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Abstract
In this paper, we introduce two types of weak enriched contractions, namely weak
enriched F -contraction, weak enriched F ′-contraction, and k-fold averaged
mapping based on Kirk’s iterative algorithm of order k. The types of contractions
introduced herein unify, extend, and generalize several existing classes of enriched
and weak enriched contraction mappings. Moreover, K-fold averaged mappings can
be viewed as a generalization of the averaged mappings and double averaged
mappings. We then prove the existence of a unique fixed point of the k-fold averaged
mapping associated with weak enriched contractions introduced herein. We study
necessary conditions that guarantee the equality of the sets of fixed points of the
k-fold averaged mapping and weak enriched contractions. We show that an
appropriate Kirk’s iterative algorithm can be used to approximate a fixed point of a
k-fold averaged mapping and of the two weak enriched contractions. We also study
the well-posedness, limit shadowing property, and Ulam–Hyers stability of the k-fold
averaged mapping. We provide necessary conditions that ensure the periodic point
property of each illustrated weak enriched contraction. Some examples are presented
to show that our results are a potential generalization of the comparable results in the
existing literature.
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1. Introduction and preliminaries
Let X be a Banach space, and let K be a nonempty subset of X. A self-mapping T on K is
called nonexpansive if for all x, y ∈ K ,

‖Tx – Ty‖ ≤ ‖x – y‖.

An element x∗ ∈ K is called a fixed point of T if it is a solution of the operator equation
Tx∗ = x∗. The set of all fixed points of T is denoted by Fix(T). The nth iterate of the map-
ping T is defined as Tn = Tn–1 ◦ T for n ≥ 1, where T0 = I (the identity map on X). Let x0
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be an arbitrary point of X. The set {x0, Tn(x0) : n ≥ 1} is called the forward orbit of x0 and
is denoted by O(T , x0,∞). For n ≥ 1, we denote the set {x, Tx, . . . , Tnx} by O(T , x, n). The
mapping T is said to be a Picard operator if (i) Fix(T) = {x∗}; (ii) the forward orbit of each
x0 ∈ X converges to x∗ as n → ∞. A self-mapping T on X is called a Banach contraction
mapping if there exists a constant c ∈ [0, 1) such that d(Tx, Ty) ≤ cd(x, y) for all x, y ∈ X.
If we take c = 1, then T is called a nonexpansive mapping. The nonexpansive mappings
can be viewed as the limiting case of Banach contraction mappings. The nth iterates of a
Banach contraction mapping are called Picard’s iterates.

According to the Banach contraction principle [1], any Banach contraction mapping de-
fined on a complete metric space (X, d) is a Picard operator. Moreover, for each x0 ∈ X, the
fixed point of the mapping T can be approximated by Picard’s iterates. However, the for-
ward orbit generated by a nonexpansive mapping T does not converge to the fixed point
of T . Indeed, if K is a closed nonempty subset of a Banach space X and T : K → K is non-
expansive, then the mapping T may not have a fixed point, may have more than one fixed
point, or even have a unique fixed point, whereas the forward orbit induced by a nonex-
pansive mapping fails to converge to its fixed point. Hence, to approximate the fixed points
of non-expansive mappings, other approximation techniques are needed. Moreover, the
existence of fixed points of nonexpansive mappings requires a rich geometric structure of
underlying spaces. These aspects have made the study of nonexpansive mappings as one
of the major and most active research areas of nonlinear analysis.

Many authors have employed an explicit averaged iteration of the form xn+1 = f (xn, Txn),
n ≥ 1. One of the famous techniques is to form an averaged mapping: For a given operator
T on X and λ ∈ (0, 1], an operator Tλ associated with T and identity mapping I is called
an averaged mapping if Tλ := (1 – λ)I + λT . This term was introduced in [2], where it was
shown that under certain conditions the forward orbit induced by Tλ converges to a fixed
point of T . The first interesting result in this direction was obtained by Krasnoselskii [3]:
if K is a closed convex subset of a uniformly convex Banach space and T is a nonexpansive
mapping on K into a compact subset of K , then the forward orbit of any x in K for λ = 1

2
converges to a fixed point of T .

It was proved by Schaefer [4] that the above results for arbitrary λ ∈ (0, 1). Subsequently,
Edelstein [5] proved the corresponding result in the framework of a strictly convex Banach
space, which is more general than a uniformly convex Banach space. Obviously, Krasnosel-
skii’s iteration is a generalization of Picard’s iteration process.

Another important iteration scheme is Kirk’s iteration scheme introduced by Kirk [6],
which is a sequence {xn} defined by

xn = α0xn–1 + α1Txn–1 + α2T2xn–1 + · · · + αkTkxn–1,

where x0 ∈ K , α1 > 0, and αi ≥ 0 for i = 1, 2, . . . , k with
∑k

i=0 αi = 1.
Indeed, Kirk’s iteration scheme is a forward orbit of the mapping S : K → K [6] given by

S := α0I + α1T + α2T2 + · · · + αkTk ,

where α1 > 0 and αi ≥ 0 for i = 1, 2, . . . , k with
∑k

i=0 αi = 1. Obviously, the mapping S is a
generalization of an averaged mapping Tλ.

Kirk proved that the set of fixed points of the mapping S coincides with Fix(T) under
certain suitable conditions, Kirk’s iteration scheme converges to the fixed point of T :



Zhou et al. Journal of Inequalities and Applications         (2024) 2024:23 Page 3 of 26

Theorem 1.1 [6] Let K be a convex subset of a Banach space X, and let T be a nonexpan-
sive self-mapping on K . Define the mapping S : K → K by

S := α0I + α1T + α2T2 + · · · + αkTk ,

where α1 > 0 and αi ≥ 0 for i = 0, 1, . . . , k with
∑k

i=0 αi = 1. Then S(x) = x if and only if
T(x) = x.

Corollary 1.1 [6] Let X be a uniformly convex Banach space, and let T be a nonexpansive
compact mapping of X into X, that is, T maps bounded subsets of X into relatively compact
subsets of X. If Fix(T) is nonempty, then each forward orbit induced by the mapping S as
given in Theorem 1.1 converges to a fixed point of T .

Recently, Berinde and Păcurar [7] introduced the notion of enriched contractive map-
pings. A self-mapping T on a Banach space X is called an enriched contraction mapping
if there exist b ∈ [0,∞) and θ ∈ [0, b + 1) such that for all x, y ∈ X,

∥
∥b(x – y) + Tx – Ty

∥
∥ ≤ θ‖x – y‖.

They proved the existence of fixed point of an enriched contraction, which can be ap-
proximated by means of an appropriate Krasnoselskii iterative scheme. Specifically, the
fixed point of the averaged mapping Tλ with λ ∈ (0, 1] is also a fixed point of T and can be
approximated by the sequence {Tn

λ x0} for any x0 ∈ X.

Theorem 1.2 [7] Let T be an enriched contraction mapping defined on a Banach space
X into itself. Then |Fix(T)| = 1, and there exists λ ∈ (0, 1] such that for each x0 ∈ X, the
Krasnoselskii iteration scheme {xn} given by

xn := (1 – λ)xn–1 + λTxn–1, n ≥ 0,

converges to a unique fixed point of T .

It is worth mentioning that the enriched contraction mapping introduced by Berinde
and Păcurar [7] involves the displacements ‖Tx – Ty‖ and ‖x – y‖ only. However, for any
two distinct points x, y ∈ X, there exist other four displacements associated with a self-
mapping T given by ‖x – Tx‖, ‖y – Ty‖, ‖x – Ty‖, and ‖y – Tx‖. There have been sev-
eral well-known contraction mappings that involve two or more displacements (see, for
example, Bianchini [8], Chatterjea [9], Ćirić [10, 11], Kannan [12], Khan [13], and Reich
[14–18]). Motivated by the work of Berinde and Păcurar, many authors have applied en-
richment techniques to different classical contraction mappings. Lately, Berinde [19, 20],
Górnicki and Bisht [21], Berinde and Păcurar [22–24], Anjum and Abbas [25], Abbas et
al. [26] introduced the so-called enriched contractions related to nonexpansive, Kannan,
Chatterjea, Ćirić–Reich–Rus, and interpolative Kannan contractions and gave the exis-
tence of fixed points of such enriched contractions with the help of Krasnoselskii iterative
scheme.

Recently, Nithiarayaphaks and Sintunavarat [27] introduced the notion of weak enriched
contraction mappings and a generalization of the averaged mappings called double aver-
aged mappings. Let α1 > 0, α2 ≥ 0, and α1 +α2 = 1, and let T be a self-mapping on a Banach
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space X. A double averaged mapping denoted by Tα1,α2 is a mapping associated with I , T ,
and T2 and is defined by

Tα1,α2 := (1 – α1 – α2)I + α1T + α2T2.

