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Abstract
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1 Introduction
Approximation theory is a primary field that encounters significant usage in the scientific
community. The paramount problem in approximation theory is finding a sequence of
functions that approximates a given function as closely as possible. Positive linear oper-
ators are pivotal among the many subfields that constitute approximation theory. Some
linear positive operators, such as Bernstein operators, are defined within finite intervals,
and many operators are defined in infinite intervals, such as Szász operators defined as
[31]:

Ŝη(f , t) = e–ηt
∞∑

k=0

(ηt)k

k!
f
(

k
η

)
, (1.1)

where t ∈ [0,∞) and f ∈ C[0,∞) once the sum (1.1) converges. In 1969, Jakimovski and
Leviatan [18] leveraged the Appell polynomials in constructing a generalization of Szász
operators. Several operators with the right tweaks that still keep the test function intact
have emerged in this area, and it has developed significantly in recent years to get a better
approximation [13–15, 21, 24, 25, 27].
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Recent research has focused mainly on generalizations of Szász operators utilizing spe-
cial polynomials, particularly those derived using generating functions; see, for example,
[1–3, 6, 7, 11, 17, 32]. These generalizations give approximation theory a wide range of
new operator sequences.

Special functions play a crucial role in applied mathematics, and the hypergeometric
and confluent hypergeometric functions are particularly useful for representing a diverse
range of special functions in a clear and concise manner. The study of special functions is
of great importance in the field of mathematical physics, and it is a fundamental aspect of
its institutionalization. Several important problems in physics can be expressed as special
polynomials of two variables. These polynomials are not only useful in introducing new
families of special polynomials, but they are also useful in unambiguously deriving various
useful identities [28].

In 2013, Khan and Raza [22] considered the family of 2-variable general polynomials
pn(x, y) defined by the generating function as:

extφ(y, t) =
∞∑

k=0

pk(x, y)
tk

k!
,

(
p0(x, y) = 1

)
, (1.2)

where φ(y, t) can be expressed as

φ(y, t) =
∞∑

k=0

φk(y)
tk

k!
, φ0(y) �= 0. (1.3)

Khan and Raza [22] also introduced the family of 2-variable general-Appell polynomials
pAn(x, y) defined by the generating function as:

A(t)extφ(y, t) =
∞∑

k=0
pAk(x, y)

tk

k!
, (1.4)

where A(t) can be expressed as [4]:

A(t) =
∞∑

k=0

Aktk , A0 �= 0 (1.5)

and φ(y, t) is given by equation (1.3).
The aim of this research article is to consider the generalization of the Szász operators as-

sociating general-Appell polynomials pAk(x, y). We introduce our operators for x ∈ [0,∞),
subject to the restrictions h ≥ 0, A(1) �= 0, pAk(nx; h) > 0 and φ(h, 1) �= 0 given by

G∗
n,A(f̃ , x) =

e–nx

A(1)φ(h; 1)

∞∑

k=0

pAk(nx; h)
k!

f̃
(

k
n

)
. (1.6)

Remark 1.1 For A(t) = 1 and φ(h, t) = 1, equation (1.6) reduces to equation (1.1). Simi-
larly, for φ(h, t) = 1, equation (1.6) reduces to approximation operators involving Appell
polynomials [18].



Raza et al. Journal of Inequalities and Applications         (2024) 2024:26 Page 3 of 18

Recently, in modern research, considerable attention has been paid to Chlodowsky vari-
ants of generalized Szász-type operators (as evidenced by such works as [10, 24, 25]).
These studies have aimed to elucidate certain convergence properties of these operators
through the application of a weighted Korovkin-type theorem.

Inspired by the above research, this article conceders the following generalization of
Chlodowsky-type operators [12], defined by (1.6):

Gn,A(f̃ , x) =
e– n

βn x

A(1)φ(h; 1)

∞∑

k=0

pAk( n
βn

x; h)
k!

f̃
(

k
n

βn

)
, x ∈ [0,∞), (1.7)

where h ≥ 0, βn is a positive increasing sequence with the characteristics

lim
n→∞βn = ∞, lim

n→∞
βn

n
= 0 (1.8)

and pAk represents the general-Appell polynomials, as defined in equation (1.4).
In this context, it is helpful to define some terms and highlight specific results.

Definition 1.1 For any uniformly continuous function f on [0,∞) and σ > 0, the modulus
of continuity is ω(f ;σ ) defined by

ω(f ;σ ) := sup
s,t∈[0,∞)
|s–t|≤σ

∣∣f (s) – f (t)
∣∣. (1.9)

Indeed, for any σ > 0 and each s, t ∈ [0,∞), we can express the inequality as follows:

∣∣f (s) – f (t)
∣∣ ≤ ω(f ;σ )

( |s – t|
σ

+ 1
)

. (1.10)

The remaining sections of the paper are organized as follows: In Sect. 2, we derive local
approximation results using the generalized Szász operators defined by (1.7). Specifically,
we examine the convergence of these operators with the help of the Korovkin theorem. We
establish the order of approximation using both classical and Lipschitz class approaches.
In Sect. 3, we investigate the weighted B-statistical convergence and statistically weighted
B-summability properties of the operators. In Sect. 4, we present numerical examples
to compute error estimation and demonstrate the efficiency of the proposed operators.
The programming codes are executed using WOLFRAM MATHEMATICA v12.3.1 on
the MacOSX 13.2.1 x86(64-bit) processor. In Sect. 5, we provide concluding remarks and
suggest potential directions for further studies.

