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Abstract
The existence of solutions for a class of μ-Caputo fractional differential equations and
an inclusion problem equipped with nonlocal μ-integral boundary conditions are
investigated. We use F-contraction, convex F-contraction, and some consequences to
achieve the desired goals. Finally, some examples are provided to illustrate the results.
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1 Introduction
The subject of fractional differential equations (FDEs) is gaining much importance and sig-
nificance. Due to the influence memory function of a fractional derivative (FD), FDEs have
been widely used to describe many physical phenomena such as seepage flow in porous
media. The existence of solutions to such equations has also been investigated by many
scientists ([4, 11–17, 20, 26, 38]). The authors in [37] studied the problem of a FDE involv-
ing nonlocal fractional integral (FI) conditions as

⎧
⎪⎪⎨

⎪⎪⎩

RLDπ∗
0+ w∗(ς ) = h(ς , w∗(ς )), ς ∈ [0, T];

w∗(0) = 0,

w∗(T) =
∑n

i=1 βH
i Ipi

0+ w∗(ζi),

where 1 < π∗ ≤ 2, RLDπ∗
0+ , and HIpi

0+ denote, respectively, the Riemann–Liouville (R–L) FD
of order π∗ and the Hadamard FI of order pi > 0, ζi ∈ (0, T), h : [0, T]×R→R and βi ∈ R,
i ∈ {1, 2, . . . , n} with

∑n
i=1

βiζiπ∗–1
(π∗–1)pi �= Tπ∗–1.

Ntouyas et al. ([29]) investigated the problem

⎧
⎪⎪⎨

⎪⎪⎩

RLDπ∗
0+ w∗(ς ) = H(ς , w∗(ς )), ς ∈ [0, T];

w∗(0) = 0,

w∗(T) =
∑n

i=1 βH
i Ipi

0+ w∗(ζi),
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where 1 < π∗ ≤ 2, RLDπ∗
0+ and HIpi

0+ indicate, respectively, the R–L FD of order π∗ and the
Hadamard FI of order pi > 0, ζi ∈ (0, T), h : [0, T] × R → P(R) and βi ∈ R, i = 1, 2, . . . , n
with

∑n
i=1

βiζiπ∗–1
(π∗–1)pi �= Tπ∗–1.

Almeida in [7], obtained a generalization of the classical Caputo operator to μ-Caputo
operator. To see some results in this area, refer to [1–3, 5, 6, 9, 10, 18, 19, 25, 28, 31–34,
36, 39].

Here, we first consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

CDπ∗ ,μ
0 w∗(ς ) = h(ς , w∗(ς )), ς ∈ I = [s0, T];

w∗(s0) = 0,

w∗(T) =
∑n

i=1 βRL
i Ipi ,μ

0 w∗(ζi),

(1)

in which CDπ∗ ,μ
0 and RLIpi ,μ

0 are, respectively, the μ-Caputo FD of order π∗, 1 < π∗ < 2 and
the R–L μ-FI of order pi > 0, s0 > 0, ζi ∈ (s0, T), h : I × R → R and βi ∈ R i = 1, 2, . . . , n.
Also, the existence of solutions of the problem

⎧
⎪⎪⎨

⎪⎪⎩

CDπ∗ ,μ
0 w∗(ς ) ∈ g(ς , w∗(ς )), ς ∈ I;

w∗(s0) = 0,

w∗(T) =
∑n

i=1 βRL
i Ipi ,μ

0 w∗(ζi),

(2)

will be investigated in which g : I×R→ P(R) is a set-valued compact map.
This study aims to provide a different approach to examining the existence of solutions

of (1) and (2). We utilize new techniques based on the application of some F-contraction
mappings that are defined in appropriate cones of positive functions.

Here, weaker conditions have been applied compared to other works including the Ba-
nach contraction. In the contraction that we apply, the used functions may not even be
continuous, while in the Banach contraction, the functions are uniformly continuous, and
therefore the number of functions that apply to our contraction is much more than the
number of functions that apply to other contractions. Therefore, the number of problems
that we can discuss with this contraction will be far more than in similar cases.

2 Requisites preliminaries
We present some basic and auxiliary concepts in this section. The following definitions
were given in references [35, 40], and [26].

