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Abstract
Making use of the Hankel determinant and the Ruscheweyh derivative, in this work,
we consider a general subclass ofm-fold symmetric normalized biunivalent functions
defined in the open unit disk. Moreover, we investigate the bounds for the second
Hankel determinant of this class and some consequences of the results are presented.
In addition, to demonstrate the accuracy on some functions and conditions, most
general programs are written in Python V.3.8.8 (2021).
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1 Introduction
Let A denote the class of the analytic functions f in the open unit disk U = {z ∈C : |z| < 1},
normalized by the conditions f (0) = f ′(0) – 1 = 0 of the Taylor–Maclaurin series expansion

f (z) = z +
∞∑

n=2

akzk . (1.1)

Further, assume that S denotes the subclass of A that contains all univalent functions
in U satisfying (1.1) and P represents the subclass of all functions h(z) of the form

h(z) = 1 + h1z + h2z2 + h3z3 + · · · , (1.2)

which are analytic in the open unit disk U and Re(h(z)) > 0, z ∈ U.
For a function f ∈ A defined by (1.1), the Ruscheweyh derivative operator (see [23]) is

defined by

Rγ f (z) = z +
∞∑

k=2

�(γ , k)akzk ,
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where δ ∈N0 = {0, 1, 2, . . .} = N∪ {0}, z ∈ U, and

�(γ , k) =
�(γ + k)

�(k)�(γ + 1)
.

The Koebe 1/4-theorem (see [12]) asserts that every univalent function f ∈ S has an
inverse f –1 defined by

f –1(f (z)
)

= z (z ∈U) and f
(
f –1(w)

)
= w

(
|w| < r0(f ), r0(f ) ≥ 1

4

)
.

The inverse function g = f –1 has the form

g(w) = f –1(w) = w – a2w2 +
(
2a2

2 – a3
)
w3 –

(
5a3

2 – 5a2a3 + a4
)
w4 + · · · . (1.3)

A function f ∈A is said to be biunivalent if both f and f –1 satisfy the univalent property.
The class of biunivalent functions in U is denoted by �. Some examples of functions in
the class � are given as follows:

z
1 – z

, – log(1 – z) and
1
2

log

(
1 + z
1 – z

)
,

with the corresponding inverse functions

ew – 1
ew ,

w
1 + w

and
e2w – 1
e2w + 1

,

respectively.
Determination of the estimates for the Taylor–Maclaurin coefficients an is a crucial

problem in geometric function theory and provides knowledge about the geometric char-
acteristics of these functions. Lewin [17] investigated the class � of biunivalent functions
and showed that |a2| < 1.51 for the functions belonging to the class �. Brannan and Clunie
[8] conjectured that |a2| ≤ √

2. Subsequently, Netanyahu [20] showed that max |a2| = 4
3

for f ∈ �. Srivastava et al. [26] improved the investigation for various subclasses of the bi-
univalent function class � and established bounds on |a2| and |a3| in recent years. Many
recent studies are devoted to studying the biunivalent functions class � and obtaining
nonsharp bounds on the Taylor–Maclaurin coefficients |a2| and |a3| (see, for example,
[1, 7, 18, 29, 30]). However, the coefficient estimates bound of |an|(n ∈ {4, 5, 6, . . .}) for
a function f ∈ � defined by (1.1) remains an open problem. In fact, there is no natural
way to obtain the upper bound for coefficients greater than three. In exceptional cases,
there are some articles in which Faber polynomial techniques were used for finding upper
bounds for higher-order coefficients (see, for example, [4, 6, 31]).

The Hankel determinant is a valuable tool in studying univalent functions whose compo-
nents are coefficients of functions in the subclasses of S . The Hankel determinants Hq(n)
(n, q ∈N) of the function f are defined by (see [21])

Hq(n) =

∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q–1

an+1 an+2 · · · an+q
...