It is easy to see that Tα1,α2 is a generalization of Tλ. Indeed, Tλ = Tα1,0. Moreover, the
double averaged mapping Tα1,α2 is a particular case of the mapping S in [6] of order k = 2.
A self-mapping T on a Banach space X is called a weak enriched contraction mapping if
there exist nonnegative real numbers a, b, and w ∈ [0, a + b + 1) such that for all x, y ∈ X,

∥
∥a(x – y) + Tx – Ty + b

(
T2x – T2y

)∥
∥ ≤ w‖x – y‖.

Nithiarayaphaks and Sintunavarat [27] proved that for each self-mapping T on a closed
convex subset of a Banach space satisfying the weak enriched contraction condition, there
are α1 > 0 and α2 ≥ 0 with α1 + α2 ∈ (0, 1] such that Tα1,α2 has a unique fixed point, and
an appropriate Kirk’s iteration scheme can approximate it. We refer to the following state-
ment.

Theorem 1.3 [27] Let C be a closed convex subset of a Banach space (X,‖ · ‖), and let T
be a weak enriched contraction self-mapping on C. Then there are α1 > 0 and α2 ≥ 0 with
α1 + α2 ∈ (0, 1] such that the following statements hold:

(i) |Fix(Tα1,α2 )| = 1;
(ii) for any x0 ∈ C, the iteration scheme {xn} ⊂ C defined as

xn = (1 – α1 – α2)xn–1 + α1Txn–1 + α2T2xn–1

for n ∈N converges to a unique fixed point of Tα1,α2 .

It seems useful to unify the fixed point results mentioned by using Kirk’s iteration
scheme of order k generated by a generalized enriched contraction mapping. This is a
twofold unification: (1) generalization of enriched contraction mappings so that the sev-
eral existing enriched contraction mappings are deduced as particular cases and (2) a con-
sideration of Kirk’s iteration scheme of order greater than 2. The first objective can be
achieved using the notion of implicit relations, a useful technique for the unification of
contraction conditions (see, for example, [28–30] and references therein).

The important contributions from this work are highlighted as follows:
1. The notions of two weak enriched contractions, weak enriched F -contraction and

weak enriched F ′-contraction, are defined.
2. Generalization of averaged mappings, k-fold averaged mappings, is introduced.
3. The existence of a unique fixed point of the k-fold averaged mapping associated with

two weak enriched contractions is proved in the framework of Banach spaces.
4. It is shown that the fixed point theorems for weak enriched or enriched versions due

to Kannan, Chatterjea, and Ćirić, Reich, and Rus can be derived from the results
presented in this paper.

5. The well-posedness, limit shadowing property, and Ulam–Hyers stability of k-fold
averaged mappings are studied.
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6. Necessary conditions are investigated for the equality of the fixed point sets of the
k-fold averaged mapping and the weak enriched contraction mapping.

7. Necessary conditions that guarantee the periodic point property of weak enriched
contractions are provided.

8. Examples are presented to support the validity of our results.

2. Weak enriched F -contraction and weak enriched F ′-contraction
First, we introduce two families of mappings.

Let F be the family of all mappings f : R3
+ →R+ satisfying the following conditions:

(F1) f is continuous in each argument;
(F2) there exists k ∈ [0, 1) such that if r < f (s, r, s) or r < f (r, s, s), then r ≤ ks for all r, s ∈

R+;
(F3) for λ > 0 and for all r, s, t ∈ R+, λf (r, s, t) ≤ f (λr,λs,λt).
We now give some examples to show that the family F is nonempty.

Example 2.1 It is straightforward to verify that the mappings defined below belong to the
class F :

(1) f (r, s, t) = α(s + t), where α ∈ [0, 1/2).
(2) f (r, s, t) = α(r + s), where α ∈ [0, 1/2).
(3) f (r, s, t) = αr, where α ∈ [0, 1).
(4) f (r, s, t) = α max{r + s, s + t, r + t}, where α ∈ [0, 1/2).
(5) f (r, s, t) = maxα{r, s, t}, where α ∈ [0, 1).
(6) f (r, s, t) = maxα{s, t}, where α ∈ [0, 1).
(7) f (r, s, t) = ar + bs + ct, where 0 ≤ a, b, c < 1 and a + b + c = 1.
(8) f (r, s, t) = rαsβ t1–α–β , where α,β ∈ (0, 1) and α + β < 1.
(9) f (r, s, t) = sαt1–α , where α ∈ (0, 1).

Let F ′ be the family of all mappings f : R3
+ →R+ satisfying the following conditions:

(F ′
1) f is continuous in each argument;

(F ′
2) there exists k ∈ [0, 1) such that if r < f (s, s, r) or r < f (r, s, s) or r < f (s, 0, r + s), then

r ≤ ks for all r, s ∈R+;
(F ′

3) for λ > 0 and for all r, s, t ∈R+, λf (r, s, t) ≤ f (λr,λs,λt);
(F ′

4) if t ≤ u, then f (r, s, t) ≤ f (r, s, u) for all r, s, t, u ∈R+;
(F ′

5) if r ≤ f (r, r, r), then r = 0.

Example 2.2 The following mappings belong to the class F ′:
(1) f (r, s, t) = α(s + t), where α ∈ [0, 1/2).
(2) f (r, s, t) = α(r + s), where α ∈ [0, 1/2).
(3) f (r, s, t) = αr, where α ∈ [0, 1).
(4) f (r, s, t) = α max{r + s, s + t, r + t}, where α ∈ [0, 1/2).
(5) f (r, s, t) = α

√
rs, where α ∈ [0, 1).

(6) f (r, s, t) = α(rst) 1
3 , where α ∈ [0, 1).

(7) f (r, s, t) = α(r + s + t), where α ∈ [0, 1/3).

Nithiarayaphaks and Sintunavarat [27] introduced the notion of double averaged map-
ping and proved the existence of a unique fixed point of such mappings using Kirk’s iter-
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ative scheme. Clearly, double averaged mappings coincide with the averaged mappings S
[6] for the order k = 2.

Using the mapping S [6], we introduce the k-fold averaged mapping as follows.

Definition 2.1 Let X be a Banach space, let K be a nonempty subset of X, and let T be a
self-mapping on X. Define the self-mapping T̄ on K associated with T by

T̄ := (1 – α1 – α2 – · · · – αk)I + α1T + α2T2 + · · · + αkTk ,

where αi > 0, and
∑k

i=1 αi ∈ (0, 1]. Such a mapping T̄ is called a k-fold averaged mapping
(k ≥ 3, k ∈N).

We now provide two notions of weak enriched contractions.

Definition 2.2 Let (X,‖ · ‖) be a normed space. A mapping T : X → X is called a weak
enriched F -contraction if there exists f ∈ F such that for all x, y ∈ X, ai ∈ (0,∞), i =
1, 2, . . . , k, k ≥ 3, k ∈ N, we have

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)
+ · · · + ak

(
Tkx – Tky

)∥
∥

≤ f

(( k∑

i=1

ai + 1

)

‖x – y‖,
∥
∥(x – Tx) + a2

(
x – T2x

)
+ · · · + ak

(
x – Tkx

)∥
∥,

∥
∥(y – Ty) + a2

(
y – T2y

)
+ · · · + ak

(
y – Tky

)∥
∥

)

. (1)

Definition 2.3 Let (X,‖ · ‖) be a normed space. A mapping T : X → X is called a weak
enriched F ′-contraction if there exists f ∈ F ′ such that for all x, y ∈ X, ai ∈ (0,∞), i =
1, 2, . . . , k, k ≥ 3, k ∈ N, we have:

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)
+ · · · + ak

(
Tkx – Tky

)∥
∥

≤ f

(( k∑

i=1

ai + 1

)

‖x – y‖,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(y – x) + (x – Tx) + a2
(
x – T2x

)
+ · · · + ak

(
x – Tkx

)
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(x – y) + (y – Ty) + a2
(
y – T2y

)
+ · · · + ak

(
y – Tky

)
∥
∥
∥
∥
∥

)

. (2)

Now we give some examples of such mappings.

Example 2.3 Let X = R be a usual normed space, and let T be a self-mapping on [0,∞) de-
fined by Tx = x

2 for x ∈ [0,∞). Note that the mapping T is a weak enriched F -contraction
for ai = 1

2 , i = 1, 2, . . . , k, k ≥ 3, k ∈N, and f (r, s, t) = αr, α = 4
5 ∈ [0, 1).

