1≤i≤k

∑

{u,v}⊆Aai

[
dG(u, v) + d2

G(u, v)
]
]

+
1
2

[ ∑

1≤i<j≤k

∑

u∈Aai
v∈Aaj

[
dG(u, v) + d2

G(u, v)
]
]

. (3.3)

Note that the first term of the Equation (3.3) is divided into two terms, that is

1
2

[∑

1≤i≤k
a2

i ∈I

∑

{u,v}⊆Aai

[
dG(u, v) + d2

G(u, v)
]

+
∑

1≤i≤k
a2

i /∈I

∑

{u,v}⊆Aai

[
dG(u, v) + d2

G(u, v)
]
]

.

By Observation 1 and Lemma 3, we have

WW
(
�I(R)

)
=

∑

1≤i≤k
a2

i ∈I

(|Aai ||I|
2

)

+ 3
∑

1≤i≤k
a2

i /∈I

(|Aai ||I|
2

)

+
1
2

∑

1≤i<j≤k

∑

u∈Aai
v∈Aaj

[
dG(u, v) + d2

G(u, v)
]
.

Hence the result follows. �

In particular, if I = (0) is the zero ideal of R, then we have the following result.

Corollary 13 If R is a ring and H = �E(R), then

WW
(
�(R)

)
=

∑

1≤i≤k
a2

i =0

(|Aai |
2

)

+ 3
∑

1≤i≤k
a2

i �=0

(|Aai |
2

)

+
1
2

( ∑

1≤i<j≤k

|Aai ||Aaj |
[
dH (ai, aj) + d2

H (ai, aj)
]
)

,

where ai’s are the vertices of H .

Proof If I = (0), then |I| = 1 and �I(R) ∼= �(R). Hence by Lemma 3, |Aai | = |Aai |, for 1 ≤ i ≤
k. Therefore, the result follows from Theorem 5. �

The next result gives the hyper-Wiener index of the ideal-based zero-divisor graph of
the ring of integers modulo n.

Theorem 6 If I is an ideal of Zn generated by m, then

WW
(
�I(Zn)

)
=

∑

m|a2
i

(
φ( m

ai
)|I|

2

)

+ 3
∑

m�a2
i

(
φ( m

ai
)|I|

2

)

+ |I|2
( ∑

m|aiaj

φ

(
m
ai

)

φ

(
m
aj

)
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+ 3
∑

m�aiaj
gcd(ai ,aj) �=1

φ

(
m
ai

)

φ

(
m
aj

)

+ 6
∑

m�aiaj
gcd(ai ,aj)=1

φ

(
m
ai

)

φ

(
m
aj

))

,

where ai’s are the proper divisors of m.

Proof Note that if a|m, then m|a2 if and only if a2 is the 0th element of Zm. Hence the
result follows from Theorem 5, Lemmas 4 and 5. �

As the zero ideal I = (0) of Zn is generated by the 0th element n of Zn, we deduce the
following result.

Corollary 14 The hyper-Wiener index of �(Zn) is

WW
(
�(Zn)

)
=

∑

n|a2
i

(
φ( n

ai
)

2

)

+ 3
∑

n�a2
i

(
φ( n

ai
)

2

)

+
∑

n|aiaj

φ

(
n
ai

)

φ

(
n
aj

)

+ 3
∑

n�aiaj
gcd(ai ,aj) �=1

φ

(
n
ai

)

φ

(
n
aj

)

+ 6
∑

n�aiaj
gcd(ai ,aj)=1

φ

(
n
ai

)

φ

(
n
aj

)

,

where ai’s are the proper divisors of n.

Proof Clearly, the zero ideal I = (0) is generated by n = pα1
1 pα2

2 . . . pαk
k (= m). As �I(Zn) ∼=

�(Zn), we have |I| = 1. By Theorem 6, the result follows. �
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6. Feng, L., Ilić Zagreb, A.: Harary and hyper-Wiener indices of graphs with a given matching number. Appl. Math. Lett.

23, 943–948 (2010)
7. Ivanciuc, O., Balaban, T.S., Balaban, A.T.: Reciprocal distance matrix, related local vertex invariants and topological

indices. J. Math. Chem. 12, 309–318 (1993)
8. Khalifeh, M.H., Yousefi-Azari, H., Ashraf, A.R.: The hyper-Wiener index of graph operations. Comput. Math. Appl. 56,

1402–1407 (2008)

https://doi.org/10.1080/09728600.2023.2263040


Balamoorthy et al. Journal of Inequalities and Applications         (2024) 2024:34 Page 17 of 17

9. Laali, A.R.F., Javadi, H.H.S., Kiani, D.: Spectra of generalized corona of graphs. Linear Algebra Appl. 493, 411–425 (2016)
10. Maimani, H., Pournaki, M.R., Yessami, S.: Zero divisor graph with respect to an ideal. Commun. Algebra 34, 923–929

(2006)
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