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Abstract
This article considers and investigates a variational inequality problem and fixed-point
problems in real Hilbert spaces endowed with graphs. A regularization method is
proposed for solving a G-variational inequality problem and a common fixed-point
problem of a finite family of G-nonexpansive mappings in the framework of Hilbert
spaces endowed with graphs, which extends the work of Tiammee et al. (Fixed Point
Theory Appl. 187, 2015) and Kangtunyakarn, A. (Rev. R. Acad. Cienc. Exactas Fís. Nat.,
Ser. A Mat. 112:437–448, 2018). Under certain conditions, a strong convergence
theorem of the proposed method is proved. Finally, we provide numerical examples
to support our main theorem. The numerical examples show that the speed of the
proposed method is better than some recent existing methods in the literature.
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1 Introduction
Assume that H is a real Hilbert space with an inner product 〈·, ·〉 and its induced norm
‖ · ‖. Let C be a nonempty, closed, and convex subset of H and T : C → C be a nonlinear
mapping. A point x ∈ C is called a fixed point of T if T x = x. Let F(T ) := {x ∈ C : T x = x}
be the set of fixed points of T . The mapping T is nonexpansive if ‖T x –T y‖ ≤ ‖x – y‖ for
all x, y ∈ C.

Denote by G = (V (G), E(G)) a directed graph, where V (G) and E(G) are the set of its
vertices and edges, respectively. Assuming that G has no parallel edges, we denote G–1 as
the directed graph derived from G by reversing the direction of its edges, i.e.,

E
(
G–1) =

{
(x, y) : (y, x) ∈ E(G)

}
.

In 2008, Jachymski [1] studied fixed-point theory in a metric space endowed with a
directed graph by combining the concepts of fixed-point theory and graph theory. The
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following contractive-type mapping with a directed graph was proposed. Given a metric
space (X, d), let G be a directed graph such that the set of its vertices V (G) = X and the set
of its edges E(G) consists of all loops, i.e., � = {(x, x) : x ∈ X} ⊆ E(G). A mapping T : X → X
is said to be a G-contraction if it preserves the edges of G, i.e.,

x, y ∈ X, (x, y) ∈ E(G) ⇒ (
T(x), T(y)

) ∈ E(G)

and there exists α ∈ (0, 1) such that for any x, y ∈ X,

(x, y) ∈ E(G) ⇒ d
(
T(x), T(y)

) ≤ αd(x, y).

The generalized Banach contraction principle in a metric space endowed with a directed
graph was also established.

Given a nonempty convex subset C of a Banach space X and a directed graph G with
V (G) = C, then T : C → C is said to be G-nonexpansive if the following conditions hold:

1. T is edge preserving, i.e., (x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G) for any x, y ∈ C;
2. (x, y) ∈ E(G) ⇒ ‖Tx – Ty‖ ≤ ‖x – y‖ for any x, y ∈ C.

This mapping was proposed by Tiammee et al. [2] in 2015. Moreover, Tiammee et al. [2]
also introduced Property G and the following Halpern iteration process for finding the set
of fixed points of G-nonexpansive mappings in Hilbert spaces endowed with a directed
graph. Suppose C has Property G. Let {xn} be a sequence generated by x0 = u ∈ C and

xn+1 = βnu + (1 – βn)Txn, n ≥ 0, (1)

where {βn} ⊆ [0, 1] and T : C → C is a G-nonexpansive mapping. If {xn} is dominated by
PF(T)x0 and {xn} dominates x0, then {xn} converges strongly to PF(T)x0 under some suitable
control conditions.

In 2017, Kangtunyakarn [3] suggested G-S-mapping generated by a finite family of G-
nonexpansive mappings and finite real numbers and introduced the following Halpern
iteration associated with G-S-mapping for solving the fixed-point problem of a finite fam-
ily of G-nonexpansive mappings in Hilbert spaces endowed with graphs. Let {xn} be a
sequence generated by x0 = u ∈ C and

xn+1 = βnu + (1 – βn)Sxn, n ≥ 0, (2)

where {βn} ⊆ [0, 1], and S is a G-S-mapping. He showed that the sequence {xn} gener-
ated by (2) converges strongly to a point in F(S) =

⋂N
i=1 F(Ti) under some suitable control

conditions. Furthermore, in the past few years, several iterative methods have been intro-
duced for solving the fixed-point problem of G-nonexpansive mappings; see [4–8] and the
references therein.

For a given nonlinear operator Ā : C → H , we consider the following variational inequal-
ity problem of solving x ∈ C such that

〈y – x, Āx〉 ≥ 0, (3)

for all y ∈ C. Denote by VI(C, Ā) the set of solutions of the variational inequality (3). The
variational inequalities were introduced in [9, 10], which has been extensively studied in
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the literature; see [11–13]. It is well known that ũ solves the problem (3) if and only if ũ
solves the equation

ũ = PC(I – λĀ)ũ, ∀λ > 0.

This work focuses on the following G-variational inequality problem in Hilbert spaces
endowed with graphs, which Kangtunyakarn introduced [14] in 2020. In order to propose
this problem, he combined the concept of problem (3) with graph theory. Given a directed
graph G with V (G) = C, the G-variational inequality problems is to find a point x∗ ∈ C
such that

〈
y – x∗, Ax∗〉 ≥ 0, (4)

for all y ∈ C with (x∗, y) ∈ E(G), where A is a mapping from C to H . We denote by
G-VI(C, A) the set of all solutions of (4).

Moreover, he also introduced the following G-α-inverse strongly monotone in Hilbert
spaces endowed with graphs: A mapping A : C → H is said to be G-α-inverse strongly
monotone if there exists a positive number α such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖2,

for all x, y ∈ C with (x, y) ∈ E(G). For more information on the G-variational inequality
problem and G-α-inverse strongly monotone, see [14].

Furthermore, the following method for solving the G-variational inequality problems
and the fixed-point problem of a G-nonexpansive mapping in Hilbert spaces endowed
with graphs were also introduced in [14]. Let {xn} be a sequence generated by x0 = u ∈ C
and

xn+1 = αnu + βnPC(I – λA)xn + γnSxn, n ≥ 0, (5)

where {αn}, {βn}, {γn} ⊆ [0, 1] with αn + βn + γn = 1, λ ∈ (0, 2α), S : C → C is a G-
nonexpansive mapping, and A : C → H is a G-α-inverse strongly monotone operator with
A–1(0) �= ∅. Under certain conditions, a strong convergence result of the algorithm (5) in
Hilbert spaces endowed with graphs was shown.

In this paper, motivated by Tiammee et al. [2], Kangtunyakarn [3], and Kangtunyakarn
[14], we study the G-variational inequality problem (4) and introduce a new method for
solving the G-variational inequality problem (4) and fixed-point problems of a finite family
of G-nonexpansive mappings in Hilbert spaces endowed with graphs as follows: Given
u = x0 ∈ C, let the sequences {xn} be defined by

xn+1 = PC(I – λA)
(
βnu + (1 – βn)Sxn

)
, n ≥ 0, (6)

where {βn} ⊆ [0, 1], λ ∈ (0, 2α), A : C → H is a G-α-inverse strongly monotone operator
with A–1(0) �= ∅, and S is a G-S-mapping generated by a finite family of G-nonexpansive
mappings and finite real numbers. We note that the proposed method (6) reduces to the
iteration process (2) when A = 0, PC = I and reduces to the iteration process (1) when A = 0,
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PC = I , N = 1 and αN
1 = 1. Under suitable conditions, a strong convergence theorem of the

proposed method is proved. In the last section, we provide numerical examples to support
our main theorem. The main result extends and improves the corresponding results. We
made the following contributions to this research.

• The proposed method is constructed around the Halpern iteration process in [15] and
the regularization technique in [16]. In this case, our main results is to solve a
common solution of the G-variational inequality problem (G-VI(C, A)) and the
fixed-point problems of a finite family of G-nonexpansive mappings (

⋂N
i=1 F(Ti)),

while the results in Tiammee et al. [2] and Kangtunyakarn [3] are to solve a solution of
the fixed-point problem of a G-nonexpansive mapping (F(T)) and a common solution
of the fixed-point problems of a finite family of G-nonexpansive mappings
(
⋂N

i=1 F(Ti)), respectively.
• Under certain mild conditions, the strong convergence of the iterative sequences

generated by the proposed method is established in Hilbert spaces endowed with
graphs.