Indeed, it follows from Definition 2.2 that

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)
+ · · · + ak

(
Tkx – Tky

)∥
∥
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=
∥
∥
∥
∥

1
2

(x – y) +
(

x
2

–
y
2

)

+
1
2

(
x
4

–
y
4

)

+ · · · +
1
2

(
x
2k –

y
2k

)∥
∥
∥
∥

=
∥
∥
∥
∥

1
2

(x – y) +
1
2

(x – y) +
1
8

(x – y) + · · · +
1

2k+1 (x – y)
∥
∥
∥
∥

≤ 2‖x – y‖

and

f

(( k∑

i=1

ai + 1

)

‖x – y‖,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(y – x) + (x – Tx) + a2
(
x – T2x

)
+ · · · + ak

(
x – Tkx

)
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(x – y) + (y – Ty) + a2
(
y – T2y

)
+ · · · + ak

(
y – Tky

)
∥
∥
∥
∥
∥

)

= α

( k∑

i=1

ai + 1

)

‖x – y‖

=
4
5

(

1 +
k
2

)

‖x – y‖

≥ 4
5

(

1 +
3
2

)

‖x – y‖

= 2‖x – y‖.

This implies that (1) holds. Hence T is a weak enriched F -contraction.

Example 2.4 Let X = R be a usual normed space, and let T be a self-mapping on [0,∞)
defined by Tx = 1– x for x ∈ [0,∞). Then the mapping T is a weak enriched F -contraction
for ai = 1

2i , i = 1, 2, . . . , k, k ≥ 3, k ∈N, and f (r, s, t) = r.
Indeed, from Definition 2.2 we have

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)
+ · · · + ak

(
Tkx – Tky

)∥
∥

=
∥
∥
∥
∥

1
2

(x – y) + (y – x) +
1
4

(x – y) +
1
8

(y – x) + · · · +
1
2k (–1)k(x – y)

∥
∥
∥
∥

≤
k∑

i=0

(
1
2i

)

‖x – y‖

and

f

(( k∑

i=1

ai + 1

)

‖x – y‖,
∥
∥(x – Tx) + a2

(
x – T2x

)
+ · · · + ak

(
x – Tkx

)∥
∥,

∥
∥(y – Ty) + a2

(
y – T2y

)
+ · · · + ak

(
y – Tky

)∥
∥

)
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=

( k∑

i=1

ai + 1

)

‖x – y‖

=
(

1 +
1
2

+ · · · +
1
2k

)

‖x – y‖.

This implies that (1) holds. Hence T is a weak enriched F -contraction.

Example 2.5 Let X = R be a usual normed space, and let T be a self-mapping on [–1, – 1
2 ]∪

[ 1
2 , 1] ⊆ X defined by

Tx =

⎧
⎨

⎩

–x, x ∈ [–1, – 1
2 ],

1 – x, x ∈ [ 1
2 , 1].

Then the mapping T is a weak enriched F -contraction for ai = 1, i = 1, 2, . . . , k, k ≥ 3,
and k ∈ N, and f (r, s, t) = 1

4 (s + t). Without loss of generality, we may assume that x, y ∈
[–1, – 1

2 ] ∪ [ 1
2 , 1] with x ≤ y. We consider three cases for x, y: First, for each x, y ∈ [–1, – 1

2 ],
it follows from Definition 2.3 that

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)
+ · · · + ak

(
Tkx – Tky

)∥
∥

=
∥
∥(x – y) + (y – x) + (x – y) + · · · + (–1)k(x – y)

∥
∥

=

⎧
⎨

⎩

0 if k is odd,

‖x – y‖ if k is even.

Now, for each x, y ∈ [ 1
2 , 1], we have

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)
+ · · · + ak

(
Tkx – Tky

)∥
∥

=
∥
∥(x – y) + (y – x) + (x – y) + · · · + (–1)k(x – y)

∥
∥

=

⎧
⎨

⎩

0 if k is odd,

‖x – y‖ if k is even,

and

f

(( k∑

i=1

ai + 1

)

‖x – y‖,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(y – x) + (x – Tx) + a2
(
x – T2x

)
+ · · · + ak

(
x – Tkx

)
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(x – y) + (y – Ty) + a2
(
y – T2y

)
+ · · · + ak

(
y – Tky

)
∥
∥
∥
∥
∥

)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
4 [‖(k + 1)(y – x) + (k + 1)x – k+1

2 ‖ + ‖(k + 1)(x – y)

+ (k + 1)y – k+1
2 ‖] if k is odd,

1
4 [‖(k + 1)(y – x) + kx – k

2 ‖ + ‖(k + 1)(x – y) + ky – k
2 ‖] if k is even,
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≥
⎧
⎨

⎩

k+1
4 ‖y – x‖ if k is odd,

k+2
4 ‖y – x‖ if k is even,

≥
⎧
⎨

⎩

‖y – x‖ if k is odd,
5
4‖y – x‖ if k is even.

Finally, for all x ∈ [–1, – 1
2 ] and y ∈ [ 1

2 , 1], we have

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)
+ · · · + ak

(
Tkx – Tky

)∥
∥

=
∥
∥(x – y) + (y – x – 1) + (1 + x – y) + · · · + (–1)k(1 + x – y)

∥
∥

=

⎧
⎨

⎩

1 if k is odd,

‖x – y‖ if k is even,

and

f

(( k∑

i=1

ai + 1

)

‖x – y‖,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(y – x) + (x – Tx) + a2
(
x – T2x

)
+ · · · + ak

(
x – Tkx

)
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(x – y) + (y – Ty) + a2
(
y – T2y

)
+ · · · + ak

(
y – Tky

)
∥
∥
∥
∥
∥

)

=

⎧
⎪⎪⎨

⎪⎪⎩

1
4 [‖(k + 1)(y – x) + (k + 1)x – k–1

2 ‖ + ‖(k + 1)(x – y)

+ (k + 1)y – k–1
2 ‖ if k is odd,

1
4 [‖(k + 1)(y – x) + kx – k

2 ‖ + ‖(k + 1)(x – y) + ky – k
2 ‖ if k is even,

≥
⎧
⎨

⎩

1
4‖(k + 1)(y – x)‖ if k is odd,
1
4‖(k + 2)(y – x)‖ if k is even,

≥
⎧
⎨

⎩

‖y – x‖ if k is odd,
5
4‖y – x‖ if k is even.

It is straightforward to check that in the above cases that (2) holds. Hence T is a weak
enriched F ′-contraction.

Remark 2.1 If we choose f (r, s, t) = αr, α ∈ [0, 1), and set ai = 0 for i = 3, 4, . . . , k in Defini-
tion 2.2 or 2.3, then we get the weak enriched contraction mapping in [27].

Consequently, by choosing appropriate functions f and values ai, i = 1, 2, . . . , k, we can
obtain some weak enriched versions of the classical contractions mentioned that, to the
best of our knowledge, have not been considered so far.

Definition 2.4 Defining f ∈ F by f (r, s, t) = α(s + t), α ∈ [0, 1/2), and setting ai = 0 for
i = 3, 4, . . . , k in Definition 2.2, we say that the mapping T is a weak enriched Kannan-
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contraction mapping, that is, there exist ai > 0, i = 1, 2, and α ∈ [0, 1/2) such that

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)∥
∥ (3)

≤ α
[∥
∥(x – Tx) + a2

(
x – T2x

)∥
∥ +

∥
∥(y – Ty) + a2

(
y – T2y

)∥
∥
]

for all x, y ∈ X.

Definition 2.5 Defining f ∈ F ′ by f (r, s, t) = α(s + t), α ∈ [0, 1/2), and setting ai = 0 for
i = 3, 4, . . . , k in Definition 2.3, we say that the mapping T is a weak enriched Chatterjea-
contraction mapping, that is, there exist ai > 0, i = 1, 2, and α ∈ [0, 1/2) such that

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)∥
∥ (4)

≤ α
[∥
∥(a1 + a2 + 1)(y – x) + (x – Tx) + a2

(
x – T2x

)∥
∥

+
∥
∥(a1 + a2 + 1)(x – y) + (y – Ty) + a2

(
y – T2y

)∥
∥
]

for all x, y ∈ X.

Definition 2.6 Defining f ∈ F by f (r, s, t) = kr + l(s + t), k, l ≥ 0, k + 2l < 1 and setting
ai = 0 for i = 3, 4, . . . , k in Definition 2.2, we say that the mapping T is a weak enriched
Ćirić–Reich–Rus-contraction mapping, that is, there exist ai > 0, i = 1, 2, and k, l ≥ 0, k +
2l < 1 such that

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)∥
∥ (5)

≤ k‖x – y‖ + l
[∥
∥(x – Tx) + a2

(
x – T2x

)∥
∥ +

∥
∥(y – Ty) + a2

(
y – T2y

)∥
∥
]

for all x, y ∈ X.

Definition 2.7 Defining f ∈ F by f (r, s, t) = sαt1–α , 0 < α < 1, and setting ai = 0 for i =
3, 4, . . . , k in Definition 2.2, we say that the mapping T is a weak enriched interpolative
Kanan-contraction mapping, that is, there exist ai > 0, i = 1, 2, and 0 < α < 1 such that

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)∥
∥

≤ ∥
∥(x – Tx) + a2

(
x – T2x

)∥
∥α∥

∥(y – Ty) + a2
(
y – T2y

)∥
∥1–α (6)

for all x, y ∈ X.