For function w∗ : [0, +∞) →R, we recall the R–L FI of order π∗ > 0 as

RLIπ∗
s0 w∗(ς ) =

∫ ς

s0

(ς – q)π∗–1

�(π∗)
w∗(q) dq. (3)

Here, we assume n – 1 < π∗ < n, so that n = [π∗] + 1. For a continuous function w∗ :
[0, +∞) →R, the R–L FD of order π∗ is given by

RLDπ∗
s0 w∗(ς ) =

(
d

dς

)n ∫ ς

s0

(ς – q)n–π∗–1

�(n – π∗)
w∗(q) dq. (4)
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Let w∗ ∈AC(n)
R

([0, +∞)) (absolutely continuous mappings). The Caputo FD is defined by:

CDπ∗
s0 w∗(ς ) =

∫ ς

s0

(ς – q)n–π∗–1

�(n – π∗)
w∗(n)(q) dq. (5)

Here, consider an increasing function μ ∈ Cn(I) with μ′(ς ) > 0 for every s0 ≤ ς ≤ M.
Then, the integral in the sense of μ-R–L of w∗ : I → R of order π∗ depending on μ is
introduced as

RLIπ∗ ;μ
s0 w∗(ς ) =

1
�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1w∗(q) dq. (6)

Note that in the case of μ(ς ) = ς , the R–L μ-FI (6) reduces to the classical R–L FI (3). The
π∗ ordered R–L μ-FD of the continuous function w∗ : [0, +∞) → R is illustrated as (see
[24, 30, 35])

RLDπ∗ ;μ
s0 w∗(ς ) =

1
�(n – π∗)

(
1

μ′(ς )
d

dς

)n ∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)n–π∗–1w∗(q) dq. (7)

Similarly, in the case of μ(ς ) = a, the R–L μ-FD (7) becomes the classical R–L FD (4).
Almeida has presented the following derivative ([7])

CDπ∗ ;μ
s0 w∗(ς ) =

1
�(n – π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)n–π∗–1
(

1
μ′(q)

d
dq

)n

w∗(q) dq. (8)

Note again that in the case of μ(ς ) = ς , the μ-Caputo FD (8) reduces to the classical Ca-
puto derivative (5). Some properties of the mentioned operators are given in the following
lemmas.

Lemma 2.1 ([7, 24, 30, 35]) Let π∗, �∗, and β∗ be positive and μ ∈ Cn(I) be a mapping
with μ′(ς ) > 0. Then,

(i1) RLIπ∗ ;μ
s0 (RLI�∗ ;μ

s0 w∗)(ς ) = (RLIπ∗+�∗ ;μ
s0 w∗)(ς );

(i2) RLIπ∗ ;μ
s0 (μ(ς ) – μ(s0))β∗ = �(β∗+1)

�(π∗+β∗+1) (μ(ς ) – μ(s0))π∗+β∗ ;
(i3) CDπ∗ ;μ

s0 (μ(ς ) – μ(s0))β∗ = �(β∗+1)
�(β∗–π∗+1) (μ(ς ) – μ(s0))β∗–π∗ , (β∗ > π∗);

(i4) RLDπ∗ ;μ
s0 (RLI�∗ ;μ

s0 w∗)(ς ) = (RLI�∗–π∗ ;μ
s0 w∗)(ς ), (π∗ < �∗).

Lemma 2.2 ([7]) Let π∗ ∈ (n – 1, n) and μ ∈ Cn(I) be a function with μ′(ς ) > 0 for every
ς ∈ I. Then, for any w∗ ∈ Cn–1(I),

RLIπ∗ ;μ
s0

(CDπ∗ ;μ
s0 w∗)(ς ) = w∗(ς ) –

n–1∑

j=0

(δμ)jw∗(s0)
j!

(
μ(ς ) – μ(s0)

)j,
(

δμ =
1

μ′(ς )
d

dς

)

.

From the previous lemma, the authors in [7] have considered the series solution of the
homogeneous equation (CDπ∗ ;μ

s0 w∗)(ς ) = 0 as

w∗(ς ) =
n–1∑

j=0

k̃∗
j
(
μ(ς ) – μ(s0)

)j

= k̃∗
0 + k̃∗

1
(
μ(ς ) – μ(s0)

)
+ k̃∗

2
(
μ(ς ) – μ(s0)

)2 + · · · + k̃∗
n–1

(
μ(ς ) – μ(s0)

)n–1,

where n – 1 < π∗ < n and k̃∗
0 , k̃∗

1 , . . . , k̃∗
n–1 ∈R.
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Let (D,‖ · ‖) be a normed space. The classes PCL(D), PBN(D), PCP(D), and PCV(D) are,
respectively, closed, bounded, compact, and convex subsets of D.

