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Abstract
The discrete analog of the differential operator plays a significant role in constructing
interpolation, quadrature, and cubature formulas. In this work, we consider a discrete
analog Dm(hβ) of the differential operator d2m

dx2m
+ 1 designed specifically for even

natural numbersm. The operator’s effectiveness in constructing an optimal
quadrature formula in the L(2,0)2 (0, 1) space is demonstrated. The errors of the optimal
quadrature formula in theW (2,1)

2 (0, 1) space and in the L(2,0)2 (0, 1) space are compared
numerically. The numerical results indicate that the optimal quadrature formula
constructed in this work has a smaller error than the one constructed in theW (2,1)

2 (0, 1)
space.
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1 Introduction
Quadrature formulas are widely used in various branches of mathematics and their appli-
cations. When obtaining approximations of integrals, a vital role is played by the general
requirement that quadrature formulas approximate the given definite integrals as best as
possible. Such quadrature formulas can be obtained, for example, using variational prin-
ciples. Therefore, the problem of constructing optimal quadrature formulas for classes of
differentiable functions using variational methods is one of the urgent problems of com-
putational mathematics. When it comes to optimizing numerical integration formulas in
the variational approach, the main task is to find the minimum norm of the error func-
tional � on a specified function space. This problem can be solved by utilizing the nodes
and coefficients of a quadrature formula. The process of finding the minimum value of the
error functional norm through the coefficients while keeping the nodes fixed is referred
to as the Sard problem. You can find more information on this topic in [1]. The result-
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ing formula is known as the optimal quadrature formula in the sense of Sard. One of the
techniques for constructing optimal quadrature formulas is the Sobolev method.

The Sobolev method involves using a discrete analogue of a linear differential opera-
tor. By utilizing this approach, we can discover analytical shapes of the coefficients of the
optimal quadrature, cubature and interpolation formulas. In [1, 2], S.L. Sobolev studied
the problem of finding the minimum of the norm of the error functional of the cubature
formulas in L(m)

2 spaces, in which he obtained a system of linear equations of the Wiener–
Hopf type with respect to the coefficients. The uniqueness and existence of this system’s
solution were proven, along with an algorithm provided for discovering the analytical co-
efficients of optimal cubature formulas. For this, Sobolev determined and studied the dis-
crete analog D(m)

hH [β] of the polyharmonic operator �m. Constructing the discrete operator
D(m)

hH [β] for n ≥ 2 variables is a highly complex issue. The one-dimensional discrete oper-
ator D(m)

h [β] was constructed by Z.Z. Zhamalov [3] and K.M. Shadimetov [4].
Using the discrete analog D(m)

h [β] of the differential operator d2m/dx2m in the space
L(m)

2 (0, 1), the following results were obtained:
– Optimal quadrature formulas were constructed;
– The weighted optimal quadrature formula was obtained [5, 6];
– The Euler–Maclaurin type optimal quadrature formulas were constructed in the work

[7, 8];
– Hermitian-type optimal quadrature and interpolation formulas were constructed in

the work [9, 10];
– The problem of constructing Dm- splines were solved in the work [11];
– Optimal quadrature formulas were derived in [12] for approximating Fourier coeffi-

cients;
– In the space L(m)

2 (0, 1), the optimal quadrature and interpolation formulas, splines,
which are exact for any algebraic polynomial of degree (m – 1), were constructed.

The paper [13] introduced a discrete analogue, Dm,W (hβ), of the differential operator
d2m

dx2m – d2m–2

dx2m–2 in the Hilbert space W (m,m–1)
2 . The construction was used to obtain the fol-

lowing results:
–A set of mathematical formulas, which includes the optimal quadrature formula and

interpolation spline, was constructed and discussed in the following works [14, 15], and
[16].

– The optimal quadrature formulas for the Fourier coefficients were obtained [17].
– The optimal quadrature formulas and splines in the space W (m,m–1)

2 are exact for any
polynomial of degree (m – 2) and exponential function e–x.

A discrete analog Dm,K [β] of the differential operator d2m

dx2m + 2ω2 d2m–2

dx2m–2 + ω4 d2m–4

dx2m–4 in the
Hilbert space K2(Pm) was constructed in the work [18], and the following results were
obtained using it:

– Construct optimal quadrature formulas and interpolation splines that minimize a cer-
tain semi-norm in a given space (see, [19, 20]);

– Constructed formulas are exact for any algebraic polynomial of degree (m – 3) and
trigonometric functions sin(ωx) and cos(ωx).