Definition 2.8 Defining f ∈ F by f (r, s, t) = rαsβ t1–α–β , 0 < α, β < 1, and setting ai = 0 for
i = 3, 4, . . . , k in Definition 2.2, we say that the mapping T is a weak enriched interpolative
Ćirić–Reich–Rus-contraction mapping, that is, there exist ai > 0, i = 1, 2, and 0 < α + β < 1
such that

∥
∥a1(x – y) + Tx – Ty + a2

(
T2x – T2y

)∥
∥

≤ ‖x – y‖α
∥
∥(x – Tx) + a2

(
x – T2x

)∥
∥β∥

∥(y – Ty) + a2
(
y – T2y

)∥
∥1–α–β (7)

for all x, y ∈ X.
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Remark 2.2 By setting a2 = 0 in Definitions 2.2 and 2.4–2.8 we obtain the enriched ver-
sions of the contraction mappings of Banach [7], Kanan [22], Chatterjea [23], Ćirić, Reich,
and Rus [24], enriched interpolative Kanan-contractions [26], and enriched interpolative
Ćirić–Reich–Rus–contractions, respectively.

Next, we recall the definitions of well-posedness, limit shadowing property of a map-
ping, and Ulam–Hyers stability of the fixed point equation.

Let T be a self-mapping on a metric space (X, d).

Definition 2.9 The fixed point problem Fix(T) is said to be well posed if T has a unique
fixed point x∗ and for any sequence {xn} in X satisfying limn→∞ d(xn, Txn) = 0, we have
limn→∞ d(xn, x∗) = 0.

Definition 2.10 The fixed point problem Fix(T) is said to possess the limit shadowing
property in X if for any sequence {xn} in X with limn→∞ d(xn, Txn) = 0, there exists z ∈ X
such that limn→∞ d(Tnz, xn) = 0.

Definition 2.11 The fixed point equation x = Tx is Ulam–Hyers stable if there exists a
constant K > 0 such that for each ε > 0 and each v∗ ∈ X with d(v∗, Tv∗) ≤ ε, there exists
x∗ ∈ X with Tx∗ = x∗ such that d(x∗, v∗) ≤ Kε.

Let us start with the result dealing with the existence and uniqueness of a fixed point of
an n-fold averaged mapping related to these two types of weak enriched contractions in
the setting of a Banach space,

Theorem 2.1 Let X be a Banach space, and let T be a weak enriched F -contraction. Then
there exist αi > 0, i = 1, 2, . . . , k, k ≥ 3, k ∈ N with

∑k
i=1 αi ∈ (0, 1] such that the following

statements hold:
(i) the n-fold averaged mapping T̄ associated with T has a unique fixed point;
(ii) for any x0 ∈ X, Kirk’s iteration {xn} given by xn = T̄xn–1, that is,

xn = (1 – α1 – α2 – · · · – αk)xn–1 + α1Txn–1 + α2T2xn–1 + · · · + αkTkxn–1 (8)

for n ∈N, converges to the unique fixed point of T̄ .

Proof As T is a weak enriched F -contraction, there are ai ≥ 0, i = 1, 2, . . . , k, k ≥ 3, k ∈N,
satisfying inequality (1). Define α1 = 1

∑k
i=1 ai+1

> 0 and αr = ar∑k
i=1 ai+1

≥ 0, r = 2, 3, . . . , k. Then
inequality (1) becomes

∥
∥
∥
∥

(
1 – α2 – α3 – · · · – αk

α1
– 1

)

(x – y) + Tx – Ty +
α2

α1

(
T2x – T2y

)
+ · · ·

+
αk

α1

(
Tkx – Tky

)
∥
∥
∥
∥

≤ f
(

1
α1

‖x – y‖,
∥
∥
∥
∥(x – Tx) +

α2

α1

(
x – T2x

)
+

α3

α1

(
x – T3x

)
+ · · · +

αk

α1

(
x – Tkx

)
∥
∥
∥
∥,

∥
∥
∥
∥(y – Ty) +

α2

α1

(
y – T2y

)
+

α3

α1

(
y – T3y

)
+ · · · +

αk

α1

(
y – Tky

)
∥
∥
∥
∥

)
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for all x, y ∈ X. As α1 > 0 and F3 holds, the above inequality can be rewritten as follows:

∥
∥(1 – α1 – α2 – α3 – · · · – αk)(x – y) + α1(Tx – Ty) + α2

(
T2x – T2y

)
+ · · ·

+ αk
(
Tkx – Tky

)∥
∥

≤ α1f
(

1
α1

‖x – y‖,
∥
∥
∥
∥(x – Tx) +

α2

α1

(
x – T2x

)
+

α3

α1

(
x – T3x

)
+ · · · +

αk

α1

(
x – Tkx

)
∥
∥
∥
∥,

∥
∥
∥
∥(y – Ty) +

α2

α1

(
y – T2y

)
+

α3

α1

(
y – T3y

)
+ · · · +

αk

α1

(
y – Tky

)
∥
∥
∥
∥

)

≤ f
(‖x – y‖,

∥
∥α1(x – Tx) + α2

(
x – T2x

)
+ α3

(
x – T3x

)
+ · · · + αk

(
x – Tkx

)∥
∥,

∥
∥α1(y – Ty) + α2

(
y – T2y

)
+ α3

(
y – T3y

)
+ · · · + αk

(
y – Tky

)∥
∥
)
,

which, together with Definition 2.1, implies that

‖T̄x – T̄y‖ ≤ f
(‖x – y‖,‖x – T̄x‖,‖y – T̄y‖) (9)

for all x, y ∈ X.
Let x0 be an arbitrary element in X. Define xn = T̄nx0 for n ≥ 1, n ∈ N. Putting x = xn,

y = xn–1 in (9), we have

‖xn+1 – xn‖ ≤ f
(‖xn – xn–1‖,‖xn – xn+1‖,‖xn–1 – xn‖

)
.

By F2 there exits β ∈ [0, 1) such that

‖xn+1 – xn‖ ≤ β‖xn – xn–1‖.

By repeating this process we obtain that

‖xn+1 – xn‖ ≤ βn‖x1 – x0‖.

Now for all m, n ≥ 1, we have

‖xn+m – xn‖ ≤ ‖xn+m – xn+m–1‖ + ‖xn+m–1 – xn+m–2‖ + · · · + ‖xn+1 – xn‖
≤ (

βn+m–1 + βn+m–2 + · · · + βn)‖x1 – x0‖

=
βn(1 – βm)

1 – β
‖x1 – x0‖,

which implies that {xn} is a Cauchy sequence in X. Hence there exists x∗ ∈ X such that
xn → x∗ as n → ∞.

Taking x = x∗, y = xn in inequality (9), we have

∥
∥T̄x∗ – T̄xn

∥
∥ ≤ f

(∥
∥x∗ – xn

∥
∥,

∥
∥x∗ – T̄x∗∥∥,‖xn – T̄xn‖

)
.

Taking the limit as n → ∞ in the above inequality, by F1 and F2 we obtain that

∥
∥T̄x∗ – x∗∥∥ ≤ f

(∥
∥x∗ – x∗∥∥,

∥
∥x∗ – T̄x∗∥∥,

∥
∥x∗ – x∗∥∥)
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≤ β
∥
∥x∗ – T̄x∗∥∥ = 0.

Thus T̄x∗ = x∗.
Finally, we assume that T̄ has two fixed points w and z with w �= z. Then

‖w – z‖ = ‖T̄w – T̄z‖
≤ f

(‖w – z‖,‖w – T̄w‖,‖z – T̄z‖)

= f
(‖w – z‖, 0, 0

)

≤ β · 0 = 0,

which shows that z = w. Hence the result follows. �

Theorem 2.2 Let X be a Banach space, and let T be a weak enriched F ′-contraction. Then
there exist αi > 0, i = 1, 2, . . . , k, k ≥ 3, k ∈ N, with

∑k
i=1 αi ∈ (0, 1] such that the following

statements hold:
(i) the n-fold averaged mapping T̄ associated with the mapping T has a unique fixed

point;
(ii) for any x0 ∈ X, Kirk’s iteration {xn} given by xn = T̄xn–1 converges to the unique fixed

point of T̄ .