2 Local approximation characteristics of Gn,A(f̃ ; x)
This section discusses some lemmas about our operator that will be used in other sections
to prove theorems. Then, we use the universal result established by Korovkin and also
provide an estimate for the order of approximation by utilizing the modulus of continuity
to present our key theorems.

Lemma 2.1 The operators defined in equation (1.7) are linear and positive.
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Lemma 2.2 With the aid of equation (1.4), we lead to the following equalities:

∞∑

k=0

pAk( n
βn

x; h)
k!

= A(1)e
n
βn x

φ(h; 1), (2.1)

∞∑

k=0

k
pAk( n

βn
x; h)

k!
=

[
n
βn

xA(1)φ(h; 1) + A(1)φ′(h; 1) + A′(1)φ(h; 1)
]

e
n
βn x, (2.2)

∞∑

k=0

k2 pAk( n
βn

x; h)
k!

=
[

n2

β2
n

x2A(1)φ(h; 1) +
n
βn

x
(
A(1)φ(h; 1) + 2A′(1)φ(h; 1) + 2A(1)φ′(h; 1)

)

+ A′(1)φ(h; 1) + A(1)φ′(h; 1) + 2A′(1)φ′(h; 1)

+ A′′(1)φ(h; 1) + A(1)φ′′(h; 1)
]

e
n
βn x. (2.3)

Lemma 2.3 Let μs(ν) = νs, s = 0, 1, 2 then the operators Gn,A(f̃ , x) defined in (1.7) satisfy
the following results:

Gn,A
(
μ0(ν); x

)
= 1, (2.4)

Gn,A
(
μ1(ν); x

)
= x +

βn

n

(
A′(1)
A(1)

+
φ′(h; 1)
φ(h; 1)

)
(2.5)

and

Gn,A
(
μ2(ν); x

)
= x2 +

βn

n
x
(

1 + 2
A′(1)
A(1)

+ 2
φ′(h; 1)
φ(h; 1)

)

+
β2

n
n2

(
A′(1)
A(1)

+
φ′(h; 1)
φ(h; 1)

+ 2
A′(1)φ′(h; 1)
A(1)φ(h; 1)

+
A′′(1)
A(1)

+
φ′′(h; 1)
φ(h; 1)

)
. (2.6)

Proof With the aid of Lemma 2.2, the proof becomes fairly straightforward to follow.
Hence, the details can be omitted. �

Now, we obtain central moments immediately.

Lemma 2.4 Let μx
s (ν) = (ν – x)s, s = 1, 2. Regarding operators (1.7), the following results are

established:

Gn,A
(
μx

1(ν); x
)

=
βn

n

(
A′(1)
A(1)

+
φ′(h; 1)
φ(h; 1)

)
, (2.7)

Gn,A
(
μx

2(ν); x
)

=
βn

n
x +

β2
n

n2

(
A′(1)
A(1)

+
φ′(h; 1)
φ(h; 1)

+ 2
A′(1)φ′(h; 1)
A(1)φ(h; 1)

+
A′′(1)
A(1)

+
φ′′(h; 1)
φ(h; 1)

)
. (2.8)

Proof By making use of Lemma 2.1 and Lemma 2.3, the proof is easy to follow. Hence, the
detailed proof can be omitted. �
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Let CE [0,∞) represent the subset of continuous functions f̃ on the interval [0,∞) within
the larger space E[0,∞). E[0,∞) represent the space of all functions f̃ (x) defined on [0,∞)
and satisfying the condition |f̃ (x)| ≤ c exp(αx), α ∈ R and c ∈ R

+. When r ∈ N is fixed,
Cr
E = {f̃ ∈ CE [0,∞) : f̃ ′, f̃ ′′, . . . , f̃ r ∈ CE [0,∞)}. Additionally, CB[0,∞) denotes the space of

all continuous functions defined on [0,∞) that are bounded and is equipped with the
norm ‖f̃ ‖ = supx∈[0,∞) |f̃ (x)|.

Theorem 2.1 For any function f̃ belonging to the class CB[0,∞), the convergence holds as
follows:

lim
n→∞Gn,A(f̃ ) = f̃ (2.9)

this convergence is uniform on each compact subset of [0,∞).