A discrete analog of the differential operator d2m

dx2m – 1 was constructed in the Hilbert
space W (m,0)

2 in [21]. This work used the analog to obtain the following result:
– the optimal quadrature and interpolation formulas, which are exact to the exponential-

trigonometric functions, were constructed in [22, 23];
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– In addition, a natural spline function that gives a minimum to the semi-norm in the
corresponding space was found.

Further, in the work [24] discrete analogs of differential operator d2m

dx2m + 2 dm

dxm + 1 (for
m-even) and their properties were studied.

As can be seen from the above results, the optimal quadrature and interpolation formu-
las were constructed using the discrete analogs of the differential operators constructed
in various Hilbert spaces. As a result, analytical forms of optimal coefficients were found.
Therefore, in this paper, we construct a discrete analog to the differential operator to find
the analytical expressions for the coefficients that give a minimum to the norm of the error
functional in L(m,0)

2 (0, 1) space.
Here, we use functions with a discrete argument and the corresponding operations on

them ([1], Chapter VII). For completeness, we present some of the definitions.
Let β ∈ Z, h = 1

N , and N = 1, 2, . . . . Suppose that ϕ(x) and ψ(x) are real-valued functions
defined on the real line R.

Definition 1 The function ϕ(hβ) is a function of discrete argument if it is defined on a set
of integer values of β .

For simplicity, discrete argument functions are sometimes called discrete functions. The
domain of the definition of a discrete function ϕ(hβ) is the set of all integer points, and
the functions ϕ(hβ) themselves are considered as real-valued.

Definition 2 The formula for the inner product of two discrete argument functions ϕ(hβ)
and ψ(hβ) is given by:

[
ϕ(hβ),ψ(hβ)

]
=

∞∑

β=–∞
ϕ(hβ) · ψ(hβ),

if the series on the right-hand side of the last equality converges absolutely.

Definition 3 The convolution of two functions ϕ(hβ) and ψ(hβ) is the following inner
product

ϕ(hβ) ∗ ψ(hβ) =
[
ϕ(hγ ),ψ(hβ – hγ )

]
=

∞∑

γ =–∞
ϕ(hγ ) · ψ(hβ – hγ ).

Definition 4 The function
��
ϕ (x) =

∑+∞
β=–∞ ϕ(hβ)δ(x – hβ) is called harrow-shaped func-

tion corresponding to the discrete argument function ϕ(hβ), where δ(x) is the Dirac delta-
function.

We want to locate a discrete function, denoted by Dm(hβ), which fulfils the following
equation

Dm(hβ) ∗ Gm(hβ) = δd(hβ), (1)
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where

Gm(hβ) = –
sign(hβ)

2m

m∑

k=1

ehβ·cos (2k–1)π
2m · cos

(
hβ · sin

(2k – 1)π
2m

+
(2k – 1)π

2m

)
, (2)

and δd(hβ) is the discrete delta function defined by a function that returns the value 1 only
if the input is zero and returns the value 0 for all other inputs.

The discrete function Dm(hβ) plays a vital role in calculating the coefficients of an opti-
mal quadrature in the space L(m,0)

2 (0, 1). Here L(m,0)
2 (0, 1) is the class of functions ϕ defined

on the interval [0, 1], which have an absolutely continuous (m – 1)th derivative on [0, 1],
and the mth generalized derivative is in L2(0, 1). Note that the equation (1) is a discrete
analog of the equation

(
d2m

dx2m + 1
)

Gm(x) = δ(x), (3)

where m is an even natural number,

Gm(x) = –
sign(x)

2m

m∑

k=1

ex·cos (2k–1)π
2m · cos

(
x · sin

(2k – 1)π
2m

+
(2k – 1)π

2m

)

and δ(x) is the Dirac’s delta-function.
Furthermore, the discrete function Dm(hβ) has properties similar to the differential op-

erator d2m

dx2m + 1. The zeros of the discrete operator Dm(hβ) coincide with the discrete func-
tions corresponding to the zeros of the operator d2m

dx2m + 1.
In this paper, we present the following structure. Firstly, in Sect. 2, we introduce some

well-known formulas and auxiliary results that are necessary for constructing the dis-
crete function Dm(hβ). After that, in Sect. 3, we focus on constructing a discrete analog
of Dm(hβ) for the differential operator d2m

dx2m + 1. In Sect. 4, we use the discrete function
D2(hβ) to construct optimal quadrature formulas in the sense of Sard in L(2,0)

2 space. In
Sect. 5, we provide numerical findings to support our analysis.