Definition 2.3 ([21, 23]) Let (X, d, s) be a b-metric space and T : X → X. Then, T is said
to be a convex F-contraction if there exists F : (0,∞) →R such that

(i) F is strictly increasing on (0,∞);
(ii) for each sequence {αn} of positive numbers, if limn→∞ F(αn) = –∞, then

limn→∞ αn = 0;
(iii) there exists k ∈ (0, 1

1+log2 s ) with property limα→0+ αkF(α) = 0;
(iv) there exists τ > 0, λ ∈ [0, 1) with

τ + F(dn) ≤ F
(
λdn + (1 – λ)dn–1

)
, (9)

for all dn > 0, where n ∈N.

To obtain the desired results, the following theorems are crucial.

Theorem 2.4 ([21]) Suppose that (X, d, s) is a b-complete b-metric space and T is a con-
tinuous convex F-contraction on X. Then, T has a fixed point (FP) in X.

Theorem 2.5 ([41]) Let (X, d, s > 1) be a complete b-metric space and F : X → CB(X).
Assume that there exists a strictly increasing function F : (0,∞) → (–∞, +∞) and τ > 0
such that

2τ + F
(
s.H(Fι,Fν)

) ≤ F
(
d(ι,ν)

)
, (10)

for all ι,ν ∈ X with Fι �= Fν . Then, F has a FP.

3 Main results
Here, we derive some conditions for the existence of at least one solution to problems (1)
and (2). In respect of achieving the goals, letD = {w∗(ς ) : w∗(ς ) ∈ C(I,R)} and d : D×D →
[0,∞) be given by

d
(
w∗,ρ∗) =

∥
∥w∗ – ρ∗∥∥2 = sup

ς∈I

∣
∣w∗(ς ) – ρ∗(ς )

∣
∣2.

Evidently, (D,‖ · ‖) is a complete b-metric space with υ = 2 but is not a metric space.

Lemma 3.1 ([22]) Let �∗ ∈ C(I,R). Then, w∗(ς ) ∈ D is a solution for the boundary value
problem (BVP)

⎧
⎪⎪⎨

⎪⎪⎩

CDπ∗ ,μ
0 w∗(ς ) = �∗(ς ), ς ∈ I;

w∗(s0) = 0,

w∗(T) =
∑n

i=1 βRL
i Ipi ,μ

0 w∗(ζi)

(11)

if and only if w∗(ς ) is a solution for

w∗(ς ) =RL Iπ∗ ,μ
0 �∗(ς ) –

(μ(ς ) – μ(s0))
�

[

RLIπ∗ ,μ
0 �∗(T) –

n∑

i=1

βRL
i Ipi+π∗ ,μ

0 �∗(ζi)

]

, (12)

where � = (μ(T) – μ(s0)) –
∑n

i=1 βi
ξpi+1

�(pi+2) �= 0.
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Throughout this work, we apply

RLIπ∗ ,μ
0 h

(
ς , w∗(ς )

)
=

1
�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1
h
(
q, w∗(q)

)
dq (13)

and

RLIpi+π∗ ,μ
0 h

(
ζi, w∗(ζi)

)
=

1
�(pi + π∗)

∫ ζi

s0

μ′(q)
(
μ(ζi) – μ(q)

)pi+π∗–1
h
(
q, w∗(q)

)
dq, (14)

where ζi ∈ I, i = 1, 2, . . . , n.
Let D = C(I,R). Define the operator T : D→D by

Tw∗(ς ) =RL Iπ∗ ,μ
0 h

(
ς , w∗(ς )

)

–
(μ(ς ) – μ(s0))

�

[

RLIπ∗ ,μ
0 h

(
T , w∗(T)

)
–

n∑

i=1

βRL
i Ipi+π∗ ,μ

0 h
(
ζi, w∗(ζi)

)
]

. (15)

The BVP (11) has a solution if T has a FP.
Note that in the following theorem we prove that �1 is represented as

�1 =
(|μ(T) – μ(s0)|)π∗

�(π∗ + 1)
+

(|(μ(T) – μ(s0))|)π∗+1

|�|�(π∗ + 1)

+
n∑

i=1

βi
n(|(μ(T) – μ(s0))|)pi+π∗+1

|�|�(pi + π∗ + 1)
. (16)

Theorem 3.2 Let h : I×D→D be a continuous function. Suppose also that

∣
∣h

(
ς , w∗

1(ς )
)

– h
(
ς , w∗

2(ς )
)∣
∣ ≤ λ∗

√
2θ

∣
∣w∗

1 – w∗
2
∣
∣,

for all w∗
1, w∗

2 ∈ D, λ∗ = 1
�1

, and θ > 0. Then, at least one solution of (1) exists.