Proof With the aid of Lemma 2.3, it follows that

lim
n→∞Gn,A

(
μs(ν)

)
= νs, s = 0, 1, 2 (2.10)

uniformly on each compact subset of [0,∞). Using the Korovkin theorem [23], we get
assertion (2.9). �

Next, we establish the order of approximation of the operators Gn,A(f̃ ; x).

Theorem 2.2 Let f̃ ∈ CB[0,∞). Then, for x ∈ [0,T], the operators Gn,A(f̃ ; x) satisfy the fol-
lowing inequality:

∣∣Gn,A(f̃ ; x) – f̃
∣∣ ≤ (1 +

√
ϒn)ω

(
f̃ ;

√
βn

n

)
, (2.11)

where

ϒn = T +
βn

n

(
A′(1)
A(1)

+
φ′(h; 1)
φ(h; 1)

+ 2
A′(1)φ′(h; 1)
A(1)φ(h; 1)

+
A′′(1)
A(1)

+
φ′′(h; 1)
φ(h; 1)

)
. (2.12)

Proof Consider

∣∣Gn,A(f̃ ; x) – f̃ (x)
∣∣ =

∣∣∣∣∣
e– n

βn x

A(1)φ(h; 1)

∞∑

k=0

pAk( n
βn

x; h)
k!

f̃
(

k
n
βn

)
– f̃ (x)

∣∣∣∣∣, (2.13)

using triangle inequality, we have

∣∣Gn,A(f̃ ; x) – f̃ (x)
∣∣ ≤ e– n

βn x

A(1)φ(h; 1)

∞∑

k=0

pAk( n
βn

x; h)
k!

∣∣∣∣f̃
(

k
n
βn

)
– f̃ (x)

∣∣∣∣, (2.14)

in view of inequality (1.10), the above equation gives

∣∣Gn,A(f̃ ; x) – f̃ (x)
∣∣ ≤ ω(f̃ , δ)

{
1 +

1
δ

e– n
βn x

A(1)φ(h; 1)

∞∑

k=0

pAk( n
βn

x; h)
k!

∣∣∣∣
k
n
βn – x

∣∣∣∣

}
. (2.15)
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Using the Cauchy-Schwartz inequality, the above inequality gives

∣∣Gn,A(f̃ ; x) – f̃ (x)
∣∣

≤ ω(f̃ , δ)

{
1 +

1
δ

(
e– n

βn x

A(1)φ(h; 1)

∞∑

k=0

pAk( n
βn

x; h)
k!

(
k
n

βn – x
)2

) 1
2
}

, (2.16)

which in view of equations (1.7) and (2.8) gives

∣∣Gn,A(f̃ ; x) – f̃ (x)
∣∣ ≤ ω(f̃ , δ)

{
1 +

1
δ

√
Gn,A

(
μx

2(ν); x
)}

. (2.17)

Taking δ =
√

βn
n and by making use of 0 ≤ x ≤ T gives assertion (2.11). �

Now, we establish the degree of approximation for operators (1.7) with the aid of the
Lipschitz class. For 0 < γ1 ≤ 1 and f̃ ∈ C[0,∞), we define the Lipschitz class Lip(γ1)

M as
follows:

Lip(γ1)
M =

{
f̃ :

∣∣f̃ (ν1) – f̃ (ν2)
∣∣ ≤M|ν1 – ν2|γ1

}
. (2.18)

Theorem 2.3 Consider that f̃ ∈ Lip(γ1)
M . Then, we have

∣∣Gn,A(f̃ ; x) – f̃ (x)
∣∣ ≤M

[
Gn,A

(
μx

2(ν); x
)] γ1

2 . (2.19)

Proof Since, f̃ ∈ Lip(γ1)
M , in view of the definition given in (2.18), we may write

∣∣Gn,A(f̃ ; x) – f̃ (x)
∣∣ =

∣∣Gn,A
(
f̃ (ν) – f̃ (x); x

)∣∣

≤ Gn,A
(∣∣f̃ (ν) – f̃ (x)

∣∣; x
) ≤MGn,A

(|ν – x|γ1 ; x
)
. (2.20)

Applying the Hölder inequality on the right-hand side gives

Gn,A
(|ν – x|γ1 ; x

)
=

e– n
βn x

A(1)φ(h; 1)

∞∑

k=0

pAk( n
βn

x; h)
k!

∣∣∣∣
k
n
βn – x

∣∣∣∣
γ1

(2.21)

Gn,A
(|ν – x|γ1 ; x

)

=
e– n

βn x

A(1)φ(h; 1)

∞∑

k=0

{
pAk( n

βn
x; h)

k!

} 2–γ1
2

{
pAk( n

βn
x; h)

k!

} γ1
2
∣∣∣∣
k
n

βn – x
∣∣∣∣
γ1

(2.22)

Gn,A
(|ν – x|γ1 ; x

)

≤ e– n
βn x

A(1)φ(h; 1)

× {
A(1)φ(h; 1)e

n
βn x} 2–γ1

2

{
e– n

βn x

A(1)φ(h; 1)

∞∑

k=0

pAk( n
βn

x; h)
k!