• Numerical examples in finite- and infinite-dimensional spaces are provided to
demonstrate the convergence behavior of our proposed method and the comparison
to the Halpern-type algorithms proposed in Algorithm 5 of Kangtunyakarn [14]. It is
shown that the proposed iterative method has a faster convergence speed (in terms of
CPU time and the number of iterations) than Algorithm 5 of Kangtunyakarn [14] (see
Sect. 4).

This paper is organized as follows. In Sect. 2, we first recall some basic definitions and lem-
mas. In Sect. 3, we propose a modified regularization method and analyze its convergence.
In Sect. 4, some numerical experiments are provided.

2 Preliminaries
For the purpose of proving our theorem, we provide several definitions and lemmas in this
section. For convenience, the following notations are used throughout the paper:

• H denotes a real Hilbert space with an inner product 〈·, ·〉 and an induced norm ‖ · ‖;
• C denotes a nonempty, closed, and convex subset of H ;
• xn → q denotes the strong convergence of a sequence {xn} to q in H ;
• xn ⇀ q denotes the weak convergence of a sequence {xn} to q in H ;
• G = (V (G), E(G)) denotes a directed graph with V (G) = C and E(G) is convex.
Recall that the (nearest point) projection PC from H onto C assigns to each x ∈ H , there

exists the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = min
y∈C

‖x – y‖.

The fact that H satisfies Opial’s condition is well known, i.e., for any sequence {xn} with
xn ⇀ x, the inequality

lim
n→∞ inf‖xn – x‖ < lim

n→∞ inf‖xn – y‖

holds for every y ∈ H with y �= x.

Lemma 2.1 ([17]) For any u ∈ H and v ∈ C, PCu = v if and only if the inequality 〈u – v, v –
w〉 ≥ 0 holds for all w ∈ C.
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Lemma 2.2 For every p, q ∈ H . If ‖p + q‖ = ‖p‖ + ‖q‖, there exists s > 0 such that q = sp or
p = sq.

Lemma 2.3 ([18]) Let {zn} be a sequence of nonnegative real numbers satisfying

zn+1 ≤ (1 – an)zn + τn, ∀n ≥ 0,

where {an} is a sequence in (0, 1) and {τn} is a sequence of real numbers. If the following
conditions hold:

(1)
∑∞

n=1 an = ∞;
(2) lim supn→∞

τn
an

≤ 0 or
∑∞

n=1 |τn| < ∞,
then, limn→∞ zn = 0.

The following basic definitions of domination in graphs ([19, 20]) are needed to prove
the main theorem.

Given G a directed graph, a set X ⊆ V (G) is called a dominating set if there exists x ∈
X such that (x, z) ∈ E(G) for every z ∈ V (G) \ X, and we say that x dominates z or z is
dominated by x. Let z ∈ V (G), a set X ⊆ V (G) is dominated by z if (z, x) ∈ E(G) for any
x ∈ X and we say that X dominates z if (x, z) ∈ E(G) for all x ∈ X. This work assumes that
E(G) contains all loops.

Definition 2.4 (Property G [2]) Let X be a normed space. A nonempty C ⊂ X is said to
have the Property G if every sequence {xn} in C converging weakly to x ∈ C, there is a
subsequence {xnk } of {xn} such that (xnk , x) ∈ E(G) for all k ∈N.

Theorem 2.5 ([2]) Let X be a normed space, and G be a directed graph with V (G) = X.
Let T : X → X be a G-nonexpansive mapping. If X has a Property G, then T is continuous.

Theorem 2.6 ([2]) Let C have the Property G. If T : C → C is a G-nonexpansive mapping,
and F(T) × F(T) ⊆ E(G), then F(T) is closed and convex.

Definition 2.7 ([2]) A graph G is called transitive if for any x, y, z ∈ V (G) such that (x, y)
and (y, z) are in E(G), then (x, z) ∈ E(G).

Lemma 2.8 ([14]) Let G be transitive with E(G) = E(G–1) and let A : C → H be a G-α-
inverse strongly monotone mapping with A–1(0) �= ∅. Then, G-VI(C, A) = A–1(0) = F(PC(I –
λA)), for all λ > 0.

Lemma 2.9 ([14]) Let C have a property G and let A : C → H be a G-α-inverse strongly
monotone mapping with F(PC(I – λA)) × F(PC(I – λA)) ⊆ E(G), for all λ ∈ (0, 2α). Then,
F(PC(I – λA)) is closed and convex.

In 2017, Kangtunyakarn [3] introduced the G-S-mapping generated by a finite family of
nonlinear mappings and finite real numbers as follows.

Definition 2.10 ([3]) For every i = 1, 2, . . . , N , let Ti be a mapping of C into itself. For each
k = 1, 2, . . . , N , let αk = (αk

1 ,αk
2 ,αk

3) where αk
1 ,αk

2 ,αk
3 ∈ [0, 1] and αk

1 + αk
2 + αk

3 = 1. Define the
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mapping S : C → C as follows:

L0 = I

L1 = α1
1T1L0 + α1

2L0 + α1
3I,

L2 = α2
1T2L1 + α2

2L1 + α2
3I,

L3 = α3
1T3L2 + α3

2L2 + α3
3I,

...

LN–1 = αN–1
1 TN–1LN–2 + αN–1

2 LN–2 + αN–1
3 I,

S = LN = αN
1 TNLN–1 + αN

2 LN–1 + αN
3 I.

This mapping is called the G-S-mapping generated by T1, T2, . . . , TN and α1,α2, . . . ,αN .

Lemma 2.11 ([3]) Let {Ti}N
i=1 : C → C be a G-nonexpansive mapping with

⋂N
i=1 F(Ti) the

dominating set. Let αk = (αk
1 ,αk

2 ,αk
3), where αk

1 ,αk
2 ,αk

3 ∈ [0, 1] with αk
1 +αk

2 +αk
3 = 1 for all k =

1, 2, . . . , N and αk
1 ∈ (0, 1) for all k = 1, 2, . . . , N – 1 and αN

1 ∈ (0, 1], αk
2 ,αk

3 ∈ [0, 1] for all k =
1, 2, . . . , N . Let S : C → C be a G-S-mapping generated by T1, T2, . . . , TN and α1,α2, . . . ,αN .
Then, F(S) =

⋂N
i=1 F(Ti) and S is a G-nonexpansive mapping.

Lemma 2.12 ([3]) Let C have the Property G. If T : C → C is a G-nonexpansive mapping,
then I – T is demiclosed at zero.

3 Main results
In this section, we establish a strong convergence theorem of a regularization algorithm
designed to solve the G-variational inequality problem and the fixed-point problem of a
finite family of G-nonexpansive mappings in a Hilbert space endowed with graphs.

Theorem 3.1 Let H be a Hilbert space and C ⊂ H be nonempty, closed, and convex.
Suppose a directed graph G with V (G) = C has Property G, and it is transitive with
E(G) = E(G–1) is convex. Let A : C → H be a G-α-inverse strongly monotone operator
with A–1(0) �= ∅. Let {Ti}N

i=1 : C → C be a G-nonexpansive mapping with
⋂N

i=1 F(Ti) the
dominating set. Let αk = (αk

1 ,αk
2 ,αk

3), where αk
1 ,αk

2 ,αk
3 ∈ [0, 1] with αk

1 + αk
2 + αk

3 = 1 for
all k = 1, 2, . . . , N and αk

1 ∈ (0, 1) for all k = 1, 2, . . . , N – 1 and αN
1 ∈ (0, 1], αk

2 ,αk
3 ∈ [0, 1]

for all k = 1, 2, . . . , N . Let S : C → C be a G-S-mapping generated by T1, T2, . . . , TN and
α1,α2, . . . ,αN . Assume that

� =
N⋂

i=1

F(Ti) ∩ G-VI(C, A) �= ∅

with
⋂N

i=1 F(Ti)×⋂N
i=1 F(Ti) ⊆ E(G) and G-VI(C, A)×G-VI(C, A) ⊆ E(G), and there exists

x0 ∈ C such that (x0, T1x0) ∈ E(G). Let {xn} be a sequence generated by x0 = u ∈ C and

xn+1 = PC(I – λA)
(
βnu + (1 – βn)Sxn

)
, n ≥ 0, (7)

where {βn} ⊆ [0, 1] and λ ∈ (0, 2α).
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If the following conditions hold:
(i) limn→∞ βn = 0 and

∑∞
n=1 βn = ∞;

(ii)
∑∞

n=1 |βn+1 – βn| < ∞;
(iii) (Tix, Ti+1x) ∈ E(G) for all i = 1, 2, . . . , N – 1 and x ∈ C,

then, {xn} converges strongly to P�x0, where P� is a metric projection on �, P�x0 is domi-
nated by {xn}, P�x0 is dominated by x0, and {xn} dominates x0.