Proof As the mapping T is a weak enriched F ′-contraction, there are ai ≥ 0, i = 1, 2, . . . , k,
k ≥ 3, k ∈ N, satisfying inequality (2). Define α1 = 1

∑k
i=1 ai+1

> 0 and αr = ar∑k
i=1 ai+1

≥ 0, r =
2, 3, . . . , k. Then inequality (2) becomes

∥
∥
∥
∥

(
1 – α2 – α3 – · · · – αk

α1
– 1

)

(x – y) + Tx – Ty +
α2

α1

(
T2x – T2y

)
+ · · ·

+
αk

α1

(
Tkx – Tky

)
∥
∥
∥
∥

≤ f
(

1
α1

‖x – y‖,
∥
∥
∥
∥

1
α1

(y – x) + (x – Tx) +
α2

α1

(
x – T2x

)
+

α3

α1

(
x – T3x

)
+ · · ·

+
αk

α1

(
x – Tkx

)
∥
∥
∥
∥,

∥
∥
∥
∥

1
α1

(x – y) + (y – Ty) +
α2

α1

(
y – T2y

)
+

α3

α1

(
y – T3y

)
+ · · · +

αk

α1

(
y – Tky

)
∥
∥
∥
∥

)

for all x, y ∈ X. By α1 > 0 and F ′
3 the above inequality can be rewritten as follows:

∥
∥(1 – α1 – α2 – α3 – · · · – αk)(x – y)

+ α1(Tx – Ty) + α2
(
T2x – T2y

)
+ · · · + αk

(
Tkx – Tky

)∥
∥

≤ α1f
(

1
α1

‖x – y‖,
∥
∥
∥
∥(y – x) + α1(x – Tx) +

α2

α1

(
x – T2x

)
+

α3

α1

(
x – T3x

)
+ · · · +

αk

α1

(
x – Tkx

)
∥
∥
∥
∥,

∥
∥
∥
∥(x – y) + α1(y – Ty) +

α2

α1

(
y – T2y

)
+

α3

α1

(
y – T3y

)
+ · · · +

αk

α1

(
y – Tky

)
∥
∥
∥
∥

)
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≤ f
(‖x – y‖,

∥
∥(y – x) + α1(x – Tx) + α2

(
x – T2x

)
+ α3

(
x – T3x

)
+ · · · + αk

(
x – Tkx

)∥
∥,

∥
∥(x – y) + α1(y – Ty) + α2

(
y – T2y

)
+ α3

(
y – T3y

)
+ · · · + αk

(
y – Tky

)∥
∥
)
,

which, together with Definition 2.1, implies that

‖T̄x – T̄y‖ ≤ f
(‖x – y‖,‖y – T̄x‖,‖x – T̄y‖) (10)

for all x, y ∈ X.
Let x0 be an arbitrary element in X. Define xn = T̄nx0 for n ≥ 1, n ∈ N. Taking x = xn,

y = xn–1 in (10), by F ′
4 we have

‖xn+1 – xn‖ ≤ f
(‖xn – xn–1‖,‖xn – xn‖,‖xn–1 – xn+1‖

)

≤ f
(‖xn – xn–1‖,‖xn – xn‖,‖xn–1 – xn‖ + ‖xn – xn+1‖

)
.

By F ′
2 there exits β ∈ [0, 1) such that

‖xn+1 – xn‖ ≤ β‖xn – xn–1‖.

By repeating this process we obtain that

‖xn+1 – xn‖ ≤ βn‖x1 – x0‖.

Now for all m, n ≥ 1, we have

‖xn+m – xn‖ ≤ ‖xn+m – xn+m–1‖ + ‖xn+m–1 – xn+m–2‖ + · · · + ‖xn+1 – xn‖
≤ (

βn+m–1 + βn+m–2 + · · · + βn)‖x1 – x0‖

=
βn(1 – βm)

1 – β
‖x1 – x0‖,

which implies that {xn} is a Cauchy sequence in X. Hence there exists x∗ ∈ X such that
xn → x∗ as n → ∞.

Now taking x = x∗, y = xn in inequality (10), we have

∥
∥T̄x∗ – T̄xn

∥
∥ ≤ f

(∥
∥x∗ – xn

∥
∥,

∥
∥x∗ – T̄xn

∥
∥,

∥
∥xn – T̄x∗∥∥)

.

Taking the limit as n → ∞ in this inequality, by F ′
1 and F ′

2 we obtain that

∥
∥T̄x∗ – x∗∥∥ ≤ f

(∥
∥x∗ – x∗∥∥,

∥
∥x∗ – x∗∥∥,

∥
∥x∗ – T̄x∗∥∥)

≤ β
∥
∥x∗ – x∗∥∥ = 0

and T̄x∗ = x∗.
Finally, we assume that T̄ has fixed points w and z with w �= z. Then

‖w – z‖ = ‖T̄w – T̄z‖
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≤ f
(‖w – z‖,‖w – T̄z‖,‖z – T̄w‖)

= f
(‖w – z‖,‖w – z‖,‖z – w‖),

which by F ′
5 gives that ‖z – w‖ = 0. Therefore T̄ has a unique fixed point. �

Remark 2.3 If we choose f (r, s, t) = αr, α ∈ [0, 1), and set ai = 0 for i = 3, 4, . . . , k in Theo-
rem 2.1 or 2.2, then we get Theorem 2.3 in [27].

Choosing f (r, s, t) = α(s + t), where α ∈ [0, 1/2); f (r, s, t) = kr + l(s + t), where 0 ≤ k, l < 1,
k + 2l < 1; f (r, s, t) = rαt1–α , where α ∈ (0, 1); f (r, s, t) = rαsβ t1–α–β , where α,β ∈ (0, 1) and
0 < α + β < 1 in Theorem 2.1; and f (r, s, t) = α(s + t), where α ∈ [0, 1/2) in Theorem 2.2
and ai = 0 for i = 3, 4, . . . , k, we obtain the fixed point theorems for weak enriched Kan-
nan/Ćirić–Reich–Rus/interpolative Kannan/interpolative Ćirić–Reich–Rus/Chatterjea-
contractions given in the following corollary.

Corollary 2.1 Let X be a Banach space, and let T be a weak enriched Kannan-contraction
(or Ćirić–Reich–Rus-contraction, Chatterjea-contraction, interpolative Kannan-contrac-
tion, interpolative Ćirić–Reich–Rus-contraction). Then there exist α1 > 0 and α2 > 0 with
α1 + α2 ∈ (0, 1] such that the following statements hold:

(i) the 2-fold averaged mapping Tα1,α2 has a unique fixed point;
(ii) for any x0 ∈ X, Kirk’s iteration {xn} given by xn = Tα1,α2 xn–1, that is,

xn = (1 – α1 – α2)xn–1 + α1Txn–1 + α2T2xn–1 (11)

for n ∈N, converges to the unique fixed point of Tα1,α2 .

Remark 2.4 Setting α2 = 0 in Corollary 2.1, we obtain the fixed point theorems cor-
responding to enriched Kannan/Chatterjea/Ćirić–Reich–Rus/interpolative Kannan-con-
traction introduced in [22–24] and [26].

Now we need the following definitions and notations.

Definition 2.12 [31] Let T be a self-mapping on a normed space (X,‖ · ‖), and let A be a
bounded subset of X. The diameter of a set A is denoted by �[A] and defined as sup{‖x –
y‖ : x, y ∈ A}.

A normed space (X,‖ ·‖) is said to be a T-orbital Banach space if every Cauchy sequence
in O(T , x,∞) for some x ∈ X converges in X.

We now prove the following lemmas for the class of weak enriched F -contractions
(resp., weak enriched F ′-contractions).

Lemma 2.1 Let T be a weak enrichedF -contraction (resp., weak enrichedF ′-contractions)
on a normed space (X,‖ · ‖), and let n be a positive integer. Suppose that the following as-
sumption holds:

(Q) for each weak enriched F -contraction, there exists c ∈ [0, 1) such that

f

(( k∑

i=1

ai + 1

)

‖x – y‖,
∥
∥(x – Tx) + a2

(
x – T2x

)
+ · · · + ak

(
x – Tkx

)∥
∥, (12)
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∥
∥(y – Ty) + a2

(
y – T2y

)
+ · · · + ak

(
y – Tky

)∥
∥

)

≤ c max

{( k∑

i=1

ai + 1

)

‖x – y‖,

∥
∥(x – Tx) + a2

(
x – T2x

)
+ · · · + ak

(
x – Tkx

)∥
∥,

∥
∥(y – Ty) + a2

(
y – T2y

)
+ · · · + ak

(
y – Tky

)∥
∥,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(y – x) + (x – Tx) + a2
(
x – T2x

)
+ · · · + ak

(
x – Tkx

)
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(x – y) + (y – Ty) + a2
(
y – T2y

)
+ · · · + ak

(
y – Tky

)
∥
∥
∥
∥
∥

}

or
(Q′) for each weak enriched F ′-contraction, there exists c ∈ [0, 1) such that

f

(( k∑

i=1

ai + 1

)

‖x – y‖, (13)

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(y – x) + (x – Tx) + a2
(
x – T2x

)
+ · · · + ak

(
x – Tkx

)
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(x – y) + (y – Ty) + a2
(
y – T2y