Proof First, we show that T is continuous. Let {w∗
n} ∈ C(I,R) be a sequence that w∗

n →
w∗ ∈ C(I,R). For all ς ∈ I, we have

∣
∣Tw∗

n(ς ) – Tw∗(ς )
∣
∣

≤ 1
�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1∣∣h
(
q, w∗

n(q)
)

– h
(
q, w∗(q)

)∣
∣dq

+
|(μ(ς ) – μ(s0))|

|�|�(π∗)

∫ T

s0

μ′(q)
(
μ(T) – μ(q)

)π∗–1∣∣h
(
q, w∗

n(q)
)

– h
(
q, w∗(q)

)∣
∣dq

+
n∑

i=1

βi
|(μ(ς ) – μ(s0))|
|�|�(pi + π∗)

×
∫ ζi

s0

μ′(q)
(
μ(ζi) – μ(q)

)pi+π∗–1∣∣h
(
q, w∗

n(q)
)

– h
(
q, w∗(q)

)∣
∣dq.
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Put, h(q, w∗
n(q)) = hw∗

n (q) and h(q, w∗
n(q)) = hw∗ (q). Then,

∣
∣hw∗

n (q) – hw∗ (q)
∣
∣ ≤ λ∗

√
2θ

∣
∣w∗

n – w∗∣∣.

Now, w∗
n → w∗ as n → ∞ implies hw∗

n (q) → hw∗ (q), q ∈ I. Let ℵ > 0 such that for q ∈ I, we
have |hw∗

n (q)| ≤ ℵ and |hw∗ (q)| ≤ ℵ. Thus,

μ′(q)
(
μ(j) – μ(q)

)π∗–1∣∣hw∗
n (q) – hw∗ (q)

∣
∣ ≤ μ′(q)

(
μ(j) – μ(q)

)π∗–1(∣∣hw∗
n (q)

∣
∣ +

∣
∣hw∗ (q)

∣
∣
)

≤ 2ℵμ′(q)
(
μ(j) – μ(q)

)π∗–1,

where j = ς , T , ξi ∈ I. For each j ∈ I, 2ℵμ′(q)(μ(j) – μ(q))π∗–1 is integrable. Therefore, ap-
plying the Lebesgue dominated convergence theorem, we obtain |Tw∗

n(ς ) – Tw∗(ς )| → 0
as n → ∞. Hence, particularly maxς∈I |Tw∗

n(ς ) – Tw∗(ς )| → 0, which implies ‖Tw∗
n –

Tw∗‖D → 0. Hence, T is continuous.
Assume w∗

1, w∗
2 ∈ D. Then,

∣
∣Tw∗

n(ς ) – Tw∗(ς )
∣
∣

≤ 1
�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1∣∣h
(
q, w∗

n(q)
)

– h
(
q, w∗(q)

)∣
∣dq

+
|(μ(ς ) – μ(s0))|

|�|�(π∗)

∫ T

s0

μ′(q)
(
μ(T) – μ(q)

)π∗–1∣∣h
(
q, w∗

n(q)
)

– h
(
q, w∗(q)

)∣
∣dq

+
n∑

i=1

βi
|(μ(ς ) – μ(s0))|
|�|�(pi + π∗)

∫ ζi

s0

μ′(q)
(
μ(ζi) – μ(q)

)pi+π∗–1

× ∣
∣h

(
q, w∗

n(q)
)

– h
(
q, w∗(q)

)∣
∣dq.

Assume w∗
1, w∗

2 ∈D. Then,

∣
∣Tw∗

1(ς ) – Tw∗
2(ς )

∣
∣

≤ 1
�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1 λ∗
√

2θ

∣
∣w∗

1 – w∗
2
∣
∣dq

+
|(μ(ς ) – μ(s0))|

|�|�(π∗)

∫ T

s0

μ′(q)
(
μ(T) – μ(q)

)π∗–1 λ∗
√

2θ

∣
∣w∗

1 – w∗
2
∣
∣dq

+
n∑

i=1

βi
|(μ(ς ) – μ(s0))|
|�|�(pi + π∗)

∫ ζi

s0

μ′(q)
(
μ(ζi) – μ(q)

)pi+π∗–1 λ∗
√

2θ

∣
∣w∗

1 – w∗
2
∣
∣dq

≤
λ∗√
2θ

‖w∗
1 – w∗

2‖(|μ(ς ) – μ(s0)|)π∗

�(π∗ + 1)
+

λ∗√
2θ

‖w∗
1 – w∗

2‖(|(μ(ς ) – μ(s0))|)π∗+1

|�|�(π∗ + 1)

+
n∑

i=1

βi

λ∗√
2θ

‖w∗
1 – w∗

2‖(|(μ(ς ) – μ(q))|)pi+π∗+1

|�|�(pi + π∗ + 1)
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=
λ∗

√
2θ

{
(|μ(T) – μ(s0)|)π∗

�(π∗ + 1)
+

(|(μ(T) – μ(s0))|)π∗+1

|�|�(π∗ + 1)

+
n∑

i=1

βi
n(|(μ(T) – μ(s0))|)pi+π∗+1

|�|�(pi + π∗ + 1)

}
∥
∥w∗

1 – w∗
2
∥
∥.