Proof First, we show that

∥∥PC(I – λA)x – PC(I – λA)y
∥∥ ≤ ‖x – y‖, (8)

for all x, y ∈ C with (x, y) ∈ E(G). Indeed, letting x, y ∈ C with (x, y) ∈ E(G), we have

∥∥PC(I – λA)x – PC(I – λA)y
∥∥2 ≤ ∥∥x – y – λ(Ax – Ay)

∥∥2

= ‖x – y‖2 – 2λ〈x – y, Ax – Ay〉
+ λ2‖Ax – Ay‖2

≤ ‖x – y‖2 – λ(2α – λ)‖Ax – Ay‖2

≤ ‖x – y‖2. (9)

From Lemmas 2.8 and 2.9, we have G-VI(C, A) is closed and convex. From Lemmas 2.11
and 2.12, we have F(S) =

⋂N
i=1 F(Ti) is closed and convex. Then, � is closed and convex.

Moreover, from
⋂N

i=1 F(Ti) �= ∅ and Lemma 2.11, we have
⋂N

i=1 F(Ti) = F(S) and S is a G-
nonexpansive mapping.

Next, we will show that (xn, xn+1) ∈ E(G) for all n ≥ 0.
Put x∗ = P�x0. Since x∗ is dominated by {xn}, we have (xn, x∗) ∈ E(G) for all n ≥ 0.
Since x∗ is dominated by {x0}, we have (x0, x∗) ∈ E(G).
Since {xn} dominates x0, we have (xn, x0) ∈ E(G) for all n ≥ 0.
Since E(G) = E(G–1) and (xn, x0) ∈ E(G), then (x0, xn) ∈ E(G) for all n ≥ 0.
By the transitivity of E(G) and since (xn, x∗), (x∗, x0), (x0, xn+1) are in E(G), then

(xn, xn+1) ∈ E(G) for all n ≥ 0.
Putting yn = βnu + (1 – βn)Sxn for all n ≥ 0, it follows that xn+1 = PC(I – λA)yn for all

n ≥ 0.
We now claim that (x0, Sxn), (xn, Sxn), and (xn, yn) are in E(G) for all n ≥ 0.
Since E(G) = E(G–1) and (x0, x∗) ∈ E(G), we have (x∗, x0) ∈ E(G).
We now prove this result by using mathematical induction. By continuing in the same

direction as in Theorem 3.1 [3], we have (x0, Sx0) ∈ E(G).
Since (x0, x0), (x0, Sx0) ∈ E(G), and E(G) is convex, we have (x0, y0) ∈ E(G).
Since S is G-nonexpansive and (x0, x1) ∈ E(G), we obtain (Sx0, Sx1) ∈ E(G).
By the transitivity of E(G) and since (x0, Sx0), (Sx0, Sx1) are in E(G), we obtain (x0, Sx1) ∈

E(G).
As E(G) is convex and (x0, x0), (x0, Sx1) are in E(G), we have (x0, y1) ∈ E(G).
By the transitivity of E(G) and since (x1, x0), (x0, Sx1) are in E(G), we have (x1, Sx1) ∈ E(G).
By the transitivity of E(G) and since (x1, x0), (x0, y1) are in E(G), we have (x1, y1) ∈ E(G).
Suppose that (x0, Sxk) ∈ E(G) for all k ≥ 0. Since (x0, x0), (x0, Sxk) ∈ E(G) and E(G) is

convex, we have (x0, yk) ∈ E(G) for all k ≥ 0.
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Since S is G-nonexpansive and (xk , xk+1) ∈ E(G) for all k ≥ 0, we obtain (Sxk , Sxk+1) ∈
E(G) for all k ≥ 0.

By the transitivity of E(G) and since (x0, Sxk), (Sxk , Sxk+1) are in E(G) for all k ≥ 0, we
obtain (x0, Sxk+1) ∈ E(G) for all k ≥ 0.

As E(G) is convex and (x0, x0), (x0, Sxk+1) are in E(G) for all k ≥ 0, we have (x0, yk+1) ∈
E(G) for all k ≥ 0.

By the transitivity of E(G) and since (xk+1, x0), (x0, yk+1) are in E(G) for all k ≥ 0, we have
(xk+1, yk+1) ∈ E(G) for all k ≥ 0.

By the transitivity of E(G) and since (xk+1, x0), (x0, Sxk+1) are in E(G) for all k ≥ 0, we
have (xk+1, Sxk+1) ∈ E(G) for all k ≥ 0.

From induction, we obtain that (x0, Sxn), (xn, Sxn), and (xn, yn), are in E(G) for all n ≥
0. Moreover, By the transitivity of E(G) and since (x∗, x0), (x0, yn) are in E(G), we have
(x∗, yn) ∈ E(G) for all n ≥ 0.

From Lemma 2.8, we obtain G-VI(C, A) = A–1(0). Then, x∗ ∈ A–1(0). Since Ax∗ = 0, we
have

∥∥PC(I – λA)yn – x∗∥∥2 ≤ ∥∥yn – x∗ – λAyn
∥∥2

=
∥
∥yn – x∗∥∥2 – 2λ

〈
yn – x∗, Ayn – Ax∗〉 + λ2‖Ayn‖2

≤ ∥
∥yn – x∗∥∥2 – 2λ

∥
∥Ayn – Ax∗∥∥2 + λ2‖Ayn‖2

=
∥
∥yn – x∗∥∥2 – λ(2α – λ)‖Ayn‖2

≤ ∥
∥yn – x∗∥∥2. (10)

From the definition of xn, (10), and since S is a G-nonexpansive mapping, we have

∥∥xn+1 – x∗∥∥ ≤ ∥∥yn – x∗∥∥

≤ ∥∥βnu + (1 – βn)Sxn – x∗∥∥

≤ αn
∥
∥u – x∗∥∥ + (1 – βn)

∥
∥Sxn – x∗∥∥

≤ αn
∥
∥u – x∗∥∥ + (1 – βn)

∥
∥xn – x∗∥∥

≤ max
{∥∥u – x∗∥∥,

∥∥x1 – x∗∥∥}
. (11)

By using mathematical induction, we conclude that the sequences {xn}, {PC(I – λA)yn},
and {Sxn} are all bounded.

From the definition of xn and (9), we have

‖xn+1 – xn‖ ≤ ∥
∥PC(I – λA)yn – PC(I – λA)yn–1

∥
∥

≤ ‖yn – yn–1‖
≤ ∥∥βnu + (1 – βn)Sxn – αn–1u – (1 – αn–1)Sxn–1

∥∥

≤ |βn – αn–1|‖u‖ + (1 – βn)‖Sxn – Sxn–1‖ + |βn – αn–1|‖Sxn–1‖
≤ (1 – βn)‖xn – xn–1‖ + 2M|βn – αn–1|,
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where M = maxn∈N{‖u‖,‖Sxn‖}. Applying Lemma 2.3, and conditions (i) and (ii), we have

lim
n→∞‖xn+1 – xn‖ = 0. (12)

Since xn+1 = PC(I – λA)yn, then we also have

lim
n→∞

∥
∥PC(I – λA)yn – xn

∥
∥ = 0. (13)

By the nonexpansiveness of PC , we obtain

∥
∥xn+1 – x∗∥∥2 =

∥
∥PC(I – λA)yn – PC(I – λA)x∗∥∥2

≤ ∥
∥(I – λA)yn – (I – λA)x∗∥∥2

=
∥
∥yn – x∗ – λ

(
Ayn – Ax∗)∥∥2

=
∥
∥yn – x∗∥∥2 – 2λ

〈
yn – x∗, Ayn – Ax∗〉 + λ2∥∥Ayn – Ax∗∥∥2. (14)