)
+ · · · + ak

(
y – Tky

)
∥
∥
∥
∥
∥

)

≤ c max

{( k∑

i=1

ai + 1

)

‖x – y‖,
∥
∥(x – Tx) + a2

(
x – T2x

)
+ · · · + ak

(
x – Tkx

)∥
∥,

∥
∥(y – Ty) + a2

(
y – T2y

)
+ · · · + ak

(
y – Tky

)∥
∥,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(y – x) + (x – Tx) + a2
(
x – T2x

)
+ · · · + ak

(
x – Tkx

)
∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

( k∑

i=1

ai + 1

)

(x – y) + (y – Ty) + a2
(
y – T2y

)
+ · · · + ak

(
y – Tky

)
∥
∥
∥
∥
∥

}

for all x, y ∈ X, ai ∈ (0,∞), i = 1, 2, . . . , k, k ≥ 3, k ∈N.
Then there exist αi > 0, i = 1, 2, . . . , k, k ≥ 3, k ∈ N, with

∑k
i=1 αi ∈ (0, 1] such that for each

x ∈ X and for all s, t in {1, 2, . . . , n}, we have

∥
∥T̄ sx – T̄ tx

∥
∥ ≤ c�

[
O(T̄ , x, n)

]
,

where T̄ is the k-fold averaged mapping associated with the weak enriched F -contraction
(resp., weak enriched F ′-contractions).

Proof Since T is a weak enriched F -contraction, there exist ai ∈ (0,∞), i = 1, 2, . . . , k,
k ≥ 3, k ∈ N, satisfying inequality (1). Define α1 = 1

∑k
i=1 ai+1

> 0 and αr = ar∑k
i=1 ai+1

≥ 0,
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r = 2, 3, . . . , k. Note that for all x, y ∈ X, inequality (1) reduces to

∥
∥
∥
∥

(
1 – α2 – α3 – · · · – αk

α1
– 1

)

(x – y) + Tx – Ty +
α2

α1

(
T2x – T2y

)
+ · · ·

+
αk

α1

(
Tkx – Tky

)
∥
∥
∥
∥

≤ f
(

1
α1

‖x – y‖,
∥
∥
∥
∥(x – Tx) +

α2

α1

(
x – T2x

)
+

α3

α1

(
x – T3x

)
+ · · · +

αk

α1

(
x – Tkx

)
∥
∥
∥
∥,

∥
∥
∥
∥(y – Ty) +

α2

α1

(
y – T2y

)
+

α3

α1

(
y – T3y

)
+ · · · +

αk

α1

(
y – Tky

)
∥
∥
∥
∥

)

.

Together with assumption (Q), this inequality can be written as

‖T̄x – T̄y‖ ≤ f
(‖x – y‖,‖x – T̄x‖,‖y – T̄‖) (14)

≤ c max
{‖x – y‖,‖x – T̄x‖,‖y – T̄‖,‖x – T̄y‖,‖y – T̄x‖}.

Let x ∈ X be arbitrary, and let n be a fixed positive integer. From (14) we have

∥
∥T̄ sx – T̄ tx

∥
∥ =

∥
∥T̄T̄ s–1x – T̄T̄ t–1x

∥
∥

≤ c max
{∥
∥T̄ s–1x – T̄ t–1x

∥
∥,

∥
∥T̄ s–1x – T̄ sx

∥
∥,

∥
∥T̄ t–1x – T̄ tx

∥
∥,

∥
∥T̄ s–1x – T̄ tx

∥
∥,

∥
∥T̄ t–1x – T̄ sx

∥
∥
}

.

This implies that ‖T̄ sx – T̄ tx‖ ≤ c�[O(T̄ , x, n)].
The same conclusion for weak enriched F ′-contraction with assumption (Q′) can be

drawn by following arguments similar to those above. �

Remark 2.5 It follows from Lemma 2.1 that if T is a weak enriched F -contraction (resp.,
weak enrichedF ′-contraction) and x ∈ X, then for any positive integer n, there exists r ≤ n
such that

∥
∥x – T̄ rx

∥
∥ = �

[
O(T̄ , x, n)

]
.

Lemma 2.2 Let T be a weak enriched F -contraction (resp., weak enriched F ′-contraction)
on a normed space (X,‖·‖), and let n be a positive integer. Suppose that there exists c ∈ [0, 1)
such that assumption (Q) (resp., Q′) is satisfied. Then there exist αi > 0, i = 1, 2, . . . , k, k ≥ 3,
k ∈N, with

∑k
i=1 αi ∈ (0, 1] such that

�
[
O(T̄ , x,∞)

] ≤ 1
1 – c

‖x – T̄x‖

for all x ∈ X, where T̄ is the k-fold averaged mapping associated with the weak enriched
F -contraction (weak enriched F ′-contraction).

Proof Since T is a weak enriched F -contraction, there exist ai ∈ (0,∞), i = 1, 2, . . . , k,
k ≥ 3, k ∈ N, satisfying inequality (1). Define α1 = 1

∑k
i=1 ai+1

> 0 and αr = ar∑k
i=1 ai+1

≥ 0,
r = 2, 3, . . . , k.
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Let x be an arbitrary element in X. As the sequence {�[O(T̄ , x, n)]} is increasing, we have

�
[
O(T̄ , x,∞)

]
= sup

{
�

[
O(T̄ , x, n)

]
: n ∈N

}
.

Then (14) follows if we show that

�
[
O(T̄ , x, n)

] ≤ 1
1 – c

‖x – T̄x‖, n ∈N.

Let n be a positive integer. By Remark 2.5 there exists T̄ rx ∈ O(T̄ , x, n)(1 ≤ r ≤ n) such that

∥
∥x – T̄ rx

∥
∥ = �

[
O(T̄ , x, n)

]
.

Using Lemma 2.1 and the triangle inequality, we have

∥
∥x – T̄ rx

∥
∥ ≤ ‖x – T̄x‖ +

∥
∥T̄x – T̄ rx

∥
∥

≤ ‖x – T̄x‖ + c�
[
O(T̄ , x, n)

]

= ‖x – T̄x‖ + c
∥
∥x – T̄ rx

∥
∥.

Therefore

�
[
O(T̄ , x, n)

]
=

∥
∥x – T̄ rx

∥
∥ ≤ 1

1 – c
‖x – T̄x‖, ∀n ∈ N.

The same conclusion for weak enriched F ′-contraction with assumption (Q′) can be
drawn by following arguments similar to those above. �

Theorem 2.3 Let T be a weak enriched F -contraction (resp., weak enriched F ′-contrac-
tion) on a normed space (X,‖ · ‖). Suppose that there exists c ∈ [0, 1) such that assumption
(Q) (resp., Q′) is satisfied. Then there exist αi > 0, i = 1, 2, . . . , k, k ≥ 3, k ∈N, with

∑k
i=1 αi ∈

(0, 1] such that the following statements hold, provided that X is a T̄-orbital Banach space:
(i) the n-fold averaged mapping T̄ associated with mapping T has a unique fixed point;
(ii) for any x0 ∈ X, Kirk’s iteration {xn} given by xn = T̄xn–1 converges to the unique fixed

point of T̄ .

Proof Applying arguments similar to those in the proof of Lemma 2.1, for α1 = 1
∑k

i=1 ai+1
> 0

and αr = ar∑k
i=1 ai+1

≥ 0, r = 2, 3, . . . , k, we have

‖T̄x – T̄x‖ ≤ c max
{‖x – y‖,‖x – T̄x‖,‖y – T̄y‖,‖x – T̄y‖,‖y – T̄x‖}. (15)

Let x0 ∈ X. Define the Kirk iteration {xn} by xn = T̄xn–1 = T̄nx0, n ∈ N.
We now show that the sequence of iterates {xn} is a Cauchy sequence. Let n and m

(m < n) be positive integers. By Lemma 2.1 we have

‖xm – xn‖ =
∥
∥T̄mx0 – T̄nx0

∥
∥

=
∥
∥T̄T̄m–1x0 – T̄T̄n–1x0

∥
∥
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=
∥
∥T̄xm–1 – T̄n–m+1xm–1

∥
∥

≤ c�
[
O(T̄ , xm–1, n – m + 1)

]
.

By Remark 2.5 there exists an integer p, 1 ≤ p ≤ n – m + 1, such that

‖xm–1 – xm+p–1‖ = �
[
O(T̄ , xm–1, n – m + 1)

]
.

It follows from Lemma 2.1 that

‖xm–1 – xm+p–1‖ =
∥
∥T̄xm–2 – T̄p+1xm–2

∥
∥

≤ c�
[
O(T̄ , xm–2, p + 1)

]
,

which implies that

‖xm–1 – xm+p–1‖ ≤ c�
[
O(T̄ , xm–2, n – m + 2)

]
.