2 Known formulas and auxiliary results
In this section, we present some well-known formulas (see, for example, [1, 25]) and auxil-
iary results that we use in constructing a discrete analog Dm(hβ) of the differential operator
d2m

dx2m + 1.
The Fourier transforms of the function ϕ are defined

F
[
ϕ(x)

]
(p) =

∫ +∞

–∞
ϕ(x)e2π ipx dx, F–1[ϕ(p)

]
(x) =

∫ +∞

–∞
ϕ(x)e–2π ipx dp.

For the Fourier transform of the product and convolution of the functions ϕ and ψ , the
following hold:

F[ϕ ∗ ψ] = F[ϕ] · F[ψ], (4)

F[ϕ · ψ] = F[ϕ] ∗ F[ψ], (5)
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where ∗ is the convolution operator. The convolution of two functions ϕ and ψ defined as
follows

(ϕ ∗ ψ)(x) =
∫ +∞

–∞
ϕ(x – y)ψ(y) dy =

∫ +∞

–∞
ϕ(y)ψ(x – y) dy.

The Fourier transform of the delta function and its derivatives follows the following rules:

F
[
δ(x)

]
= 1, F

[
δ(α)(x)

]
= (–2π ip)α . (6)

We also use the following well-known properties of the delta function

δ(hx) = h–1δ(x), (7)

δ(x – a) · f (x) = δ(x – a) · f (a), (8)

δ(α)(x) ∗ f (x) = f (α)(x), (9)

φ0(x) =
+∞∑

β=–∞
δ(x – β),

+∞∑

β=–∞
e2π ixβ =

+∞∑

β=–∞
δ(x – β). (10)

To obtain the main results, we must calculate the series given below

S =
+∞∑

β=–∞

1
(β – h(p + s1i

2π
))(β – h(p + s2i

2π
)) · . . . · (β – h(p + s2mi

2π
))

, (11)

where sk = cos (2k–1)π
2m + i sin (2k–1)π

2m , k = 1, 2, . . . , 2m. The sum of the series given in (11) is
shown in the following lemma.

Lemma 1 For the series in (11), the following is true:

S = –
hλ

m
·
(

–
2π i

h

)2m

·
m
2∑

k=1

a1,k · λ2 + a2,k · λ + a1,k

λ4 + b1,kλ3 + b2,kλ2 + b1,kλ + 1
,

where

a1,k = eh cos (2k–1)π
2m cos

(
h sin

(2k – 1)π
2m

+
(2k – 1)π

2m

)

– e–h cos (2k–1)π
2m cos

(
h sin

(2k – 1)π
2m

–
(2k – 1)π

2m

)
,

a2,k = 2
(

sin
(2k – 1)π

2m
sin

(
2h sin

(2k – 1)π
2m

)

– cos
(2k – 1)π

2m
· sinh

(
2h cos

(2k – 1)π
2m

))
,

b1,k = –4 cosh

(
h cos

(2k – 1)π
2m

)
· cos

(
h · sin

(2k – 1)π
2m

)
,

b2,k = 2
[

1 + cosh

(
2h · cos

(2k – 1)π
2m

)
+ cos

(
2h sin

(2k – 1)π
2m

)]
,

k = 1, 2, . . . , m – 1.
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Proof To compute the infinite series S in (11), we utilize a well-known formula from the
theory of residues (see [26]).

+∞∑

β=–∞
f (β) = –

∑

z1,z2,...,zn

res
(
π cot(πz)f (z)

)
. (12)

The given statement mentions that z1, z2, . . . , zn refer to the poles of the function f (z).
Let us denote

f (z) =
1

(z – z1) · (z – z2) . . . (z – zk)
.

Here zk = h[p + isk
2π

], (k = 1, 2, . . . , 2m) are poles of the first order. Then, for z = zk , (k =
1, 2, . . . , 2m) taking into account (12) from (11), we obtain

resz=zk

(
π cot(πz)f (z)

)
= lim

z→zk

(
π cot(πz) · f (z) · (z – zk)

)

= lim
z→zk

π cot(πz)
(z – z1)(z – z2) . . . (z – zk–1)(z – zk+1) . . . (z – z2m)

=
π cot(πhp + sk hi

2 )
( hi

2π
)2m–1 ∏2m

i=1,i�=k(sk – si)
. (13)

Now let us simplify the denominator of the expression (13). We consider

s2m + 1 =
2m∏

i=1

(s – si).

From here, dividing the left and right sides of the last equality by s – sk , we get

s2m + 1
s – sk

=
2m∏

i=1i�=k

(s – si).

We calculate the value of the above expression at s = sk

2m∏

i=1i�=k

(sk – si) = lim
s→sk

s2m + 1
s – sk

.