} 2–γ1
2

× {
A(1)φ(h; 1)e

n
βn x} γ1

2

{
e– n

βn x

A(1)φ(h; 1)

∞∑

k=0

pAk( n
βn

x; h)
k!

∣∣∣∣
k
n

βn – x
∣∣∣∣
2
} γ1

2

, (2.23)
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Gn,A
(|ν – x|γ1 ; x

) ≤ [
Gn,A

(
μ0(ν); x

)] 2–γ1
2

[
Gn,A

(
μx

2(ν); x
)] γ1

2 (2.24)

using inequality (2.24) in inequality (2.20), we prove assertion (2.19). �

3 Statistical convergence properties
In this section, we will establish the weighted B-statistical convergence and statistical
weighted B-summability properties of the operators Gn,A using a sequence of infinite ma-
trices denoted by B = (Bi), where Bi = (βnk(i))i∈N (refer to [8, 19]). Furthermore, we will
estimate the rate of weighted B-statistical convergence for the proposed operator.

Definition 3.1 [16] Consider N0 := N∪{0}, E ⊆N0 andEn = {r : r ≤ n and r ∈ E}. Assume
that the cardinality of the En is denoted by the symbol |An|. Then,

δ(E) = lim
n→∞

|En|
n

= lim
n→∞

1
n

∣∣{r : r ≤ n and r ∈ E}∣∣ (3.1)

is referred to as the natural density of E.

Remark 3.1 It is worth noting that every sequence that converges in the classical sense
will also converge statistically, but there are sequences that converge statistically but not
classically.

Karakaya et al. [20] initially suggested the idea of weighted statistical convergence. A
revised form of weighted statistical convergence was proposed by Mursaleen et al. [26].

Definition 3.2 Suppose that l = (lk) is a sequence of nonnegative numbers with l0 > 0,
and Ln =

∑∞
k=0 lk → ∞ as n → ∞. Then, the sequence x = (xk) is considered weighted

statistically convergent to L if, for each ν > 0, the following condition holds:

lim
n→∞

1
Ln

∣∣{k ≤ Ln : lk|xk – L| ≥ ν
}∣∣ = 0. (3.2)

Remark 3.2 Indeed, if we set lk = 1 for all k, then the above definition is simplified to
classical statistical convergence.

Kolk [30] proposed a novel matrix method called B-summability, originally attributed
to Steiglitz.

Definition 3.3 Consider a sequence of infinite matrices B = (Bi), where Bi = (βnk(i)).
Given a bounded sequence x = (xn), we say that x is B-summable to the value B – lim x if
limn→∞(Bix)n = B – lim x uniformly for i = 0, 1, 2, . . . . The matrix B = (Bi) is considered
regular if and only if the following conditions are satisfied [9, 30]:

1. ‖B‖ = supn,i
∑

k |βnk(i)| < ∞,
2. limn→∞ βnk = 0 uniformly in i for each k ∈N,
3. limn→∞ βnk = 1 uniformly in i.

The set of all regular matrices B with βnk(i) ≥ 0 for all n, k, and i is denoted by R+. For
a regular nonnegative summability matrix B ∈ R+ and a bounded sequence x = (xn), x is
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considered B-statistically convergent to the number l if, for every ε > 0,

lim
n→∞

∑

k:|xk–l|≥ε

βnk(i) = 0 uniformly in i. (3.3)

Definition 3.4 [19] Consider a sequence of regular infinite nonnegative matrices B =
(Bi)i∈N. Additionally, let p = (pn) be a sequence of nonnegative numbers with p0 > 0, and
Pn =

∑n
k=0 pk → ∞, as n → ∞. A sequence x = (xn) is said to be weighted B-statistically

convergent to the number l if, for every ε > 0,

lim
m→∞

1
Pm

m∑

n=0

pn
∑

k:|xk –l|≥ε

βnk(i) = 0 uniformly in i. (3.4)

In this scenario, we will refer to it as [statB, pn] – lim x = l.

Theorem 3.1 [19] Consider B = (Bi)i∈N ∈ R+. Consider a sequence of positive linear op-
erators, denoted as (Tn)n∈N, which operate on the space C[0, 1] and map it back into itself.
If the following property holds:

[statB, pn] – lim
m→∞

∥∥Tn(ej) – ej
∥∥
C[0,1] = 0, j = 0, 1, 2. (3.5)

Then, for each f ∈ C[0, 1],

[statB, pn] – lim
m→∞

∥∥Tn(f ) – f
∥∥
C[0,1] = 0. (3.6)

Theorem 3.2 Consider B = (Bi)i∈N ∈ R+ and f ∈ CE [0,∞). Let (βn)n∈N be a sequence
satisfying conditions in equation (1.8). Additionally, assume that p = (pn) is a sequence of
positive numbers, including zero with p0 > 0 and Pm =