Hence,

∥
∥Tw∗

1(ς ) – Tw∗
2(ς )

∥
∥ ≤ λ∗

√
2θ

�1
∥
∥w∗

1 – w∗
2
∥
∥.

Therefore,

∥
∥Tw∗

1(ς ) – Tw∗
2(ς )

∥
∥2 ≤ λ∗2

2θ
�1

2∥∥w∗
1 – w∗

2
∥
∥2.

Apply the assumptions to obtain

∥
∥Tw∗

1(ς ) – Tw∗
2(ς )

∥
∥2 ≤ 1

2θ

∥
∥w∗

1 – w∗
2
∥
∥2.

Hence,

ln
∥
∥Tw∗

1(ς ) – Tw∗
2(ς )

∥
∥2 ≤ – ln θ + ln

‖w∗
1 – w∗

2‖2

2
.

Therefore,

ln θ + ln
∥
∥Tw∗

1(ς ) – Tw∗
2(ς )

∥
∥2 ≤ ln

‖w∗
1 – w∗

2‖2

2
.

Now, define h : R+ →R by h(u) = ln u and put τ = ln θ , λ = 1
2 and k = 1

3 . Then, it is easy to
show that T is a convex F-contraction. Thus, applying Theorem 2.4, T possesses w∗ ∈ D

as a FP that turns out to be a solution of BVP (1). The proof is complete. �

In the following, the existence of solutions of problem (2) will be discussed. Call function
w∗ ∈ CD(I,D) the solution of (2) if it satisfies all the boundary conditions and ∃ w∗ ∈ L1(I)
such that w∗(ς ) ∈ J(ς , w∗(ς )) for almost all ς ∈ I and

w∗(ς ) =
1

�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1w∗(q) dq

–
(μ(ς ) – μ(s0))

�

[
1

�(π∗)

∫ T

s0

μ′(q)
(
μ(T) – μ(q)

)π∗–1w∗(q) dq

+
n∑

i=1

βi
1

�(pi + π∗)

∫ ζi

s0

μ′(q)
(
μ(ζi) – μ(q)

)pi+π∗–1w∗(q) dq

]

, (17)

for all ς ∈ I. For each w∗ ∈D, we demonstrate the selections’ set of J by

SJ,w∗ =
{

w∗ ∈ L1(I) : w∗(ς ) ∈ J
(
ς , w∗(ς )

)
for all most all ς ∈ I

}
.
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Now, consider L : D→ P(D) as

L
(
w∗) =

{
F ∈D : there exists w∗ ∈SJ,w∗ such that F(ς ) = π (ς ) for all ς ∈ I

}
, (18)

where

π (ς ) =
1

�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1w∗(q) dq

–
(μ(ς ) – μ(s0))

�

[
1

�(π∗)

∫ T

s0

μ′(q)
(
μ(T) – μ(q)

)π∗–1w∗(q) dq

+
n∑

i=1

βi
1

�(pi + π∗)

∫ ζi

s0

μ′(q)
(
μ(ζi) – μ(q)

)pi+π∗–1w∗(q) dq

]

. (19)

Theorem 3.3 Consider a set-valued map J : I×D→ PCP(D). Suppose that:
(i) J is bounded and integrable, and J(·, w∗

1) : I → PCP(D) is measurable for w∗
1 ∈D.

(ii) There is a member ω ∈ C(I, [0,∞)) such that

Hd
(
J
(
ς , w∗

1
)
,J

(
a, ẃ∗

1
)) ≤ 1

θ
√

2
ω(ς )λ∗

‖ω‖
∣
∣w∗

1 – ẃ∗
1
∣
∣, (20)

for all ς ∈ I and w∗
1, ẃ∗

1 ∈D, where λ∗ = 1
�1

.
Then, BVP (2) has a solution.