It can be seen that the limit is undetermined of the form 0
0 , so let us calculate this limit

using L’Hôpital’s rule

lim
s→sk

s2m + 1
s – sk

= lim
s→sk

2ms2m–1

1
= 2ms2m–1

k = 2m
s2m

k
sk

= –
2m
sk

.

Using the result obtained above, we write the expression (13) in the following form

resz=zk

(
π cot(πz)f (z)

)
=

π cot(πhp + skhi
2 )

( hi
2π

)2m–1 ∏2m
i=1i�=k(sk – si)

= –
(

–2π i
h

)2m–1
πsk

2m
cot

(
πhp +

skhi
2

)
.
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To calculate the sum in formula (12), let us simplify it by grouping those whose multiplier
is sk (k = 1, 2, . . . , m) and whose multiplier is s2m–k+1 (k = 1, 2, . . . , m).

If k = 1:

S∗
1 = s1 cot

(
πhp +

s1hi
2

)
+ s2m cot

(
πhp +

s2mhi
2

)

=
2 cos π

2m sin(2πhp + hi cos π
2m ) + 2i sin π

2m sin(h sin π
2m )

cos(h sin π
2m ) – cos(2πhp + hi cos π

2m )
,

...

when k = m:

S∗
m = sm cot

(
πhp +

smhi
2

)
+ sm+1 cot

(
πhp +

sm+1hi
2

)

=
2 cos (2m–1)π

2m sin(2πhp + hi cos (2m–1)π
2m ) + 2i sin (2m–1)π

2m sin(h sin (2m–1)π
2m )

cos(h sin (2m–1)π
2m ) – cos(2πhp + hi cos (2m–1)π

2m )
.

By introducing the notation λ = e2π iph, using the last m equalities and taking into ac-
count the following well-known formulas cos(z) = ezi+e–zi

2 , sin(z) = ezi–e–zi

2i , cosh(z) = ez+e–z

2 ,
sinh(z) = ez–e–z

2 , after some simplifications, we obtain the following expression

S = –
hλ

m
·
(

–
2π i

h

)2m

·
m
2∑

k=1

a1,k · λ2 + a2,k · λ + a1,k

λ4 + b1,kλ3 + b2,kλ2 + b1,kλ + 1
.

Lemma 1 is proven. �

3 Construction of a discrete operator
In this section, we construct the function Dm(hβ) for an even natural number m, which is a
discrete analog of the differential operator d2m

dx2m + 1. We also obtain some of its properties.

Theorem 1 The discrete analog of the differential operator d2m

dx2m + 1, satisfying equality (1)
when m is even, takes the form:

Dm(hβ) = –
m
K

·

⎧
⎪⎪⎨

⎪⎪⎩

M1 – K1 +
∑m–1

k=1
Ak
λk

, β = 0,

1 +
∑m–1

k=1 Ak , |β| = 1,
∑m–1

k=1 Ak · λ|β|–1
k , |β| ≥ 2.

(14)

Here

K =
m/2∑

k=1

a1,k , K1 =
∑m/2

k=1 [a2,k + a1,k · ∑m/2
k �=j,j=1 b1,j]

K
,

K2 =
∑m/2

k=1 [a1,k + a2,k
∑m/2

k �=j,j=1 b1,j + a1,k
∑m/2

k �=j,j=1 b2,j]
K

,

K3 =
∑m/2

k=1 [2a1,k
∑m/2

k �=j,j=1 b1,j + a2,k
∑m/2

k �=j,j=1 b2,j]
K

,
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M1 =
m/2∑

k=1

b1,k , Ak =
B2m(λk)

λk · Q′
2m–2(λk)

,

M2 =
m/2∏

k=1

b1,k

m/2∑

j=1

1
b1,j

+
m/2∑

k=1

b2,k ,

Q2m–2(λ) = λ2m–2 + K1λ
2m–3 + K2λ

2m–4 + K3λ
2m–5

+ · · · + K3λ
3 + K2λ

2 + K1λ + 1,

A2m(λ) =
m/2∏

k=1

[
λ4 + b1,kλ

3 + b2,kλ
2 + b1,kλ + 1

]

= λ2m + M1λ
2m–1 + M2λ

2m–2 + · · · + M2λ
2 + M1λ + 1,

λk represents the roots of the polynomial Q2m–2(λ) with an absolute value less than 1, i.e.,
|λk| < 1.