From the definition of yn and since S is G-nonexpansive, we have

∥
∥yn – x∗∥∥2 ≤ βn

∥
∥u – x∗∥∥2 + (1 – βn)

∥
∥Sxn – x∗∥∥2

≤ βn
∥
∥u – x∗∥∥2 + (1 – βn)

∥
∥xn – x∗∥∥2

≤ βn
∥∥u – x∗∥∥2 +

∥∥xn – x∗∥∥2. (15)

From (14) and (15), we obtain

∥
∥xn+1 – x∗∥∥2 ≤ βn

∥
∥u – x∗∥∥2 +

∥
∥xn – x∗∥∥2 – 2λ

〈
yn – x∗, Ayn – Ax∗〉

+ λ2∥∥Ayn – Ax∗∥∥2

≤ βn
∥∥u – x∗∥∥2 +

∥∥xn – x∗∥∥2 – 2λα
∥∥Ayn – Ax∗∥∥2

+ λ2∥∥Ayn – Ax∗∥∥2

≤ βn
∥∥u – x∗∥∥2 +

∥∥xn – x∗∥∥2 – λ(2α – λ)
∥∥Ayn – Ax∗∥∥2.

It follows that

λ(2α – λ)
∥∥Ayn – Ax∗∥∥2 ≤ βn

∥∥u – x∗∥∥2 +
∥∥xn – x∗∥∥2 –

∥∥xn+1 – x∗∥∥2

≤ βn
∥∥u – x∗∥∥2 +

(∥∥xn – x∗∥∥ +
∥∥xn+1 – x∗∥∥)‖xn+1 – xn‖.

From the condition (i) and (12), we obtain

lim
n→∞

∥∥Ayn – Ax∗∥∥ = 0. (16)

From the definition of PC(I – λA), we have

∥∥PC(I – λA)yn – x∗∥∥2 ≤ ∥∥PC(I – λA)yn – PC(I – λA)x∗∥∥2
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≤ 〈
(I – λA)yn – (I – λA)x∗, PC(I – λA)yn – x∗〉

=
1
2
[∥∥(I – λA)yn – (I – λA)x∗∥∥2 +

∥∥PC(I – λA)yn – x∗∥∥2

–
∥∥(I – λA)yn – (I – λA)x∗ –

(
PC(I – λA)yn – x∗)∥∥2]

≤ 1
2
[∥∥yn – x∗∥∥2 +

∥
∥PC(I – λA)yn – x∗∥∥2

–
∥∥yn – PC(I – λA)yn – λ

(
Ayn – Ax∗)∥∥2]

≤ 1
2
[
βn

∥
∥u – x∗∥∥2 +

∥
∥xn – x∗∥∥2 +

∥
∥PC(I – λA)yn – x∗∥∥2

–
∥∥yn – PC(I – λA)yn

∥∥2 – λ2∥∥Ayn – Ax∗∥∥2

+ 2λ
〈
yn – PC(I – λA)yn, Ayn – Ax∗〉]

≤ 1
2
[
βn

∥
∥u – x∗∥∥2 +

∥
∥xn – x∗∥∥2 +

∥
∥PC(I – λA)yn – x∗∥∥2

–
∥∥yn – PC(I – λA)yn

∥∥2 – λ2∥∥Ayn – Ax∗∥∥2

+ 2λ
∥
∥yn – PC(I – λA)yn

∥
∥
∥
∥Ayn – Ax∗∥∥]

.

It follows that

∥∥xn+1 – x∗∥∥2 =
∥∥PC(I – λA)yn – x∗∥∥2

≤ βn
∥∥u – x∗∥∥2 +

∥∥xn – x∗∥∥2 –
∥∥yn – PC(I – λA)yn

∥∥2

– λ2∥∥Ayn – Ax∗∥∥2 + 2λ
∥
∥yn – PC(I – λA)yn

∥
∥
∥
∥Ayn – Ax∗∥∥. (17)

From (17), we have

∥∥yn – PC(I – λA)yn
∥∥2 ≤ βn

∥∥u – x∗∥∥2 +
(‖xn – z‖ + ‖xn+1 – z‖)‖xn+1 – xn‖

+ 2λ
∥
∥yn – PC(I – λA)yn

∥
∥
∥
∥Ayn – Ax∗∥∥. (18)

From the condition (i) and (12), (16), and (18), we have

lim
n→∞

∥∥PC(I – λA)yn – yn
∥∥ = 0. (19)

Since

‖yn – xn‖ ≤ ∥∥yn – PC(I – λA)yn
∥∥ +

∥∥PC(I – λA)yn – xn
∥∥,

from (13) and (19), we have

lim
n→∞‖yn – xn‖ = 0. (20)

From the definition of yn, condition (i), and (20), we obtain

lim
n→∞‖xn – Sxn‖ = 0. (21)
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Since {xn} is bounded in a Hilbert space H and C has the property G, without loss of
generality, we may assume that there is a subsequence {xnk } of {xn} with {xnk } ⇀ ω for
some ω ∈ C and (xnk ,ω) ∈ E(G). Since limn→∞ ‖yn – xn‖ = 0, then we obtain ynk → ω as
k → ∞. By Lemma 2.12 and (21), we obtain ω ∈ F(S). This implies that

ω ∈
N⋂

i=1

F(Ti). (22)

By the transitivity of E(G) and (ynk , xnk ), (xnk ,ω) being in E(G), we obtain (ynk ,ω) ∈ E(G)
for all k ∈N. Assume that ω �= PC(I –λA)ω. From Opial’s condition, (9), (19), and (ynk ,ω) ∈
E(G), we obtain

lim inf
k→∞

‖ynk – ω‖ < lim inf
k→∞

∥
∥ynk – PC(I – λA)ω

∥
∥

≤ lim inf
k→∞

(∥∥ynk – PC(I – λA)ynk

∥∥ +
∥∥PC(I – λA)ynk – PC(I – λA)ω

∥∥)

≤ lim inf
k→∞

‖ynk – ω‖.

This is a contradiction. Then, ω ∈ F(PC(I – λA)). Therefore, from Lemma 2.8, we have

w ∈ G-VI(C, A). (23)

From (22) and (23), we can conclude that ω ∈ �.
Since xnk ⇀ ω and ω ∈ �, we have

lim sup
n→∞

〈
xn – x∗, x0 – x∗〉 = lim

k→∞
〈
xnk – x∗, x0 – x∗〉 =

〈
ω – x∗, x0 – x∗〉 ≤ 0, (24)

where x∗ = P�x0. From the definition of xn and (10), we have

∥
∥xn+1 – x∗∥∥2 =

∥
∥PC(I – λA)yn – PC(I – λA)x∗∥∥2

≤ ∥∥yn – x∗∥∥2

≤ (1 – βn)
∥∥xn – x∗∥∥2 + 2βn

〈
xn+1 – x∗, x0 – x∗〉.

Applying Lemma 2.3, (24), and the condition (i), we can conclude that the sequence {xn}
converges strongly to x∗ = P�x0. This completes the proof. �

In our main results, if we choose N = 1 and αN
1 = 1, then we obtain the following result.

Corollary 3.2 Let C have the Property G and G be transitive with E(G) = E(G–1). Let A :
C → H be a G-α-inverse strongly monotone operator with A–1(0) �= ∅. Let T : C → C be a
G-nonexpansive mapping. Assume that

� = F(T) ∩ G-VI(C, A) �= ∅
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with F(T) × F(T) ⊆ E(G) and G-VI(C, A) × G-VI(C, A) ⊆ E(G), and there exists x0 ∈ C
such that (x0, Tx0) ∈ E(G). Let {xn} be a sequence generated by x0 = u ∈ C and

⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈ C,

yn = βnu + (1 – βn)Txn

xn+1 = PC(I – λA)yn, n ≥ 0,

(25)

where {βn} ⊆ [0, 1] and λ ∈ (0, 2α).
If the following conditions hold:
(i) limn→∞ βn = 0 and

∑∞
n=1 βn = ∞;

(ii)
∑∞

n=1 |βn+1 – βn| < ∞,
then, {xn} converges strongly to P�x0, where P� is a metric projection on �, P�x0 is domi-
nated by {xn}, P�x0 is dominated by x0, and {xn} dominates x0.