Proof Eventually, the fixed point of L will be characterized as a solution of BVP (2). Since
the set-valued map ς → J(ς , w∗(ς )) is measurable closed-valued, there is a measurable
selection of J and SJ,w∗ is nonempty. We aim to prove that L(w∗) is a closed subset of D.
Consider a convergent sequence {w∗

n} of L(w∗) tending to w∗. Corresponding to every n,
ϒn ∈ SJ,w∗ exists such that

w∗
n(ς ) =

1
�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1
ϒn(q) dq

–
(μ(ς ) – μ(s0))

�

[
1

�(π∗)

∫ T

s0

μ′(q)
(
μ(T) – μ(q)

)π∗–1
ϒn(q) dq

+
n∑

i=1

βi
1

�(pi + π∗)

∫ ζi

s0

μ′(q)
(
μ(ζi) – μ(q)

)pi+π∗–1
ϒn(q) dq

]

, (21)

for all ς ∈ I. Note that since w∗
n → w∗ in L1(I), the values of J are compact. Hence, ϒ ∈

SJ,w∗ and

w∗
n(ς ) → w∗(ς ) =

1
�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1
ϒ(q) dq

–
(μ(ς ) – μ(s0))

�

[
1

�(π∗)

∫ T

s0

μ′(q)
(
μ(T) – μ(q)

)π∗–1
ϒ(q) dq

+
n∑

i=1

βi
1

�(pi + π∗)

∫ ζi

s0

μ′(q)
(
μ(ζi) – μ(q)

)pi+π∗–1
ϒ(q) dq

]

, (22)
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which implies w∗ ∈ L(w∗) and therefore the values of L are closed. Since J is compact-
valued, it is indeed easy to show that L(w∗) is bounded. For all w∗, ẃ∗ ∈D and F∗

1 ∈ L(ẃ∗)
choose ϒ1 ∈S

J,ẃ∗ such that

F
∗
1 =

1
�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1
ϒ1(q) dq

–
(μ(ς ) – μ(s0))

�

[
1

�(π∗)

∫ T

s0

μ′(q)
(
μ(T) – μ(q)

)π∗–1
ϒ1(q) dq

+
n∑

i=1

βi
1

�(pi + π∗)

∫ ζi

s0

μ′(q)
(
μ(ζi) – μ(q)

)pi+π∗–1
ϒ1(q) dq

]

, (23)

for all ς ∈ I. Thus,

Hd(J
(
ς , w∗(ς )

)
,J

(
ς , ẃ∗(ς )

) ≤ 1
θ
√

2
ω(ς )λ∗

‖ω‖
∣
∣w∗

1 – ẃ∗
1
∣
∣, (24)

for all w∗, ẃ∗ ∈D. Therefore, an element π ∈ J(ς , w∗(ς )) exists such that

∣
∣w∗

1(ς ) – π
∣
∣ ≤ 1

θ
√

2
ω(ς )λ∗

‖ω‖
∣
∣w∗

1 – ẃ∗
1
∣
∣. (25)

Now, consider map B∗ : I → P(D), which is defined by

B
∗(ς ) =

{

π ∈D :
∣
∣w∗

1 – π (ς )
∣
∣ ≤ 1

θ
√

2
ω(ς )λ∗

‖ω‖
∣
∣w∗

1 – ẃ∗
1
∣
∣

}

.

Note that B∗(·) ∩ J(ς , w∗(ς )) is measurable since w∗
1 and τ = 1

θ
√

2
ω(ς )λ∗

‖ω‖ |w∗
1 – ẃ∗

1| are
measurable. Now, let w∗

2 ∈ J(ς , w∗(ς )). Therefore,

∣
∣w∗

1(ς ) – w∗
2(ς )

∣
∣ ≤ 1

θ
√

2
ω(ς )λ∗

‖ω‖
∣
∣w∗

1 – ẃ∗
1
∣
∣, (26)

for all ς ∈ I. Let us define F∗
2 ∈ L(ς ) by

F
∗
2(ς ) =

1
�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1
ϒ2(q) dq

–
(μ(ς ) – μ(s0))

�

[
1

�(π∗)

∫ T

s0

μ′(q)
(
μ(T) – μ(q)

)π∗–1
ϒ2(q) dq

+
n∑

i=1

βi
1

�(pi + π∗)

∫ ζi

s0

μ′(q)
(
μ(ζi) – μ(q)

)pi+π∗–1
ϒ2(q) dq

]

, (27)

for all ς ∈ I and put ‖ω‖ = supa∈I |ω(ς )|. Then,

∣
∣F∗

1 – F
∗
2
∣
∣ ≤ 1

�(π∗)