Theorem 2 The discrete analog Dm(hβ) of the differential operator d2m

dx2m + 1 satisfies the
equalities

(1) Dm(hβ) ∗ ehβ cos (2k–1)π
2m cos(hβ sin (2k–1)π

2m ) = 0, k = 1, 2, . . . , m,
(2) Dm(hβ) ∗ ehβ cos (2k–1)π

2m sin(hβ sin (2k–1)π
2m ) = 0, k = 1, 2, . . . , m.

Here Gm(hβ) is defined by equality (2).

Proof It is more convenient to perform operations on harrow-shaped functions instead of
discrete argument functions. The harrow-shaped function corresponding to the discrete
argument function Dm(hβ) has a specific form

��
Dm (x) =

+∞∑

β=–∞
Dm(hβ)δ(x – hβ).

Equation (1) in the class of harrow-shaped functions becomes the equation

��
Dm (x)∗ ��

Gm (x) = δ(x), (15)

where
��
Gm (x) =

∑+∞
β=–∞ Gm(hβ) · δ(x – hβ).

It is known that the class of harrow-shaped functions and the class of functions with a
discrete argument are isomorphic [1]. Therefore, instead of the discrete argument func-

tion Dm(hβ), it is sufficient to study the function
��
Dm (x). After applying the Fourier trans-

form to both sides of the equation (15) while taking into account (4) and (6), we can obtain:

F
[��
Dm (x)

]
=

1

F[
��
Gm (x)]

. (16)

It is necessary to use the Fourier transform F[
��
Gm (x)] in this case. Taking into account

(8), (10), and also using the formulas (5) and (7), we have

F
[��
Gm (x)

]
= F

[
Gm(x)

] ∗ φ0(hp). (17)
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To calculate the Fourier transform F[Gm(x)] of a function Gm(x), we use equalities (3)
and (9). After considering the equalities (4) and (6), we can conclude that

F
[
Gm(x)

]
=

1
F[δ(2m)(x) + δ(x)]

=
1

(–2π ip)2m + 1
=

1
(2π ip)2m + 1

.

We can use the last equality to simplify the expression in (17)

F
[��
Gm (x)

]
= F

[

Gm(x) ·
+∞∑

β=–∞
δ(x – hβ)

]

= F
[
Gm(x)

] ∗ F

[ +∞∑

β=–∞
δ(x – hβ)

]

=
1

(2π ip)2m + 1
∗

+∞∑

β=–∞
δ(hp – β)

=
+∞∑

β=–∞

∫ +∞

–∞
δ(hy – β)

(2π i(p – y))2m + 1
dy

= h–1
+∞∑

β=–∞

∫ +∞

–∞
δ(y – h–1β)

(2π i(p – y))2m + 1
dy

= h–1 ·
+∞∑

β=–∞

1
(2π i(p – h–1β))2m + 1

= h–1
(

–
h

2π i

)2m +∞∑

β=–∞

1
∏2m

k=1(β – h[p + sk i
2π

])
(18)

where sk = cos (2k–1)π
2m + i sin (2k–1)π

2m , k = 1, 2, . . . , 2m.
Now, expanding the right side of (18) into elementary fractions and taking into account

(16), we have

F
[��
Dm (x)

]
=

[
h2m–1

(2π i)2m ·
+∞∑

β=–∞

1
∏2m

k=1(β – h[p + sk i
2π

])

]–1

.

Let us consider a function F[
��
Dm (x)](p) and assume that its Fourier series has a particular

form

F[
��
Dm](p) =

+∞∑

β=–∞
D̃m(hβ) · e2π iphβ , (19)

where D̃m(hβ) are the Fourier coefficients of the function F[
��
Dm](p), i.e.,

D̃m(hβ) =
∫ h–1

0
F[

��
Dm](p)e–2π iphβ dp. (20)
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Applying the inverse Fourier transform to equality (19), we obtain the harrow-shaped
function

��
Dm (x) =

+∞∑

β=–∞
D̃m(hβ)δ(x – hβ).