Taking A = 0 and PC = I in Theorem 3.1, then we obtain the following result.

Corollary 3.3 Let C have the Property G and G be transitive with E(G) = E(G–1). Let
{Ti}N

i=1 : C → C be a G-nonexpansive mapping with
⋂N

i=1 F(Ti) the dominating set. Let
αk = (αk

1 ,αk
2 ,αk

3), where αk
1 ,αk

2 ,αk
3 ∈ [0, 1] with αk

1 + αk
2 + αk

3 = 1 for all k = 1, 2, . . . , N and
αk

1 ∈ (0, 1) for all k = 1, 2, . . . , N – 1 and αN
1 ∈ (0, 1], αk

2 ,αk
3 ∈ [0, 1] for all k = 1, 2, . . . , N . Let

S : C → C be a G-S-mapping generated by T1, T2, . . . , TN and α1,α2, . . . ,βn. Assume that

� =
N⋂

i=1

F(Ti) ∩ G-VI(C, A) �= ∅

with
⋂N

i=1 F(Ti) × ⋂N
i=1 F(Ti) ⊆ E(G), and there exists x0 ∈ C such that (x0, T1x0). Let {xn}

be a sequence generated by x0 = u ∈ C and

⎧
⎨

⎩
x0 ∈ C,

xn+1 = βnu + (1 – βn)Sxn, n ≥ 0,
(26)

where {βn} ⊆ [0, 1].
If the following conditions hold:

(i) limn→∞ βn = 0 and
∑∞

n=1 βn = ∞;
(ii)

∑∞
n=1 |βn+1 – βn| < ∞;

(iii) (Tix, Ti+1x) ∈ E(G) for all i = 1, 2, . . . , N – 1 and x ∈ C,
then, {xn} converges strongly to P�x0, where P� is a metric projection on �, P�x0 is domi-
nated by {xn}, P�x0 is dominated by x0, and {xn} dominates x0.

Taking A = 0, PC = I , N = 1, and αN
1 = 1 in Theorem 3.1, then we obtain the following

result.

Corollary 3.4 Let C have the Property G and G be transitive with E(G) = E(G–1). Let T :
C → C be a G-nonexpansive mapping. Assume that F(T) �= ∅ with F(T) × F(T) ⊆ E(G),
and there exists x0 ∈ C such that (x0, Tx0). Let {xn} be a sequence generated by x0 = u ∈ C
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and
⎧
⎨

⎩
x0 ∈ C,

xn+1 = βnu + (1 – βn)Txn, n ≥ 0,
(27)

where {βn} ⊆ [0, 1].
If the following conditions hold:
(i) limn→∞ βn = 0 and

∑∞
n=1 βn = ∞;

(ii)
∑∞

n=1 |βn+1 – βn| < ∞,
then, {xn} converges strongly to PF(T)x0, where PF(T) is a metric projection on F(T), PF(T)x0

is dominated by {xn}, PF(T)x0 is dominated by x0, and {xn} dominates x0.

Remark 1 We have the following consequences of Theorem 3.1:
1. The results of Kangtunyakarn [3] is a special case of Theorem 3.1 by taking A = 0

and PC = I .
2. The results of Tiammee et al. [2] is a special case of Theorem 3.1 by taking A = 0,

PC = I , N = 1, and αN
1 = 1.

4 Examples and numerical results
In this section, we provide some numerical examples to support our obtained result. To
obtain these results, we recall some lemmas as follows.

Lemma 4.1 [14] Let G = (V (G), E(G)) be a directed graph with V (G) = C dominating z for
all z ∈ C. Let E(G) be convex and G be a transitive with E(G) = E(G–1). Let S : C → C be a
G-nonexpansive mapping with F(S) �= ∅ and F(S) × F(S) ⊆ E(G). Then,

(i) I – S is G- 1
2 -inverse strongly monotone;

(ii) G-VI(C, I – S) = F(S).

We now provide an example to support our main result.

Example 4.2 Let H = R and C = [0, 1.5] with the usual norm ‖x – y‖ = |x – y| and let G =
(V (G), E(G)) be a directed graph such that V (G) = C, E(G) = {(x, y) : x, y ∈ [0, 1] with |x –
y| < 1}. For every i = 1, 2, . . . , N , define the mapping Ti : [0, 1.5] → [0, 1.5] by

Tix =

⎧
⎨

⎩

x
2i + (1 – 1

2i ) 1
2 if x ∈ [0, 1],

0 if x ∈ (1, 1.5].
(28)

Let S : [0, 1.5] → [0, 1.5] be a G-S-mapping generated by T1, T2, . . . , TN and α1,α2, . . . ,αn,
where

αi =
(

1
5i ,

5i – 1
5i

(
6i – 1

6i

)
,

5i – 1
5i

(
1
6i

))

for all i = 1, 2, . . . , N and let A : [0, 1.5] →R be a mapping defined by

Ax = x –
x2

4
–

7
16

, (29)

for all x ∈ [0, 1.5].
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Suppose that the sequence {xn} is generated by u = x0 = 1
6 and

xn+1 = P[0,1.5]

(
I –

1
6

A
)(

βnu + (1 – βn)Sxn
)
, (30)

where βn = 1
2n+2 for all n ≥ 0.

Then, the sequence {xn} converges strongly to P⋂N
i=1 F(Ti)∩G-VI(C,A)x0 = { 1

2 }.
Solution. It is clear that A–1(0) �= ∅, since 1

2 ∈ A–1(0) and E(G) = E(G–1). Let x, y ∈ [0, 1.5]
with (x, y) ∈ E(G). It is easy to check that Ti is a G-nonexpansive mapping for all i =
1, 2, . . . , N such that

⋂N
i=1 F(Ti) = { 1

2 }. However, it is not nonexpansive, as |x–y| < |Tix–Tiy|
for all i = 1, 2, . . . , N , where x = 1, y = 1.1. Let v ∈ V (G) –

⋂N
i=1 F(Ti). Since 1

2 ∈ ⋂N
i=1 F(Ti),

we have | 1
2 – v| < 1. It follows that

⋂N
i=1 F(Ti) is the dominating set. Let x ∈ V (G) = [1, 1.5] =

[0, 1] ∪ (1, 1.5]. Then,
Case x ∈ [0, 1]. Then,

Tix =
x
2i +

(
1 –

1
2i

)
1
2

and Ti+1x =
x

2i+1 +
(

1 –
1

2i+1

)
1
2

,

for all i = 1, 2, . . . , N – 1. Since [0, 1] is convex, we have Tix, Ti+1x ∈ [0, 1] for all i =
1, 2, . . . , N – 1. Observe that

|Ti+1x – Tix| =
1

2i+1

∣∣
∣∣
1
2

– x
∣∣
∣∣ ≤ 1.

Then, (Ti+1x, Tix) ∈ E(G) for all i = 1, 2, . . . , N – 1.
Case x ∈ (1, 1.5]. It is obvious that |Tix – Ti+1x| < 1. Then, (Tix, Ti+1x) ∈ E(G) for all i =

1, 2, . . . , N – 1.
It is easy to check that T is a G-nonexpansive mapping, where T x = x2

4 + 7
16 for all x ∈

[0, 1].
Since Ax = x – x2

4 – 7
16 = (I – T )x for all x ∈ [0, 1], T is a G-nonexpansive mapping

and from Lemma 4.1, we have A is G- 1
2 -inverse strongly monotone. Then,

⋂N
i=1 F(Ti) ∩

G-VI(C, A) = { 1
2 }.

For every z ∈ [0, 1], we have

(
I –

1
6

A
)

z = z –
1
6

Az

= z –
1
6

(
z –

z2

4
–

7
16

)

=
5z
6

+
1
6

(
z2

4
+

7
16

)

=
5z
6

+
1
6

(
z2

4
+

3
4

· 28
48

)
∈ [0, 1].

From the definition of PC , we have

P[0,1.5]

(
I –

1
6

A
)

z ∈ [0, 1], (31)

for all z ∈ [0, 1].