Therefore we conclude that

‖xm – xn‖ ≤ c�
[
O(T̄ , xm–1, n – m + 1)

] ≤ c2�
[
O(T̄ , xm–2, n – m + 2)

]
.

Continuing this procedure, we have

‖xm – xn‖ ≤ c�
[
O(T̄ , xm–1, n – m + 1)

] ≤ · · · ≤ cm�
[
O(T̄ , x0, m)

]
.

From Lemma 2.2 we obtain that

‖xm – xn‖ ≤ cm

1 – c
‖x0 – T̄x0‖.

Taking the limit as n → ∞ in this inequality, we see that the sequence {xn} is a Cauchy
sequence.

Since X is a T̄-orbital Banach space, there exists x∗ ∈ X such that lim xnn→∞ = x∗.
Note that

∥
∥x∗ – T̄x∗∥∥ ≤ ∥

∥x∗ – xn+1
∥
∥ +

∥
∥xn+1 – T̄x∗∥∥

=
∥
∥x∗ – xn+1

∥
∥ +

∥
∥T̄xn – T̄x∗∥∥

≤ ∥
∥x∗ – xn+1

∥
∥ + c max

{∥
∥xn – x∗∥∥,‖xn – xn+1‖,

∥
∥x∗ – T̄x∗∥∥,

∥
∥x∗ – xn+1

∥
∥,

∥
∥xn – T̄x∗∥∥}

≤ ∥
∥x∗ – xn+1

∥
∥ + c

{∥
∥xn – x∗∥∥ + ‖xn – xn+1‖ +

∥
∥x∗ – T̄x∗∥∥ +

∥
∥x∗ – xn+1

∥
∥

+
∥
∥xn – T̄x∗∥∥}

.

Hence

∥
∥x∗ – T̄x∗∥∥ ≤ 1

1 – c
{

(1 + c)
∥
∥x∗ – xn+1

∥
∥ + c

∥
∥xn – x∗∥∥ + c‖xn – xn+1‖

}
.
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Using limn→∞ xn = x∗, we have ‖x∗ – T̄x∗‖ = 0, which shows that x∗ is a fixed point of T̄ .
The uniqueness of a fixed point follows from (15).

The same conclusion follows for the weak enriched F ′-contraction under assumption
(Q′) by applying the arguments similar to those above. �

Next, we will study the well-posedness and limit shadowing property for each type of
weak enriched contractions defined herein.

Theorem 2.4 Let X be a Banach space, and let T be a weak enriched F -contraction. Then
Fix(T̄) is well posed.

Proof It follows from Theorem 2.1 that T̄ has a unique fixed point x∗ in X.
Suppose that limn→∞ ‖T̄xn – xn‖ = 0. Using (9), we have

∥
∥xn – x∗∥∥ ≤ ‖xn – T̄xn‖ +

∥
∥T̄xn – x∗∥∥

= ‖xn – T̄xn‖ +
∥
∥T̄xn – T̄x∗∥∥

≤ ‖xn – T̄xn‖ + f
(∥
∥xn – x∗∥∥,‖xn – T̄xn‖,

∥
∥x∗ – T̄x∗∥∥)

.

Taking the limit as n → ∞, we obtain that

lim
n→∞

∥
∥xn – x∗∥∥ ≤ f

(
lim

n→∞
∥
∥xn – x∗∥∥, 0, 0

)
.

By F2 there exists β ∈ [0, 1) such that limn→∞ ‖xn – x∗‖ ≤ β · 0, which implies that
limn→∞ ‖xn – x∗‖ = 0 and hence the result. �

Theorem 2.5 Let X be a Banach space. Suppose that T is a weak enriched F ′-contraction.
Then Fix(T̄) is well posed.

Proof The result follows using arguments similar to those in the proof of Theorem 2.4. �

Theorem 2.6 Let X be a Banach space, and let T be a weak enriched F -contraction (resp.,
weak enriched F ′-contraction). Then Fix(T̄) possesses the limit shadowing property in X .

Proof It follows from Theorem 2.1 (resp., Theorem 2.2) that T̄ has a unique fixed point x∗

in X. Then for any n ∈N, T̄nx∗ = x∗. Suppose that limn→∞ ‖T̄xn – xn‖ = 0. Note that

∥
∥xn – T̄nx∗∥∥ =

∥
∥xn – x∗∥∥

≤ ‖xn – T̄xn‖ +
∥
∥T̄xn – T̄x∗∥∥

≤ ‖xn – T̄xn‖ + f
(∥
∥xn – x∗∥∥,‖xn – T̄xn‖,

∥
∥x∗ – T̄x∗∥∥)

(
resp., f

(∥
∥xn – x∗∥∥,

∥
∥xn – T̄x∗∥∥,

∥
∥x∗ – T̄xn

∥
∥
))

.

Taking the limit as n → ∞, we obtain that

lim
n→∞

∥
∥xn – T̄nx∗∥∥ ≤ f

(
lim

n→∞
∥
∥xn – x∗∥∥, 0, 0

)

(
resp. f

(
lim

n→∞
∥
∥xn – x∗∥∥, lim

n→∞
∥
∥xn – x∗∥∥, lim

n→∞
∥
∥xn – x∗∥∥

))
.
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It follows from F2 (resp., F ′
5) that limn→∞ ‖xn – T̄nx∗‖ = 0. Hence Fix(T̄) possesses the

limit shadowing property in X. �

We conclude this section with the following theorem.

Theorem 2.7 Let X be a Banach space. Suppose that T is a weak enriched F -contraction
and satisfies the following assumption:
F4: there exists β ∈ (0, 1) such that f (r, s, t) ≤ βr + t for all r, s, t ∈R+.
Then the fixed point equation T̄x = x is Ulam–Hyers stable.

Proof It follows from Theorem 2.1 that T̄ has a unique fixed point x∗ in X.
Let ε > 0, and let v∗ ∈ X be an ε-solution, that is,

∥
∥v∗ – T̄v∗∥∥ ≤ ε.

Since x∗ ∈ X and ‖x∗ – T̄x∗‖ = 0 ≤ ε, it follows that x∗ is also an ε-solution. By F4 there
exists β ∈ (0, 1) such that

∥
∥x∗ – v∗∥∥ =

∥
∥T̄x∗ – v∗∥∥

≤ ∥
∥T̄x∗ – T̄v∗∥∥ +

∥
∥T̄v∗ – v∗∥∥

≤ f
(∥
∥x∗ – v∗∥∥,

∥
∥x∗ – T̄x∗∥∥,

∥
∥v∗ – T̄v∗∥∥)

+
∥
∥T̄v∗ – v∗∥∥

= f
(∥
∥x∗ – v∗∥∥, 0,

∥
∥v∗ – T̄v∗∥∥)

+
∥
∥T̄v∗ – v∗∥∥

≤ β
∥
∥x∗ – v∗∥∥ + 2

∥
∥v∗ – T̄v∗∥∥

≤ β
∥
∥x∗ – v∗∥∥ + 2ε,

which implies that

∥
∥x∗ – v∗∥∥ ≤ Kε,

where K = 2
1–β

. Hence the result follows. �

Theorem 2.8 Suppose that T is a weak enriched F ′-contraction on a Banach space X and
satisfies the following assumption:
F ′

6: there exists β ∈ (0, 1
3 ) such that f (r, s, r) ≤ β(2r + s) for all r, s, t ∈R+.

Then the fixed point equation T̄x = x is Ulam–Hyers stable.

Proof It follows from Theorem 2.2 that T̄ has a unique fixed point x∗ in X.
Let ε > 0, and let v∗ ∈ X be an ε-solution, that is,

∥
∥v∗ – T̄v∗∥∥ ≤ ε.

Note that x∗ is also an ε-solution. By F ′
6 there exists β ∈ (0, 1

3 ) such that

∥
∥x∗ – v∗∥∥ =

∥
∥T̄x∗ – v∗∥∥
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≤ ∥
∥T̄x∗ – T̄v∗∥∥ +

∥
∥T̄v∗ – v∗∥∥

≤ f
(∥
∥x∗ – v∗∥∥,

∥
∥x∗ – T̄v∗∥∥,

∥
∥v∗ – T̄x∗∥∥)

+
∥
∥T̄v∗ – v∗∥∥

= f
(∥
∥x∗ – v∗∥∥,

∥
∥x∗ – T̄v∗∥∥,

∥
∥v∗ – x∗∥∥)

+
∥
∥T̄v∗ – v∗∥∥

≤ β
(
2
∥
∥x∗ – v∗∥∥ +

∥
∥x∗ – T̄v∗∥∥)

+
∥
∥v∗ – T̄v∗∥∥

≤ β
(
2
∥
∥x∗ – v∗∥∥ +

(∥
∥x∗ – v∗∥∥ +

∥
∥v∗ – T̄v∗∥∥))

+
∥
∥v∗ – T̄v∗∥∥

≤ 3β
∥
∥x∗ – v∗∥∥ + (1 + β)ε,

which implies that

∥
∥x∗ – v∗∥∥ ≤ Kε,

where K = 1+β

1–3β
. Hence the result follows. �

3. The equality of Fix(T) and Fix(T̄)
Suppose the existence of a fixed point of a k-fold averaged mapping associated with a weak
enriched F -contraction mapping T (resp., weak enriched F ′-contraction) is known. We
will study necessary conditions for the equality between the set of fixed points of the k-fold
averaged mapping and of the associated weak enriched contraction.