From here, based on the definition of harrow-shaped functions, we conclude that the
discrete function D̃m(hβ) is the desired function of the discrete argument Dm(hβ). Here,
to find the function D̃m(hβ), we do not use the formula (20), but find it as follows. Using
Lemma 1, from (20) we obtain

F[
��
Dm](p) = –

m
K

· B2m(λ)
λQ2m–2(λ)

. (21)

In order to find the explicit form of the discrete operator Dm(hβ), we decompose the
expression (21) into elementary fractions. Since the polynomial Q2m–2(λ) from Theorem 2
has 2m – 2 roots and λ1 · λ2 · . . . · λ2m–3 · λ2m–2 = 1, where λj · λ2m–1–j = 1, j = 1, m – 1, then
for the right-hand side (21) we have

–
m
K

· B2m(λ)
λ

∏2m–2
k=1 (λ – λk)

= –
m
K

[

λ + M1 – K1 +
A0

λ
+

2m–2∑

k=1

Ak

λ – λk

]

. (22)

To find the unknowns A0, A1, A2, . . . , A2m–3, A2m–2 of equation (22), we multiply both
sides of equation (22) by λ

∏2m–2
i=1 (λ – λi), to get for λ = 0

A0 = 1,

and for λ = λk

Ak =
B2m(λk)

λkQ′
2m–2(λk)

, k = 1, 2, . . . , 2m – 2. (23)

Hence, taking into account that λj · λ2m–1–j = 1, j = 1, 2, . . . , m – 1, we have

A2m–2 = –
1
λ2

1
A1, A2m–3 = –

1
λ2

2
A2, . . . , Am–1 = –

1
λ2

m
Am. (24)

Finally, taking into account the equalities (23)–(24) and using the formula for the sum
of an infinitely killing geometric progression from (22), we obtain

F
[��
Dm (x)

]
= –

m
K

·
(

λ + M1 – K1 +
1
λ

+
+∞∑

γ =0

m–1∑

j=1

[
Aj

λ

(
λj

λ

)γ

+
Aj

λj
(λjλ)γ

])

=
+∞∑

γ =–∞
Dm(hγ )λγ .

From here, bearing in mind that λ = e2π iph, we obtain the explicit form (14) of the discrete
function Dm(hβ). Theorem 1 is proven. �
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The proof of Theorem 2 is obtained using the definition of convolution of discrete func-
tions and directly calculating the left sides of equalities (a) and (b).

In (14) note that the function Dm(hβ) is even, i.e., Dm(–hβ) = Dm(hβ).

4 Optimal quadrature formula in the space L(2,0)
2 (0, 1)

This section is dedicated to the use of the discrete operator D2(hβ) to construct an optimal
quadrature formula.

In this section, we focus on Sard’s problem of constructing the optimal quadrature for-
mula in the Hilbert space L(2,0)

2 . Here, L(2,0)
2 represents the set of functions ϕ defined on the

interval [0, 1], which have an absolutely continuous first derivative on [0, 1] and a second
derivative that belongs to L2(0, 1). The class L(2,0)

2 with the inner-product

〈ϕ,ψ〉 =
∫ 1

0

(
ϕ′′(x)ψ ′′(x) + ϕ(x)ψ(x)

)
dx

is a Hilbert space equipped with the norm

‖ϕ‖L(2,0)
2

=
{∫ 1

0

[(
ϕ′′(x)

)2 +
(
ϕ(x)

)2]dx
}1/2

.

For a function ϕ from the space L(2,0)
2 , consider a quadrature formula of the form

∫ 1

0
ϕ(x) dx ∼=

N∑

β=0

C[β]ϕ(hβ), (25)

where C[β] and [β] = hβ are the coefficients and nodes of the formula (25), respectively,
ϕ is an element of the Hilbert space L(2,0)

2 (0, 1).
The following difference between the integral and the quadrature sum

(�,ϕ) =
∫ 1

0
ϕ(x) dx –

N∑

β=0

C[β]ϕ(hβ) (26)

is called the error of the quadrature formula (25) and here

(�,ϕ) =
∫ +∞

–∞
�(x)ϕ(x) dx.

This difference corresponds to the error functional �, which has the form:

�(x) = ε[0,1](x) –
N∑

β=0

C[β]δ(x – hβ). (27)

Here ε[0,1](x) is the characteristic function of the interval [0, 1].
According to the Cauchy–Schwartz inequality, the absolute value of the error (26) can

be estimated using the norm

∣∣(�,ϕ)
∣∣ ≤ ‖�‖L(2,0)∗

2
‖ϕ‖L(2,0)

2
, (28)
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of the error functional � as follows

‖�‖L(2,0)∗
2

= sup
‖ϕ‖

L(2,0)
2

=1

∣∣(�,ϕ)
∣∣ (29)

where L(2,0)∗
2 is the dual space to the space L(2,0)

2 .
To construct the optimal quadrature formula in the space L(2,0)

2 (0, 1), we need to calculate
a specific quantity

‖�̊‖L(2,0)∗
2

= inf
C[β]

‖�‖L(2,0)∗
2

, (30)

i.e., in finding the minimum value of the norm (28) for the error functional � by the coef-
ficients C[β].