∑m
n=0 pn → ∞, as m → ∞. Then,

for each f̃ ∈ C[0, T], we have:

[statB, pn] – lim
m→∞

∥∥Gn,A(f̃ ) – f̃
∥∥ = 0. (3.7)

Proof Suppose f̃ ∈ CE [0,∞) and x ∈ [0, T], where T ∈R
+ is a fixed constant. With the aid

of Theorem 3.1, it suffices to demonstrate

[statB, pn] – lim
m→∞

∥∥Gn,A(μs) – μs
∥∥ = 0, s = 0, 1, 2. (3.8)

Using Lemma 2.3, we have

[statB, pn] – lim
m→∞

∥∥Gn,A(μ0) – μ0
∥∥ = 0. (3.9)

Further,

sup
x∈[0,T]

∣∣Gn,A(μ1; x) – μ1(x)
∣∣ =

βn

n

(
A′(1)
A(1)

+
φ′(h; 1)
φ(h; 1)

)
. (3.10)

Now, for a given ε′ > 0, let us choose a number ε > 0 such that ε′ < ε. We will then set:

A :=
{

k ∈N : k ≤ n and
∥∥Gn,A(μ1; x) – μ1(x)

∥∥ ≥ ε′}, (3.11)
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A1 :=
{

k ∈N : k ≤ n and
βn

n

(
A′(1)
A(1)

+
φ′(h; 1)
φ(h; 1)

)
≥ ε′ – ε

}
. (3.12)

We observe that A ⊂ A1, which implies that, for m ∈N, we have:

1
Pm

m∑

n=0

pn
∑

k∈A

βnk(i) ≤ 1
Pm

m∑

n=0

pn
∑

k∈A1

βnk(i) i ∈N. (3.13)

As m → ∞ in the above inequality, we get

[statB, pn] – lim
m→∞

∥∥Gn,A(μ1) – μ1
∥∥ = 0. (3.14)

Similarly, using Definition 3.4 and Lemma 2.3, we obtain

sup
x∈[0,T]

∣∣Gn,A(μ2; x) – μ2(x)
∣∣

=
∣∣∣∣T

βn

n

(
1 + 2

A′(1)
A(1)

+ 2
φ′(h; 1)
φ(h; 1)

)

+
β2

n
n2

(
A′(1)
A(1)

+
φ′(h; 1)
φ(h; 1)

+ 2
A′(1)φ′(h; 1)
A(1)φ(h; 1)

+
A′′(1)
A(1)

φ′′(h; 1)
φ(h; 1)

)∣∣∣∣. (3.15)

Given r > 0, we choose a number ε0 such that ε0 < r. Then, we set:

S̃ :=
{

k ∈N : k ≤ n and
∥∥Gn,A(μ2) – μ2

∥∥ ≥ r
}

, (3.16)

S̃1 :=
{

k ∈N : k ≤ n and T
βk

k

(
1 + 2

A′(1)
A(1)

+ 2
φ′(h; 1)
φ(h; 1)

)
≥ r – ε0

2

}
, (3.17)

S̃2 :=
{

k ∈N : k ≤ n and

β2
k

k2

(
A′(1)
A(1)

+
φ′(h; 1)
φ(h; 1)

+ 2
A′(1)φ′(h; 1)
A(1)φ(h; 1)

+
A′′(1)
A(1)

φ′′(h; 1)
φ(h; 1)

)
≥ r – ε0

2

}
, (3.18)

then it can be concluded that the inclusion S̃ ⊂ S̃1 ∪ S̃2 is valid, and this implication sug-
gests that

1
Pm

m∑

n=0

pn
∑

k∈S̃
βnk(i) ≤ 1

Pm

m∑

n=0

pn
∑

k∈S̃1

βnk(i) +
1

Pm

m∑

n=0

pn
∑

k∈S̃2

βnk(i), i ∈ N. (3.19)

By taking the limit as m approaches infinity in the above inequality, we obtain:

[statB, pn] – lim
m→∞

∥∥Gn,A(μ2) – μ2
∥∥ = 0. (3.20)

Conclusively, in view of equations (3.9), (3.14), and (3.20), we obtain

[statB, pn] – lim
m→∞

∥∥Gn,A(f̃ ) – f̃
∥∥ = 0, (3.21)

which completes the proof. �
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Definition 3.5 [19] Assume that B = (Bi)i∈N is a sequence of infinite nonnegative regular
matrices. A sequence x = (xn) is statistically weighted B-summable to L if, for each ε > 0,

lim
j→∞

1
j

∣∣∣∣∣

{
m ≤ j :

∣∣∣∣∣
1

Pm

m∑

n=0

pn

∞∑

k=0

xkβnk(i) – L
∣∣∣∣∣ ≥ 0

}∣∣∣∣∣ = 0 uniformly in i. (3.22)

In this case, it is denoted by N̄B(stat) – lim x = L.