Khuangsatung et al. Journal of Inequalities and Applications         (2024) 2024:15 Page 15 of 25

Putting x0 = 1
6 and yn = βnu + (1 – βn)Sxn for all n ≥ 0, from (31), we have P[0,1.5](I –

1
4 A)x0 ∈ [0, 1]. This implies that T1x0 ∈ [0, 1] and |x0 – T1x0| < 1. This implies that
(x0, T1x0) ∈ E(G).

From the definition of S and x0 = 1
6 , we have Sx0 ∈ [0, 1]. It follows that (x0, Sx0) ∈ E(G).

From x0, Sx0 ∈ [0, 1] and the definition of yn, we have y0 ∈ [0, 1] for all n ≥ 0.
From (31) and y0 ∈ [0, 1], we have P[0,1.5](I – 1

6 A)y0 ∈ [0, 1]. This implies that x1 ∈ [0, 1].
Continuing in this way, we have xn ∈ [0, 1] for all n ≥ 0.
Since P⋂N

i=1 F(Ti)∩G-VI(C,A)x0 = { 1
2 } and xn ∈ [0, 1] for all n ≥ 0, we have |xn – 1

2 | < 1. This
implies that (xn, P⋂N

i=1 F(Ti)∩G-VI(C,A)x0) ∈ E(G). Then, P⋂N
i=1 F(Ti)∩G-VI(C,A)x0 is dominated by

{xn}.
It is obvious that {xn} dominates x0 and also P⋂N

i=1 F(Ti)∩G-VI(C,A)x0 is dominated by x0,
where x0 = 1

6 . From Theorem 3.1, we have the sequence {xn} converging strongly to
P⋂N

i=1 F(Ti)∩G-VI(C,A)x0 = { 1
2 }.

We first start with the initial point x0 = 1
6 . Our testing procedure takes |xn+1 – xn| ≤

1E – 12 as the stopping condition. Now, a convergence of the algorithm (30) is shown in
Table 1 and visualized in Figs. 1 and 2.

Next, a comparison of algorithm (30) and algorithm (5) of [14] is provided, focusing on
CPU time and the number of iterations for different initial points, as detailed in Table 2.
Moreover, Our testing procedure takes |xn+1 – xn| ≤ 1E – 6 as the stopping condition.

Remark 2 By observing the convergence behavior of Algorithm (30) in Example 4.2, we
conclude that

1. Table 1 and Figs. 1 and 2 show that {xn} converges to a solution, i.e., xn → 1/2 ∈ �.
The convergence of {xn} of Example 4.2 can be guaranteed by Theorem 3.1.

2. The values of the sequence {xn} with respect to n are also plotted in Fig. 1,
demonstrating that (xn, x0), (xn+1, xn) ∈ E(G).

Table 1 Convergence of the algorithm (30) in Example 4.2

n xn xn+1 |xn – xn+1|
0 0.166666666667 0.234169560185 0.067502893519
1 0.234169560185 0.279645516164 0.045475955979
2 0.279645516164 0.313633206903 0.033987690739
3 0.313633206903 0.340160992255 0.026527785352
4 0.340160992255 0.361372598770 0.021211606515
5 0.361372598770 0.378608112538 0.017235513769
...

...
...

...
396 0.498263926837 0.498268307737 0.000004380900
397 0.498268307737 0.498272666581 0.000004358844
398 0.498272666581 0.498277003536 0.000004336955
399 0.498277003536 0.498281318767 0.000004315230
400 0.498281318767 0.498285612435 0.000004293668
...

...
...

...
828,361 0.499999171527 0.499999171528 0.000000000001
828,362 0.499999171528 0.499999171529 0.000000000001
828,363 0.499999171529 0.499999171530 0.000000000001
828,364 0.499999171530 0.499999171531 0.000000000001
828,365 0.499999171531 0.499999171532 0.000000000001
828,366 0.499999171532 0.499999171533 0.000000000001
828,367 0.499999171533 0.499999171533 0.000000000000
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Figure 1 Visualization of the first one hundred rounds of algorithm (30) in Example 4.2

Figure 2 Visualization of the error |xn – xn+1| of algorithm (30) in Example 4.2

Table 2 Numerical values of algorithm (30) and algorithm (5) of [14]

Starting point Algorithm (30) Algorithm (5) of [14]

x0 = 1/6 No. of Iter. 781 1143
CPU Time (s) 6.662671 9.472705

x0 = 1/8 No. of Iter. 895 1294
CPU Time (s) 7.451446 11.2578180

x0 = 3/4 No. of Iter. 297 601
CPU Time (s) 2.443946 5.194785

3. For every i = 1, 2, . . . , N , Ti are G-nonexpansive mappings but not nonexpansive.
4. From Table 2, we see that the sequence generated by our algorithm (30) has better

convergence than algorithm (5) of [14] in terms of the number of iterations and the
CPU time.

Next, we give an example in the infinite-dimensional space l2 to support some results as
follows.

Example 4.3 Let C := {x = (x1, x2, x3, . . .) ∈ l2 : ‖x‖l2 ≤ 1 and xi ∈ [0, 1] for i = 1, 2, 3, . . .}
with the norm ‖x‖l2 = (

∑∞
i=1 |xi|2)1/2 and the inner product 〈x, y〉 =

∑∞
i=1 xiyi for y =
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Table 3 Convergence of the algorithm (33) in Example 4.3

n xn ‖xn+1 – xn‖l2
0 (0.1666666667, 0.1250000000, 0, 0, 0, . . . ) –
1 (0.0520833333, 0.0356445312, 0, 0, 0, . . . ) 0.145305678049104
2 (0.0289080584, 0.0212303748, 0, 0, 0, . . . ) 0.027292146725652
3 (0.0211989415, 0.0157728954, 0, 0, 0, . . . ) 0.009445346214247
4 (0.0168688945, 0.0125839647, 0, 0, 0, . . . ) 0.005377600440776
5 (0.0140193120, 0.0104711016, 0, 0, 0, . . . ) 0.003547437162869
6 (0.0119960131, 0.0089667510, 0, 0, 0, . . . ) 0.002521271327788
7 (0.0104841218, 0.0078407665, 0, 0, 0, . . . ) 0.001885114422034
8 (0.0093111644, 0.0069662178, 0, 0, 0, . . . ) 0.001463101033630
9 (0.0083745148, 0.0062672882, 0, 0, 0, . . . ) 0.001168680937519
10 (0.0076092299, 0.0056958782, 0, 0, 0, . . . ) 0.000955076040639
...

...
...

10,198 (0.0000081708, 0.0000061281, 0, 0, 0, . . . ) 0.000000001001519
10,199 (0.0000081700, 0.0000061275, 0, 0, 0, . . . ) 0.000000001001323
10,200 (0.0000081692, 0.0000061269, 0, 0, 0, . . . ) 0.000000001001126
10,201 (0.0000081684, 0.0000061263, 0, 0, 0, . . . ) 0.000000001000930
10,202 (0.0000081676, 0.0000061257, 0, 0, 0, . . . ) 0.000000001000734
10,203 (0.0000081668, 0.0000061251, 0, 0, 0, . . . ) 0.000000001000538
10,204 (0.0000081660, 0.0000061245, 0, 0, 0, . . . ) 0.000000001000342
10,205 (0.0000081652, 0.0000061239, 0, 0, 0, . . . ) 0.000000001000145
10,206 (0.0000081644, 0.0000061233, 0, 0, 0, . . . ) 0.000000000999950

(y1, y2, y3, . . .) ∈ l2 : ‖y‖l2 ≤ 1 and yi ∈ [0, 1]. Let G = (V (G), E(G)) be such that V (G) = C,
E(G) = {(x, y) : xi, yi ∈ [0, 1

3 ] with ‖x – y‖l2 ≤ 1
5 for i = 1, 2, 3, . . .}. Define the mapping T :

C → C by

Tx =
(

1
2

x2
1,

3
8

x2
2, 0, 0, 0, . . .

)
, ∀x ∈ C. (32)

Suppose that the sequence {xn} is generated by u = x0 = ( 1
6 , 1

8 , 0, 0, 0, . . .) and

xn+1 = βnu + (1 – βn)Txn, (33)

where βn = 1
2n+2 for all n ≥ 0. Then, the sequence {xn} converges strongly to PF(T)x0.