∫ ς

s0

μ′(q)
(
μ(ς ) – μ(q)

)π∗–1∣∣ϒ1(q) – ϒ2(q)
∣
∣dq

–
(μ(ς ) – μ(s0))

�

[
1

�(π∗)

∫ T

s0

μ′(q)
(
μ(T) – μ(q)

)π∗–1∣∣ϒ1(q) – ϒ2(q)
∣
∣dq
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+
n∑

i=1

βi
1

�(pi + π∗)

∫ ζi

s0

μ′(q)
(
μ(ζi) – μ(q)

)pi+π∗–1∣∣ϒ1(q) – ϒ2(q)
∣
∣dq

]

≤ (|μ(T) – μ(s0)|)π∗

�(π∗ + 1)
‖ω‖ 1

θ
√

2

∥
∥w∗ – ẃ∗∥∥ λ∗

‖ω‖

+
(|(μ(T) – μ(s0))|)π∗+1

|�|�(π∗ + 1)
‖ω‖ 1

θ
√

2

∥
∥w∗ – ẃ∗∥∥ λ∗

‖ω‖

+
n∑

i=1

βi
n(|(μ(T) – μ(s0))|)pi+π∗+1

|�|�(pi + π∗ + 1)
‖ω‖ 1

θ
√

2

∥
∥w∗ – ẃ∗∥∥ λ∗

‖ω‖

=

[
(|μ(T) – μ(s0)|)π∗

�(π∗ + 1)
+

(|(μ(T) – μ(s0))|)π∗+1

|�|�(π∗ + 1)

+
n∑

i=1

βi
n(|(μ(T) – μ(s0))|)pi+π∗+1

|�|�(pi + π∗ + 1)

]

‖ω‖ 1
θ
√

2

∥
∥w∗ – ẃ∗∥∥ λ∗

‖ω‖

= �1‖ω‖ 1
θ
√

2

∥
∥w∗ – ẃ∗∥∥ λ∗

‖ω‖
= �1λ

∗ 1
θ
√

2

∥
∥w∗ – ẃ∗∥∥. (28)

If τ = ln θ and defineF(u) = ln u, then the inequality 2τ +F(2Hd(L(w∗),L(ẃ∗))) ≤ F(‖w∗ –
ẃ∗‖) holds for all w∗, ẃ∗ ∈ D. As a conclusion, applying Theorem 2.5, L admits a FP that
is the solution for BVP (2). �

4 Examples
In this section two examples are provided to illustrate the theoretical results.

Example 4.1 Consider BVP

⎧
⎪⎪⎨

⎪⎪⎩

CD1.79,exp(ς+1)
0 w∗(ς ) = a cos(ς )|w∗(ς )|

340(|w∗(ς )|+1) , ς ∈ [0, 1];

w∗(0) = 0,

w∗(1) = 0.71RLI1.69,exp(ς+1)
0 w∗(0.37) + 0.85RLI1.93,exp(ς+1)

0 w∗(0.39),

where ς ∈ [0, 1], π∗ = 1.79, s0 = 0, T = 1, n = 2, p1 = 1.69, p2 = 1.93, ξ1 = 0.37, ξ2 = 0.39,
β1 = 0.71, β2 = 0.85, and μ = exp(ς + 1). Here, CD1.79,exp(a+1)

0 and RLIpi
0 are the FD of Caputo

type of order 1.79 and the FI of R–L type of order pi, respectively. Then, we have � = 1.6094
and �1 = 5.0139. Consider the continuous mapping h(ς , w∗(ς )) = ς cos(ς )|w∗(ς )|

340(|w∗(ς )|+1) . Then,

∣
∣h

(
ς , w∗

1(ς )
)

– h
(
ς , w∗

2(ς )
)∣
∣ ≤ ς

340
∣
∣w∗

1 – w∗
2
∣
∣ ≤

√
2

4�1

∣
∣w∗

1 – w∗
2
∣
∣.

Now, by Theorem 3.2, the BVP has a solution.