To calculate (30) we need a discrete analog D2(hβ) of the operator d4

dx4 + 1. For the case
m = 2, we obtain the following results from Theorem 1 and 2:

Corollary 1 Discrete analog of the differential operator d4

dx4 + 1, satisfying the equation
D2(hβ) ∗ G2(hβ) = δd(hβ), has the form

D2(hβ) =
√

2
K

·

⎧
⎪⎪⎨

⎪⎪⎩

M1 – K1 + A1
λ1

, β = 0,

1 + A1, |β| = 1,

A1 · λ|β|–1
1 , |β| ≥ 2,

where K , M1, K1, A1, λ1 are defined in Theorem 1 in [27].

Corollary 2 The discrete operator D2(hβ) has the following properties:
(1) D2(hβ) ∗ e

√
2

2 hβ cos(
√

2
2 hβ) = 0,

(2) D2(hβ) ∗ e
√

2
2 hβ sin(

√
2

2 hβ) = 0,

(3) D2(hβ) ∗ e–
√

2
2 hβ cos(

√
2

2 hβ) = 0,

(4) D2(hβ) ∗ e–
√

2
2 hβ sin(

√
2

2 hβ) = 0.
These equalities are obtained in the work [27].

Using Corollaries 1 and 2, we get the following result.

Theorem 3 The coefficients of optimal quadrature formula (25) in L(2,0)
2 space have the

next form

C[β] =
√

2
K

⎧
⎪⎪⎨

⎪⎪⎩

T + f –
2 (h) + m1(1 + λ1), β = 0,

T + m1(λβ
1 + λ

N–β
1 ), 0 < β < N ,

T + f +
2 (h) + m1(λN

1 + 1), β = N ,

where

T =
A1

λ1
· 1 + λ1

1 – λ1
+ M1 – K1 + 2,
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m1 = A1 ·
[(1 + e–

√
2

2 cos
√

2
2

4
– d1

)
· e–

√
2h
2 cos(

√
2h
2 ) – λ1 · e–

√
2h

λ2
1 · e–

√
2h – 2λ1e–

√
2h
2 cos(

√
2h
2 ) + 1

+
(

d2 –
e–

√
2

2 sin
√

2
2

4

)
· e–

√
2h
2 sin(

√
2h
2 )

λ2
1 · e–

√
2h – 2λ1e–

√
2h
2 cos(

√
2h
2 ) + 1

+
(1 + e

√
2

2 cos
√

2
2

4
– d3

)
· e

√
2h
2 cos(

√
2h
2 ) – λ1 · e

√
2h

λ2
1 · e

√
2h – 2λ1e

√
2h
2 cos(

√
2h
2 ) + 1

+
(

d4 –
e

√
2

2 sin
√

2
2

4

)
· e

√
2h
2 sin(

√
2h
2 )

λ2
1 · e

√
2h – 2λ1e

√
2h
2 cos(

√
2h
2 ) + 1

]
,

f –
2 (h) = –d1 · e

–
√

2
2 h cos

(√
2

2
h
)

+ d2 · e
–
√

2
2 h sin

(√
2

2
h
)

– d3 · e
√

2
2 h cos

(√
2

2
h
)

+ d4 · e
√

2
2 h sin

(√
2

2
h
)

– 1

+
1
2

[
cos

(√
2

2
h
)

cosh

(√
2

2
h
)

+ cos

(√
2

2
(1 + h)

)
cosh

(√
2

2
(1 + h)

)]
,

f +
2 (h) = d1 · e

√
2

2 (h+1) cos

(√
2

2
(h + 1)

)
+ d2 · e

√
2

2 (h+1) sin

(√
2

2
(h + 1)

)

+ d3 · e–
√

2
2 (h+1) cos

(√
2

2
(h + 1)

)
+ d4 · e–

√
2

2 (h+1) sin

(√
2

2
(h + 1)

)
– 1

+
1
2

[
cos

(√
2

2
(h + 1)

)
cosh

(√
2

2
(h + 1)

)
+ cos

(√
2

2
h
)

cosh

(√
2

2
h
)]

,

and dk (k = 1, 2, 3, 4) are defined in Theorem 2.4 of [28].