Solution. We can easily show that T is a G-nonexpansive mapping with F(T) = {0},
where 0 = (0, 0, 0, 0, 0, . . .) is the null vector on l2. From the definition of T and u = x0 =
( 1

6 , 1
8 , 0, 0, 0, . . .), we have (x0, Tx0) ∈ E(G). Since PF(T)x0 = {0} and the definition of xn, we

have ‖xn – 0‖l2 ≤ 1
5 . It follows that (xn, PF(T)x0) ∈ E(G). Then, PF(T)x0 is dominated by {xn}.

It is obvious that {xn} dominates x0 and also PF(T)x0 is dominated by {x0}. From Corol-
lary 3.4, we have the sequence {xn} converging strongly to PF(T)x0 = {0}. We first start
with the initial point x0 = ( 1

6 , 1
8 , 0, 0, 0, . . .). The stopping criterion for our testing method

is taken as ‖xn+1 – xn‖l2 ≤ 1E – 9. Now, a convergence of the algorithm (33) is shown in
Table 3 and visualized in Fig. 3.

Remark 3 By observing the convergence behavior of Algorithm (30) in Example 4.3, we
conclude that it converges to a solution, i.e., xn → 0 ∈ F(T).

Next, we provide a numerical example to support our results in a two-dimensional space.

Example 4.4 Let H = R
2 and C = [–2, 2] × [–2, 2]. Let G = (V (G), E(G)) be a directed

graph, where V (G) = C and E(G) = {(x, y) = ((x1, x2), (y1, y2)) : x, y ∈ [–1, 1] × [–1, 1]}. Let
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Figure 3 Visualization of the convergence and error ‖xn+1 – xn‖l2 of algorithm (33) in Example 4.3

PC : H → C be a metric projection defined by

PC(z1, z2) =
(
max

{
min{z1, 2}, –2

}
, max

{
min{z2, 2}, –2

})
, (34)

for all z = (z1, z2) ∈ H .
For every i = 1, 2, . . . , N , let Ti : C → C be mappings defined by

Ti(x1, x2) =
(

x1

3i +
(

1 –
1
3i

)
1
2

,
x2

2i+1 +
(

1 –
1

2i+1

)
1
4

)
, (35)

for all x1, x2 ∈ C.
Let S : C → C be a G-S-mapping generated by T1, T2, . . . , TN and α1,α2, . . . ,αn, where

αi =
(

1
5i ,

5i – 1
5i

(
6i – 1

6i

)
,

5i – 1
5i

(
1
6i

))
,

for all i = 1, 2, . . . , N
and let A : C → H be a mapping defined by

A(x1, x2) =
(

x1 –
x3

1
4

–
15
32

,
x2

5
–

1
20

)
, (36)

for all (x1, x2) ∈ C.
Suppose that the sequence {xn} is generated by u = x0 = (x0

1, x0
2) = (1, 0) and

xn+1 = PC

(
I –

1
2

A
)

(
βnu + (1 – βn)Sxn), (37)

where βn = 1
2n+4 for all n ≥ 0.

Then, the sequence {xn} converges strongly to P⋂N
i=1 F(Ti)∩G-VI(C,A)x

0 = {( 1
2 , 1

4 )}.
Solution. It is clear that A–1(0, 0) �= ∅, since ( 1

2 , 1
4 ) ∈ A–1(0, 0) and E(G) = E(G–1). Let x, y ∈

C with (x, y) ∈ E(G), where x = (x1, x2) and y = (y1, y2). Then, we have x, y ∈ [–1, 1]×[–1, 1].
It is easy to verify that Ti are G-nonexpansive mappings for all i = 1, 2, . . . , N such that
⋂N

i=1 F(Ti) = {( 1
2 , 1

4 )}.
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From the definition of the mapping A, it is obvious that A is G- 1
2 -inverse strongly mono-

tone and G-VI(C, A) = {( 1
2 , 1

4 )}. Therefore,
⋂N

i=1 F(Ti) ∩ G-VI(C, A) = {( 1
2 , 1

4 )}.
From the definition of Ti and x ∈ [–1, 1] × [–1, 1], we have

Tix =
(

x1

3i +
(

1 –
1
3i

)
1
2

,
x2

2i+1 +
(

1 –
1

2i+1

)
1
4

)

and

Ti+1x =
(

x1

3i+1 +
(

1 –
1

3i+1

)
1
2

,
x2

2i+2 +
(

1 –
1

2i+2

)
1
4

)
,

for all i = 1, 2, . . . , N – 1. Since [–1, 1] is convex, we have Tix, Ti+1x ∈ [–1, 1] × [–1, 1] for all
i = 1, 2, . . . , N – 1. Then, (Ti+1x, Tix) ∈ E(G) for all i = 1, 2, . . . , N – 1.

Putting u = x0 = (0, 1) ∈ [–1, 1] × [–1, 1] and the definition of T1, we obtain T1x0 ∈
[–1, 1] × [–1, 1]. This implies that (x0, T1x0) ∈ E(G). From the definition of S, we have,
Sx0 ∈ [–1, 1] × [–1, 1].

Since u = x0 = (1, 0), Sx0 = (1, 0), βn = 1
2n+4 for all n ≥ 0, we have

(
β0u + (1 – β0)Sx0) = (1, 0)

and it follows that

(
I –

1
2

A
)(

β0u + (1 – β0)Sx0) = (0.859375, 0.025000). (38)

From (34) and (38), we have

x1 =
(
x1

1, x2
1
)

= PC

(
I –

1
2

A
)

(
β0u + (1 – β0)Sx0) = (0.859375, 0.025000). (39)

It follows from (39) that x1 ∈ [–1, 1] × [–1, 1].
Since u = (1, 0), Sx1 = (0.8114583, 0.0587500), βn = 1

2n+4 for all n ≥ 0, we have

(
β1u + (1 – β1)Sx1) = (0.8428819, 0.0489583)

and it follows that

(
I –

1
2

A
)(

β1u + (1 – β1)Sx1) = (0.7306692, 0.0690625). (40)

From (34) and (40), we have

x2 =
(
x2

1, x2
2
)

= PC

(
I –

1
2

A
)(

β1u + (1 – β1)Sx1) = (0.7306692, 0.0690625). (41)

It follows from (41) that x2 ∈ [–1, 1] × [–1, 1].
Continuing in this way, we have xn = (xn

1, xn
2) ∈ [–1, 1] × [–1, 1] for all n ≥ 0. This implies

that (xn, x0) ∈ E(G).
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Table 4 Convergence of the algorithm (37) in Example 4.2

n xn1 xn2 ‖xn – xn+1‖
0 1 0 –
1 0.859375 0.025 0.1428299
2 0.7306692 0.0690625 0.1360393
3 0.6493484 0.104429 0.0886784
4 0.601678 0.1309444 0.0545484
...

...
...

...
50 0.5058484 0.2413978 0.0002141
51 0.505734 0.2415687 0.0002057
52 0.505624 0.2417329 0.0001976
53 0.5055182 0.2418908 0.0001901
...

...
...

...
94 0.5031153 0.2454498 0.0000595
95 0.5030826 0.2454979 0.0000582
96 0.5030505 0.2455451 0.0000570
97 0.5030191 0.2455912 0.0000558
98 0.5029884 0.2456365 0.0000547

Figure 4 Visualization of the convergence of the algorithm (37) in Example 4.4

From
⋂N

i=1 F(Ti) ∩ G-VI(C, A) = {( 1
2 , 1

4 )}, it is easy to see that P⋂N
i=1 F(Ti)∩G-VI(C,A)x

0 ∈
[–1, 1] × [–1, 1].

Since P⋂N
i=1 F(Ti)∩G-VI(C,A)x

0 ∈ [–1, 1] × [–1, 1] and xn ∈ [–1, 1] × [–1, 1] for all n ≥ 0, we
have (xn, P⋂N

i=1 F(Ti)∩G-VI(C,A)x
0) ∈ E(G). Then, P⋂N

i=1 F(Ti)∩G-VI(C,A)x
0 is dominated by {xn}.

It is obvious that {xn} dominates x0 and also P⋂N
i=1 F(Ti)∩G-VI(C,A)x

0 is dominated by x0,
where x0 = {( 1

2 , 1
4 )}. From Theorem 3.1, we have the sequence {xn} converging strongly to

P⋂N
i=1 F(Ti)∩G-VI(C,A)x

0 = {( 1
2 , 1

4 )}.
Now, a convergence of the algorithm (37) is shown in Table 4 and visualized in Figs. 4

and 5.