Theorem 3.3 [19] Let x = (xk) be a bounded sequence. If x is weighted B-statistically con-
vergent to L, then it is statistically weighted B-summable to the same L, but not conversely.

Corollary 3.1 Suppose that B ∈R+ and f̃ ∈ CE [0,∞). Then, for every f̃ ∈ [0, T],

N̄B(stat) – lim
∥∥Gn,A(f̃ ) – f̃

∥∥ = 0. (3.23)

Proof The proof immediately follows with the aid of Theorem 3.2 and Theorem 3.3.
Hence, the details can be omitted. �

Moreover, we can estimate the rate of weighted B-statistical convergence of Gn,A(f̃ ; x)
to f̃ ∈ C[0, T] using the modulus of continuity defined as (1.9).

Definition 3.6 [19] Assume that B = (Bi)i∈N ∈R+, and let (qm) be a sequence of positive
nondecreasing sequence of real numbers. A sequence x = (xn) is weighted B-statistically
convergent to l with the rate o(qm) if for any ε > 0,

lim
m→∞

1
qmPm

m∑

n=0

pn
∑

k:|xk–l|≥ε

xkβnk(i) = 0 uniformly in i. (3.24)

In this case, it is denoted by xn – l = [statB, pn] – o(qm).

Theorem 3.4 Suppose that (cs)s∈N and (ds)s∈N are positive nondecreasing sequences and
consider B ∈R+. Assuming the following assumptions are correct:

1. ‖Gn,A(μ0) – μ0‖ = [statB, pn] – o(cs),
2. ω(f ; δn) = [statB, pn] – o(ds) on [0,T], where

δn :=
∥∥Gn,A

(
μx

2
)∥∥ with μx

2(ν) = (ν – x)2,ν ∈ [0, T]. (3.25)

Then,

∥∥Gn,A(f̃ ) – f̃
∥∥ = [statB, pn] – o(hs) f̃ ∈ C[0, T], (3.26)

where hs = max{cs, ds}.

Proof Let us assume that f̃ ∈ CE [0,∞) and x ∈ [0, T], where T ∈R is a fixed value. Due to
the linearity and positivity of Gn,A(f̃ ; x), we can express it as follows:

∥∥Gn,A(f̃ ; x) – f̃ (x)
∥∥ ≤ Gn,A

(∣∣f̃ (t) – f̃ (x)
∣∣; x

)
+

∣∣f̃ (x)
∣∣∣∣Gn,A(μ0; x) – μ0

∣∣ (3.27)
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using inequality (1.10), we obtain

∥∥Gn,A(f̃ ; x) – f̃ (x)
∥∥ ≤ ω(f̃ , s)Gn,A

( |t – x|
s

+ 1; x
)

+
∣∣f̃ (x)

∣∣∣∣Gn,A(μ0; x) – μ0
∣∣ (3.28)

or, equivalently

∥∥Gn,A(f̃ ; x) – f̃ (x)
∥∥ ≤ ω(f̃ , s)

{
Gn,A(μ0; x) +

1
s2 Gn,A

(
μx

2; x
)}

+
∣∣f̃ (x)

∣∣∣∣Gn,A(μ0; x) – μ0
∣∣. (3.29)

By considering the supremum over x ∈ [0, T] on both sides of inequality (3.29), we deduce
the following:

∥∥Gn,A(f̃ ; x) – f̃ (x)
∥∥ ≤ ω(f̃ , s)

{
1
s2

∥∥Gn,A
(
μx

2
)∥∥

+
∥∥Gn,A(μ0) – μ0

∥∥ + 1
}

+ N
∥∥Gn,A(μ0; x) – μ0

∥∥ (3.30)

where N = ‖f̃ ‖.
Now, if we choose s = δn = ‖Gn,A(μx

2)‖ 1
2 in expression (3.30), we arrive at

∥∥Gn,A(f̃ ; x) – f̃ (x)
∥∥ ≤ ω(f̃ , δn)

∥∥Gn,A(μ0) – μ0
∥∥ + 2ω(f̃ , δn) + N

∥∥Gn,A(μ0; x) – μ0
∥∥ (3.31)

or, equivalently

∥∥Gn,A(f̃ ; x) – f̃ (x)
∥∥ ≤ κ

{
ω(f̃ , δn)

∥∥Gn,A(μ0) – μ0
∥∥ + ω(f̃ , δn) +

∥∥Gn,A(μ0; x) – μ0
∥∥}

(3.32)

here κ = max{2,N }. Let ε > 0, then we can define the sets as follows:

υ =
{

k :
∥∥Gk,A(f̃ ) – f̃

∥∥ ≥ ε
}

, (3.33)

υ1 =
{

k : ω(f̃ , δk)
∥∥Gk,A(f̃ ) – f̃

∥∥ ≥ ε

3κ

}
, (3.34)

υ2 =
{

k : ω(f̃ , δk) ≥ ε

3κ

}
, (3.35)