Let us begin with the following remark, which is known for averaged mappings Tλ and
double averaged mappings Tα1,α2 .

Remark 3.1 For a self-mapping T on a normed space X and αi > 0, i = 1, 2, . . . , k, k ≥ 3,
k ∈ N, with

∑k
i=1 αi ∈ (0, 1], the k-fold averaged mapping T̄ : X → X associated with T

given by

T̄ := (1 – α1 – α2 – · · · – αk)I + α1T + α2T2 + · · · + αkTk

has the property Fix(T) ⊆ Fix(T̄).

We now study the conditions guaranteeing the equality of Fix(T) and Fix(T̄).

Theorem 3.1 Let X be a Banach space, and let T be a weak enriched F -contraction (resp.,
F ′-contraction). Suppose that there exist αi > 0, i = 1, 2, . . . , k, k ≥ 3, k ∈ N, with

∑k
i=1 αi ∈

(0, 1] satisfying the following assumption:
(A1) for all bi ∈ (0, 1), i = 1, 2, . . . , k, with

∑k
i=1 bi ∈ [0, 1) and z ∈ Fix(T̄),

‖z – Tz‖ ≤
∥
∥
∥
∥
∥

z –

(

1 –
k∑

i=2

bi

)

Tz – b2T2z – · · · – bkTkz

∥
∥
∥
∥
∥

. (16)

Then Fix(T) = Fix(T̄).

Proof It follows from Remark 3.1 that Fix(T) ⊆ Fix(T̄). To prove the converse, assume
that Fix(T̄) �= ∅. Otherwise, the result is obvious. From Theorem 2.1 (resp., Theorem 2.2)



Zhou et al. Journal of Inequalities and Applications         (2024) 2024:23 Page 23 of 26

we have Fix(T̄) �= ∅. If z ∈ Fix(T̄), then there exist αi > 0, i = 1, 2, . . . , k, k ≥ 3, k ∈ N, with
∑k

i=1 αi ∈ (0, 1] such that

z = (1 – α1 – α2 – · · · – αk)z + α1Tz + α2T2z + · · · + αkTkz.

Set bi = αi∑k
i=1 αi

, i = 1, 2, . . . , k, in (16) to obtain

‖z – Tz‖

≤
∥
∥
∥
∥z –

α1
∑k

i=1 αi
Tz –

α2
∑k

i=1 αi
T2z – · · · –

αk
∑k

i=1 αi
Tkz

∥
∥
∥
∥

=
1

∑k
i=1 αi

∥
∥z – (1 – α1 – α2 – · · · – αk)z – α1Tz – α2T2z – · · · – αkTkz

∥
∥

= ‖z – T̄z‖
= 0,

which implies that z ∈ Fix(T). Hence Fix(T̄) = Fix(T). �

The following result also guarantees the equality of Fix(T) and Fix(T̄).

Theorem 3.2 Let X be a Banach space, and let T be a weak enriched F -contraction (resp.,
weak enriched F ′-contraction). Suppose that there exist αi > 0, i = 1, 2, . . . , k, k ≥ 3, k ∈ N,
with

∑k
i=1 αi ∈ (0, 1] and λ ∈ [0, 1) such that

(A2) for all x ∈ X, we have

‖T̄x – Tx‖ ≤ λ‖x – Tx‖.

Then Fix(T) = Fix(T̄).

Proof It follows from Remark 3.1 that Fix(T) ⊆ Fix(T̄). From Theorem 2.1 (resp., Theo-
rem 2.2) we have Fix(T̄) �= ∅. Now for each z ∈ Fix(T̄),

‖z – Tz‖ = ‖T̄z – Tz‖ ≤ λ‖z – Tz‖

implies that ‖z – Tz‖ = 0, that is, z ∈ Fix(T), that is, Fix(T̄) ⊆ Fix(T). Therefore Fix(T̄) =
Fix(T). �

Next, we obtain an approximation of a fixed point of weak enriched F -contraction
(resp., weak enriched F ′-contraction) using Kirk’s iteration scheme for T̄ .

Theorem 3.3 Let X be a Banach space, and let T be a weak enriched F -contraction (resp.,
weak enriched F ′-contraction). Suppose that (A1) or (A2) holds. Then

(i) T has a unique fixed point in X;
(ii) for any x0 ∈ X, Kirk’s iteration {xn} given by xn = T̄xn–1 converges to a unique fixed

point of T .
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Proof By Theorem 2.1 (resp., Theorem 2.2) there exist αi > 0, i = 1, 2, . . . , k, k ≥ 3, k ∈ N,
with

∑k
i=1 αi ∈ (0, 1] such that T̄ defined by

T̄ := (1 – α1 – α2 – · · · – αk)I + α1T + α2T2z + · · · + αkTk

has a unique fixed point x∗ ∈ X, which can be obtained by Kirk’s iteration (6) for any ele-
ment x0 ∈ X. As αi (i = 1, 2, . . . , k) satisfy assumption (A1) or (A2), the result follows from
Theorem 3.1 or Theorem 3.2. �

Let us now recall the notion of the periodic point property of a self-mapping T defined
on a set X.

Definition 3.1 A self-mapping T on X is said to have the periodic point property P if
Fix(T) = Fix(Tn) for every n ∈N.

Note that Fix(T) ⊂ Fix(Tn) for every n ∈ N. However, the converse is not true in general.
Note that the mapping T has the periodic point property P if and only if Tλ has the

periodic point property P. Indeed, Fix(T) = Fix(Tλ).
Now we study the conditions that guarantee that the self-mapping T satisfying the weak

enriched contraction condition has the periodic point property P.

Lemma 3.1 Let X be a Banach space, and let T be a weak enriched F -contraction (resp.,
weak enriched F ′-contraction). Suppose that there exist αi > 0, i = 1, 2, . . . , k, k ≥ 3, k ∈ N,
with

∑k
i=1 αi ∈ (0, 1] and

(C) for any ε > 0, there exist x, y ∈ X such that ‖x – T̄y‖ < ε implies that ‖x – Tiy‖ < ε
i ,

i = 1, 2, . . . , k.
Then the fixed point of T̄ coincides with the one of Ti (i = 1, 2, . . . , k, k ≥ 3, k ∈N).

Proof It follows from Theorem 2.1 (resp., Theorem 2.2) that there exist αi > 0, i =
1, 2, . . . , k, k ≥ 3, k ∈ N, with

∑k
i=1 αi ∈ (0, 1] such that T̄ admits a unique fixed point x∗

in X and the iteration {xn} defined by xn = T̄xn–1, n ∈ N, converges to x∗. Then for any
ε
i > 0, i = 1, 2, . . . , k, k ≥ 3, k ∈N, there exists N(i) ∈N such that for n(i) ≥ N(i), we have

0 <
∥
∥x∗ – T̄xn(i)

∥
∥ ≤ ε

i
, i = 1, 2, . . . , k, k ≥ 3, k ∈N.

From assumption (C), for n(i) ≥ N(i), we obtain that

∥
∥x∗ – Tixn(i)

∥
∥ ≤ ε

i
, i = 1, 2, . . . , k, k ≥ 3, k ∈N.

Set K = max{N(1), N(2), . . . , N(k)}. For n > K , we have

∥
∥x∗ – T̄xn

∥
∥ =

∥
∥
∥
∥
∥

k∑

i=1

αi
(
x∗ – Tixn

)
∥
∥
∥
∥
∥

≤
k∑

i=1

∥
∥αi

(
x∗ – Tixn

)∥
∥
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≤
k∑

i=1

αi
ε

i
≤

k∑

i=1

αiε = ε.

This shows that ‖x∗ – Tixn‖ → 0, i = 1, 2, . . . , k, k ≥ 3, k ∈ N, by taking the limit in this
inequality as n → ∞ and the arbitrariness of ε. Hence x∗ is also a fixed point of Ti, i =
1, 2, . . . , k, k ≥ 3, k ∈ N, which coincides with the fixed point of T̄ . �

Theorem 3.4 Let X be a Banach space, and let T be a weak enriched F -contraction (resp.,
weak enriched F ′-contraction). If conditions (A1) or (A2) and (C) hold, then T has the
periodic property P.

Proof The conclusion follows from Theorem 3.3 and Lemma 3.1. �
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