Remark 4 For the provided Example 4.4, we have the following observations:
1. Table 4 and Figs. 4 and 5 show that {xn} converges to ( 1

2 , 1
4 ). The convergence of

{xn} in Example 4.4 can be guaranteed by Theorem 3.1.
2. The values of the sequence {xn} with respect to n are also plotted in Fig. 4, showing

that (xn, x0), (xn+1, xn) ∈ E(G).
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Figure 5 Error plotting of algorithm (37) in Example 4.4

In the following example, we investigate the metric projection onto a half-space
H_(α,β) : {z ∈ H : 〈α, z〉 ≤ β}, where α ∈ H , α �= 0 and β ∈R. It is obvious that

PH_(α,β)x =

⎧
⎨

⎩
x – 〈α,x〉–β

‖α‖2 α, if〈α, x〉 > β ,

x, if〈α, x〉 ≤ β .
(42)

Equality (42) is clear if x ∈ H_(α,β), i.e., 〈α, x〉 ≤ β (see, [21] for more details).

Example 4.5 Let H = R
2 and C = {(x1, x2) ∈R

2 : –3x1 + x2 ≤ 9}. Then, we obtain

PC(x1, x2) =

⎧
⎨

⎩
( x1+3x2–27

10 , 3x1+9x2+9
10 ), if – 3x1 + x2 > 9,

(x1, x2), if – 3x1 + x2 ≤ 9,
(43)

for all (x1, x2) ∈R
2.

Let G = (V (G), E(G)) be a directed graph, where V (G) = C and E(G) = {(x, y) =
((x1, x2), (y1, y2)) : x, y ∈ [0, 1] × [0, 1]}.

For every i = 1, 2, . . . , N , let Ti : C → C be mappings defined by

Ti(x1, x2) =
(

x2
1

5i ,
x2

2i +
(

1 –
1
2i

)
1
2

)
, (44)

for all (x1, x2) ∈ C.
Let S : C → C be a G-S-mapping generated by T1, T2, . . . , TN and α1,α2, . . . ,αn, where

αi =
(

1
5i ,

5i – 1
5i

(
6i – 1

6i

)
,

5i – 1
5i

(
1
6i

))
,

for all i = 1, 2, . . . , N and let A : C → H be a mapping defined by

A(x1, x2) =
(

x1 –
x3

1
4

,
4x2

5
–

2
5

)
, (45)

for all (x1, x2) ∈ C.
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Suppose that the sequence {xn} is generated by u = x0 = (x0
1, x0

2) = (1, 0) and

xn+1 = PC

(
I –

1
2

A
)(

βnu + (1 – βn)Sxn), (46)

where βn = 1
2n+4 for all n ≥ 0.

Then, the sequence {xn} converges strongly to P⋂N
i=1 F(Ti)∩G-VI(C,A)x

0 = {(0, 1
2 )}.

Solution. It is clear that A–1(0, 0) �= ∅, since (0, 1
2 ) ∈ A–1(0, 0) and E(G) = E(G–1). Let x, y ∈

C with (x, y) ∈ E(G), where x = (x1, x2) and y = (y1, y2). Then, we have x, y ∈ [0, 1] × [0, 1].
It is easy to verify that Ti are G-nonexpansive mappings for all i = 1, 2, . . . , N such that
⋂N

i=1 F(Ti) = {(0, 1
2 )}.

From the definition of the mapping A, it is obvious that A is G- 1
2 -inverse strongly mono-

tone and G-VI(C, A) = {(0, 1
2 )}. Therefore,

⋂N
i=1 F(Ti) ∩ G-VI(C, A) = {(0, 1

2 )}.
From the definition of Ti, it is obvious that Tix, Ti+1x ∈ [0, 1]×[0, 1] for all i = 1, 2, . . . , N –

1. Then, (Ti+1x, Tix) ∈ E(G) for all i = 1, 2, . . . , N – 1.
Putting u = x0 = (1, 0) ∈ [0, 1] × [0, 1] and the definition of Ti, we obtain T1x0 ∈ [0, 1] ×

[0, 1]. This implies that (x0, T1x0) ∈ E(G). From the definition of S, we have, Sx0 ∈ [0, 1] ×
[0, 1].

Since u = x0 = (1, 0), Sx0 = (1, 0), and βn = 1
2n+4 for all n ≥ 0, we have

(
β0u + (1 – β0)Sx0) = (1, 0)

and it follows that

(
I –

1
2

A
)(

β0u + (1 – β0)Sx0) = (0.6250000, 0.2000000). (47)

From (43) and (47), we have

x1 =
(
x1

1, x2
1
)

= PC

(
I –

1
2

A
)

(
β0u + (1 – β0)Sx0) = (0.6250000, 0.2000000). (48)

It follows from (48) that x1 ∈ [0, 1] × [0, 1].
Since u = (1, 0), Sx1 = (0.5156250, 0.2300000), and βn = 1

2n+4 for all n ≥ 0, we have

(
β1u + (1 – β1)Sx1) = (0.5963542, 0.1916667)

and it follows that

(
I –

1
2

A
)(

β1u + (1 – β1)Sx1) = (0.3246879, 0.3150000). (49)

From (43) and (49), we have

x2 =
(
x2

1, x2
2
)

= PC

(
I –

1
2

A
)(

β1u + (1 – β1)Sx1) = (0.3246879, 0.3150000). (50)

It follows from (50) that x2 ∈ [0, 1] × [0, 1].
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Continuing in this way, we have xn = (xn
1, xn

2) ∈ [0, 1] × [0, 1] for all n ≥ 0. This implies
that (xn, x0) ∈ E(G).

From
⋂N

i=1 F(Ti) ∩ G-VI(C, A) = {(0, 1
2 )}, it is easy to see that P⋂N

i=1 F(Ti)∩G-VI(C,A)x
0 ∈

[0, 1] × [0, 1].
Since P⋂N

i=1 F(Ti)∩G-VI(C,A)x
0 ∈ [0, 1] × [0, 1] and xn ∈ [0, 1] × [0, 1] for all n ≥ 0, we have

(xn, P⋂N
i=1 F(Ti)∩G-VI(C,A)x

0) ∈ E(G). This implies that P⋂N
i=1 F(Ti)∩G-VI(C,A)x

0 is dominated by
{xn}.

It is obvious that {xn} dominates x0 and also P⋂N
i=1 F(Ti)∩G-VI(C,A)x

0 is dominated by x0,
where x0 = {(0, 1

2 )}.
From Theorem 3.1, we have the sequence {xn} converging strongly to
P⋂N

i=1 F(Ti)∩G-VI(C,A)x
0 = {(0, 1

2 )}.
Now, a convergence of the algorithm (46) is shown in Table 5 and visualized in Figs. 6

and 7.

Table 5 Convergence of the algorithm (46) in Example 4.2

n xn1 xn2 ‖xn – xn+1‖
0 1.0000000 0.0000000 –
1 0.6250000 0.2000000 0.4250000
2 0.3246879 0.3150000 0.3215779
3 0.1794026 0.3774509 0.1581389
4 0.1139924 0.4124193 0.0741707
...

...
...

...
50 0.0080038 0.4937886 0.0002045
51 0.0078488 0.4939094 0.0001965
52 0.0076997 0.4940257 0.0001890
53 0.0075561 0.4941375 0.0001820
...

...
...

...
94 0.0042831 0.4966832 0.0000579
95 0.0042383 0.4967179 0.0000567
96 0.0041945 0.4967520 0.0000555
97 0.0041515 0.4967853 0.0000544
98 0.0041094 0.4968180 0.0000533

Figure 6 Visualization of the convergence of the algorithm (46) in Example 4.4
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Figure 7 Error plotting of algorithm (46) in Example 4.4

Remark 5 For the provided Example 4.5, we have the following observations:
1. Table 5 and Figs. 6 and 7 show that {xn} converges to (0, 1

2 ). The convergence of {xn}
in Example 4.5 can be guaranteed by Theorem 3.1.

2. The values of the sequence {xn} with respect to n are also plotted in Fig. 6, showing
that (xn, x0), (xn+1, xn) ∈ E(G).
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