υ3 =
{

k :
∥∥Gn,A(μ0; x) – μ0

∥∥ ≥ ε

3κ

}
. (3.36)

Then the inclusion υ ⊂ ⋃3
j=1 υj holds and yields

1
hmPm

m∑

n=0

pn
∑

k∈υ

βnk(i) ≤ 1
hmPm

m∑

n=0

pn
∑

k∈υ1

βnk(i) +
1

dmPm

m∑

n=0

pn
∑

k∈υ2

βnk(i)

+
1

cmPm

m∑

n=0

pn
∑

k∈υ3

βnk(i), i ∈N. (3.37)
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Through hypothesis (1) and (2), we have

∥∥Gn,A(f̃ ; x) – f̃ (x)
∥∥ = [statB, pn] – o(hm), (3.38)

where hm = max{cm, dm}. The proof is now concluded. �

4 Numerical examples
In this section, we establish the positive linear operators that include specific members of
the Appell family and general polynomial families.

Example 4.1 In quantum physics, the Laguerre polynomials are extensively used to re-
search the isotropic harmonic oscillator in three dimensions. Insights concerning the
quantum mechanical behavior of these systems can be gleaned from their appearance
in the solution of the Schrödinger equation for a single electron in such systems. Her-
mite polynomials can be used for function approximation and interpolation. Appropriate
approximations of functions can be found by writing them down as a series of Hermite
polynomials. This approximation method shines when the function in question oscillates
or decays quickly.

Hermite-modified Laguerre polynomials Hf (α,λ)
n (x, y) are introduced by Raza et al. [29]

as:

∞∑

n=0
Hf (α,λ)

n (x, y)tn =
1

(1 – t)α
exλt+y(λt)2

, (4.1)

which yields the following explicit representation of Hf (α,λ)
n (x, y):

Hf (α,λ)
n (x, y) =

n∑

r=0

(α)n–rλ
rHr(x, y)

r!(n – r)!
. (4.2)

If we take A(t) = 1
(1–t)α , λ = 1 and φ(h, t) = eλht in equation (1.7), we get the following posi-

tive linear operators involving Hermite-modified Laguerre polynomials Hf (α,λ)
n (x, y) as:

Gn,HL(f̃ , x) =
e– n

2βn x– h
4

2α

∞∑

k=0

Hf (α,λ)
k ( n

βn
x; h)

2kk!
f̃
(

k
n

βn

)
, x ∈ [0,∞). (4.3)

Here, we replace t by 1
2 instead of 1 for the existence of particular A(t).

For n = 80, 90, 100; βn = n
1
5 ; h = 10 and α = 1, Fig. 1 depicts the convergence of the op-

erator (4.3) to the function

f̃ (x) = sin x2, (4.4)

and for n = 80, 90, 100; βn = n
1

15 ; h = 0.0001 and α = 1, Fig. 2 depicts the convergence of
the operator (4.3) to the function

g̃(x) = sinh x2. (4.5)
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Figure 1 The convergence of operators Gn,HL(f̃ , x) to f̃ (x) = sin x2

Figure 2 The convergence of operators Gn,HL(g̃, x) to g̃(x) = sinh x2

Figure 3 Graphical depiction of absolute error of operators Gn,HL(f̃ , x) to f̃ (x) = sin x2

Further, we estimate the absolute error En = |Gn,HL(f̃ , x) – f̃ (x)| and En = |Gn,HL(g̃, x) – g̃(x)|
for different values of n and give the corresponding graph for the error depicting the con-
vergence in Figs. 3 and 4. It can be clearly seen from Figs. 1–4 that for larger values of n,
operator (4.3) converges to f̃ (x) and g̃(x).

In Table 1, we compute the error of approximation of g̃(x) = sinh x2 at different points of
interval for the different choices of sequence bn.

Example 4.2 Truncated exponential polynomials exhibit a versatile range of behaviors and
can approximate a wide range of functions. The capacity of truncated exponential func-
tions to approximate functions with exponential growth and decay is their primary benefit.
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Figure 4 Graphical depiction of absolute error of operators Gn,HL(g̃, x) to g̃(x) = sinh x2

Table 1 Error of approximation process for g̃(x) = sinh x2

En Error bound at

x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1.0

bn = n
1
5 80 0.0226843 0.081178 0.159339 0.259574 0.423336

90 0.0225464 0.0786976 0.150769 0.239849 0.386168
100 0.0223686 0.0762322 0.142426 0.220774 0.350322

bn = n
1
10 80 0.0214987 0.0670784 0.112372 0.152757 0.223047

90 0.0210021 0.0626152 0.098046 0.120594 0.163077
100 0.0204862 0.0582361 0.0841233 0.0894469 0.105094

bn = n
1
15 80 0.00568912 0.0404805 0.0787168 0.101278 0.116962

90 0.00566921 0.0382039 0.0686854 0.0754437 0.0649501
100 0.00563257 0.0359504 0.058903 0.0503647 0.0145585

The Gould-Hopper polynomials are used in the context of the DVR technique to general-
ize the wavefunctions of quantum systems across a discrete basis. Eigenvalues, eigenfunc-
tions, and other characteristics of quantum systems can be roughly approximated using
this enlargement.