Example 4.2 Consider BVP

⎧
⎪⎪⎨

⎪⎪⎩

CD1.3,exp(ς/2)
0 w∗(ς ) ∈ [0, exp( 3√ς+1)

30 +
√

π cos(coth(ς ))
2+exp(ς ) + ς sin(ς )|w∗(ς )|

126(ς+7) ], ς ∈ [0, 3];

w∗(0) = 0,

w∗(3) = 0.69RLI1.37,exp(2ς )
0 w∗(0.37) + 0.72RLI1.82,exp(2ς )

0 w∗(0.38),
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where π∗ = 1.3, s0 = 0, T = 3, n = 2, p1 = 1.37, p2 = 1.82, ξ1 = 0.37, ξ2 = 0.38, β1 = 0.69, and
β2 = 0.72. Here, CD1.3,exp(ς/2)

0 , RLI1.37,exp(ς/2)
0 , and RLI1.82,exp(ς/2)

0 are the FD of Caputo type of
order 0.3, the FIs of R–L type of order 1.37 and 1.82, respectively. Now, define the contin-
uous set-valued mapping J : [0, 3] ×R →R by J(ς , w∗(ς )) = [ς , exp( 3√ς+1)

30 +
√

π cos(coth(ς ))
2+exp(ς ) +

ς sin(ς )|w∗(ς )|
126(ς+7) ]. For w∗

1, w∗
2 ∈R we have

H
(
J
(
ς , w∗

1(ς )
)

– J
(
ς , w∗

2(ς )
)) ≤ a

63
1
2
[∣
∣sin

(
w∗

1(ς )
)

– sin
(
w∗

2(ς )
)∣
∣
]

≤ 1
θ
√

2�1

∣
∣w∗

1(ς ) – w∗
2(ς )

∣
∣. (29)

Then, we have Hd(J(ς , w∗
1(ς ))–J(a, w∗

2(ς ))) ≤ ω(ς )|w∗
1(ς )–w∗

2(ς )| 1
�1

. Thus, �1 = 27.2258,
� = 3.4493, and λ∗ = 0.0367. Consider L : D→P(D) as

L
(
w∗) =

{
F ∈D : there exists w∗ ∈SJ,w∗ such that F(z) = π (z) for all ς ∈ [0, 3]

}
, (30)

where

π (ς ) =
1

�(1.3)

∫ ς

0
μ′(q)

(
μ(ς ) – μ(q)

)0,3
ϒ(q) dq

–
(μ(ς ) – 1)

3.4493

[
1

�(1.3)

∫ 3

0
μ′(q)

(
μ(T) – μ(q)

)0.3
ϒ(q) dq

+
2∑

0

βi
1

�(pi + 1.3)

∫ ζi

0
μ′(q)

(
μ(ζi) – μ(q)

)pi+0.3w∗(q) dq

]

. (31)

Now, by Theorem 3.3, the BVP has a solution.

The importance of the μ-Caputo derivative can be seen in the following example.

Example 4.3 Here, we study a model explained by a fractional differential equation, and
we show how fractional derivatives with respect to another function may be helpful. The
significant and historical model to describe population growth is the Malthusian law,
which was proposed in 1798 by the English economist Thomas Malthus. It is given by
N ′(t) = λN(t), where λ is the population growth rate (equal to the difference between the
birth and mortality rates), sometimes called the Malthusian parameter, and N(t) is the
number of individuals in a population at time t. It is assumed that λ is constant, and so
if N0 denotes the initial population size, then the solution to this Cauchy problem is the
exponential function N(t) = N0 exp(λt).

Consider the FDE obtained from the Malthusian law of population growth, by replac-
ing the first-order derivative by the μ-Caputo fractional derivative with respect to μ as
CDα,μ

0+ N(t) = λN(t). From [7], the solution of this FDE, together with the initial condition
N(0) = N0, is the function

N(t) = N0Eα

(
λ
(
μ(t) – μ(0)

)α)
. (32)

For μ(x) = x, with the usual Caputo fractional derivative, we obtain N(t) = N0Eα(λtα) (see
[8]), and it was proven that the FDE was more efficient in modeling the population growth
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than the ODE. This work further exemplifies that, when considering function N as given
by (32), a better accuracy on the model is obtained. The purpose is to determine the best-
fitting curve N (that is, find the parameters λ and α) by minimizing the sum of the squares
of the offsets of the points from the curve. For more details and aspects of the numerical
process see [7] and [27].

5 Conclusion
In this manuscript, applying some F-contraction, convex F-contraction, and some fixed-
point theorems, the existence of solutions of a μ-Caputo FDE and an inclusion problem
equipped with nonlocal μ-integral boundary conditions have been investigated. Some ex-
amples have also been provided to illustrate the results. Among the important problems
that can be investigated in the continuation of this research, we can refer to topics such as:
checking the existence and uniqueness of boundary value problems with different bound-
ary and initial conditions and checking their application in important subjects such as
insurance, economics, and modeling many important diseases.

One other possible extension is to consider the fractional order as a function of time π∗,
and determine the order that fits closer to the mathematical model. These and other ques-
tions will be treated in the future.
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