Now, we find the square of the norm of the error functional (27) for the optimal quadra-
ture formula (25). The following result holds:

Theorem 4 The square of the norm of the error functional (27) for the optimal quadrature
formula (25) on the space L(2,0)

2 (0, 1) has the form

‖�̊‖2 = 1 –
√

2
2

·
(

sin

√
2

2
· cosh

√
2

2
+ cos

√
2

2
· sinh

√
2

2

)

– C[0] – C[N] –
√

2
K

· (N – 1) · T – Q1 – Q2

where

Q1 =
2
√

2
K

· λ1 – λN
1

1 – λ1
· m1,

Q2 = d1

[√
2

2
e

√
2

2

(
cos

√
2

2
+ sin

√
2

2

)
+

√
2

2

]

+ d2

[√
2

2
e

√
2

2

(
sin

√
2

2
– cos

√
2

2

)
–

√
2

2

]
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+ d3

[√
2

2
e–

√
2

2

(
sin

√
2

2
– cos

√
2

2

)
–

√
2

2

]

– d4

[√
2

2
e–

√
2

2

(
cos

√
2

2
+ sin

√
2

2

)
+

√
2

2

]
,

where λ1 is given in Theorem 2 and |λ1| < 1.

5 Discussion and numerical results
We numerically compare the above results with results in other spaces. For convenience,
we represent the absolute value of the error (26) for the optimal quadrature formula (25).
|RN (ϕ)| = |(�,ϕ)|.

Then by the Cauchy–Schwartz inequality, we have

∣∣RN (ϕ)
∣∣ ≤ ‖ϕ‖L(m,0)

2
· ‖�‖L(m,0)∗

2
. (31)

In the space L(2,0)
2 , using Theorem 4 and inequality (31) for the error of optimal quadra-

ture formula (25), we have

N = 10 :
∣∣RN (ϕ)

∣∣ ≤ ‖ϕ‖L(2,0)
2

· 0.77896 · 10–2,

N = 50 :
∣∣RN (ϕ)

∣∣ ≤ ‖ϕ‖L(2,0)
2

· 0.15346 · 10–4,

N = 100 :
∣∣RN (ϕ)

∣∣ ≤ ‖ϕ‖L(2,0)
2

· 0.37811 · 10–5.

Numerical results show that as the value of N increases, the error of the optimal quadra-
ture formula in the space L(2,0)

2 decreases. Let us compare the absolute errors of con-
structed optimal quadrature formulas in the spaces L(2,0)

2 and W (2,1)
2 . Consider the follow-

ing functions:

ϕ1(x) = sin

(√
2

2
x
)

, ϕ2(x) = e
√

2
2 x sin

(√
2

2
x
)

,

and

ϕ3(x) = cos

(√
2

2
x
)

sinh

(√
2

2
x
)

– sin

(√
2

2
x
)

cosh

(√
2

2
x
)

.

For convenience, we denote the absolute values of the error of optimal quadrature for-
mulas in the spaces L(2,0)

2 and W (2,1)
2 by RL and RW , respectively.

Tables 1 and 2 provide clear evidence that the absolute error of |RL| in L(2,0)
2 (0, 1) space is

much smaller than the absolute error |RW | in the space W (2,1)
2 (0, 1) for the functions ϕ1(x),

ϕ2(x), and ϕ3(x).

Table 1 Error |RL(ϕ)| of the optimal quadrature formula in L(2,0)2 space

N |RL(ϕ1)| |RL(ϕ2)| |RL(ϕ3)|
10 2.52519 · 10–4 3.10892 · 10–4 3.126471 · 10–45
100 2.081351 · 10–7 2.567667 · 10–7 2.009139 · 10–41
1000 2.04889 · 10–10 2.527556 · 10–10 2.576504 · 10–38



Shadimetov and Davronov Journal of Inequalities and Applications         (2024) 2024:46 Page 15 of 16

Table 2 Error |RW (ϕ)| of the optimal quadrature formula inW (2,1)
2 space

N |RW (ϕ1)| |RW (ϕ2)| |RW (ϕ3)|
10 3.60277 · 10–4 1.97605 · 10–3 7.06542 · 10–4
100 3.96087 · 10–6 2.17169 · 10–5 7.75977 · 10–6
1000 3.996868 · 10–8 2.191418 · 10–7 7.830202 · 10–8

6 Conclusion
Thus, in this work, using the Sobolev method, we constructed a discrete operator Dm(hβ)
for even natural numbers m in the space L(m,0)

2 (0, 1). By applying this discrete operator
in the case of m = 2, we obtained explicit expressions for the optimal coefficients C[β]
(β = 0, N) and using these coefficients we constructed an optimal quadrature formula of
the form (25) in the space L(2,0)

2 (0, 1). At the conclusion of our work, we provided numerical
results. The numerical results indicate that the absolute error of the quadrature formula
in the L(2,0)

2 (0, 1) space is significantly smaller than that in the W (2,1)
2 (0, 1) space for several

functions.
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