Two-variable truncated exponential-Gould-Hopper polynomials eH (d+1,r)
n (x, y) are given

as [5]:

∞∑

n=0
eH (d+1,r)

n (x, y)
tn

n!
=

ext+ytd+1

1 – tr (4.6)

yielding the following explicit representation of eH (d+1,r)
n (x, y):

eH (d+1,r)
n (x, y) = n!

[ n
r ]∑

k=0

[ n–rk
d+1 ]∑

l=0

xn–rk–(d+1)lyl

l!(n – rk – (d + 1)l)!
. (4.7)

If we take A(t) = 1
(1–tr) , and φ(h, t) = eytd+1 in equation (1.7), we get the following positive

linear operators involving 2-variable truncated exponential-Gould-Hopper polynomials
eH (d+1,r)

n (x, y) as:

Gn,eH (f̃ , x) =
(

1 –
(

1
2

)r)
e– n

2βn x– h
2d+1

∞∑

k=0

eH (d+1,r)
k ( n

βn
x; h)

2kk!
f̃
(

k
n

βn

)
, x ∈ [0,∞). (4.8)

Here, we replace t by 1
2 instead of 1 for the existence of particular A(t).
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Figure 5 The convergence of operators Gn,eH(f̃ , x) to f̃ (x) =
√
x + e–

x2
3

Figure 6 The convergence of operators Gn,eH(g̃, x) to g̃(x) = – x
2 +

1
10+x2+x3

+
√
x

For n = 20, 50, 100; βn = n 1
3 ; h = 0.0001; r = 2 and d = 3, Fig. 5 depicts the convergence

of operator (4.8) to the function

f̃ (x) =
√

x + e– x2
3 , (4.9)

and for n = 20, 50, 100; βn = n 1
8 ; h = 0.001; r = 5 and d = 3, Fig. 6 depicts the convergence

of operator (4.8) to the function

g̃(x) = –
x
2

+
1

10 + x2 + x3 +
√

x. (4.10)

Further, we estimate the absolute error En = |Gn,eH (f̃ , x) – f̃ (x)| and En = |Gn,eH (g̃, x) – g̃(x)|
for different values of n and give the corresponding graph for the error depicting the con-
vergence in Figs. 7 and 8. It can be clearly seen from Figs. 5–8 that for larger values of n,
operator (4.8) converges to f̃ (x) and g̃(x).

In Table 2, we compute the error of approximation of g̃(x) = – x
2 + 1

10+x2+x3 +
√

x at different
points of interval for the different choices of sequence bn.

5 Concluding remarks
With the help of the general-Appell polynomials, we present the Chlodowsky generaliza-
tion of Szász operators. The convergence properties of the sequence of operators in (1.7)
are established. The numerical evaluation is done in Wolfram Mathematica.
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Figure 7 Graphical depiction of absolute error of operators Gn,eH(f̃ , x) to f̃ (x) =
√
x + e–

x2
3

Figure 8 Graphical depiction of absolute error of operators Gn,eH(g̃, x) to g̃(x) = – x
2 +

1
10+x2+x3

+
√
x

Table 2 Error of approximation process for g̃(x) = – x
2 +

1
10+x2+x3

+
√
x

En

n =

Error bound at

x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1.0

bn = n
1
4 20 0.147529 0.12774 0.104113 0.0789145 0.0515653

50 0.110057 0.0990441 0.084131 0.0639238 0.0392311
100 0.0937739 0.0909359 0.0787186 0.0594359 0.0351593

bn = n
1
6 20 0.132132 0.114179 0.0941172 0.0714188 0.0455463

50 0.0985856 0.0931308 0.0802711 0.0607755 0.0363954
100 0.0877984 0.0881726 0.0765825 0.0575355 0.0333826

bn = n
1
8 20 0.125123 0.108813 0.0904582 0.0687138 0.0433252

50 0.0944476 0.0912384 0.0789394 0.0596288 0.0353382
100 0.0860583 0.0872578 0.0758307 0.0568539 0.032739

The absolute error of operators (1.7) can be computed by comparing the approxima-
tions obtained using the operators with the actual values of the functions g̃(x) = sinh x2

and g̃(x) = – x
2 + 1

10+x2+x3 +
√

x at different points within the interval [0, 1]. Tables 1 and
2 present the computed absolute errors for different choices of the sequence bn. As we
correctly observed, for smaller values of bn, the absolute error of the approximation tends
to decrease. This suggests that using smaller bn values yields more accurate results when
approximating the functions g̃(x) = sinh x2 and g̃(x) = – x

2 + 1
10+x2+x3 +

√
x with the given

operators (1.7).
In further studies, researchers may look at generalizing and modifying these operators

for better approximation.
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