...
...

an+q–1 an+q · · · an + 2q – 2

∣∣∣∣∣∣∣∣∣∣

(a1 = 1).
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Note that

H2(1) =

∣∣∣∣∣
a1 a2

a2 a3

∣∣∣∣∣

and

H2(2) =

∣∣∣∣∣
a2 a3

a3 a4

∣∣∣∣∣ .

Estimates for the upper bounds of |H2(1)| = |a3 – a2
2| and |H2(2)| = |a2a4 – a2

3| are
called Fekete–Szegö and second Hankel determinant problems, respectively. Addition-
ally, Fekete and Szegö [13] proposed the summarized functional a3 – μa2

2, in which μ is
some real number. Lee et al. [16] presented a concise overview of Hankel determinants
for analytic univalent functions and obtained bounds for H2(2) for functions belonging to
some classes defined by subordination. The estimation of |H2(2)| has been the focus of
recent Hankel determinant papers (see, for example, [5, 11, 22, 25, 32]).

For each function f ∈ S , the function

h(z) =
(
f
(
zm)) 1

m (z ∈ U, m ∈N) (1.4)

is univalent and maps the unit disk into a region with m-fold symmetry. A function f is said
to be m-fold symmetric (see [15]) and denoted by Am, if it has the following normalized
form:

f (z) = z +
∞∑

k=1

amk+1zmk+1 (z ∈U, m ∈ N). (1.5)

We denote by Sm the class of m-fold symmetric univalent functions in U, which are
normalized by the series expansion (1.5). In fact, the functions in the class S are 1-fold
symmetric. In view of the work of Koepf [15] the m-fold symmetric function h ∈ P is of
the form

h(z) = 1 + hmzm + h2mz2m + h3mz3m + · · · . (1.6)

Analogous to the concept of m-fold symmetric univalent functions, Srivastava et al. [27]
defined the concept of m-fold symmetric biunivalent functions in a direct way. Each func-
tion f ∈ � generates an m-fold symmetric biunivalent function for each m ∈ N. The nor-
malized form of f is given as (1.5) and the extension g = f –1 is as follows:

g(w) = w – am+1wm+1 +
[
(m + 1)a2

m+1 – a2m+1
]
w2m+1

–
[

1
2

(m + 1)(3m + 2)a3
m+1 – (3m + 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · ·.

(1.7)

We denote by �m the class of m-fold symmetric biunivalent functions in U. For m = 1,
the series (1.7) coincides with the series (1.3) of the class �. Some examples of m-fold
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symmetric biunivalent functions are given as follows:

[
zm

1 – zm

] 1
m

,
[
– log

(
1 – zm)] 1

m and
[

1
2

log

(
1 + zm

1 – zm

)] 1
m

,

with the corresponding inverse functions

(
wm

1 + wm

) 1
m

,
(

ewm – 1
ewm

) 1
m

and
(

e2wm – 1
e2wm + 1

) 1
m

,

respectively.
Recently, some authors have studied the m-fold symmetric biunivalent function class

�m (see, for example, [9, 19, 28, 33]) and obtained nonsharp bound estimates on the
first two Taylor–Maclaurin coefficients |am+1| and |a2m+1|. In this respect, Altinkaya and
Yalçin [3] obtained nonsharp estimates on the second Hankel determinant for the subclass
H�m (β) of the m-fold symmetric biunivalent function class �m.

For a function f ∈ Am defined by (1.5), analogous to the Ruscheweyh derivative Rγ :
A→A, the m-fold Ruscheweyh derivative Rγ : Am →Am is defined as follows (see [24]):

Rγ f (z) = z +
∞∑

k=1

�(γ + k + 1)
�(k + 1)�(γ + 1)

amk+1zmk+1 (γ ∈N0, m ∈N, z ∈U).

Considering the significant role of the Hankel determinant in recent years, the object
of this paper is to study estimates for |H2(2)| of a general subclass of m-fold symmetric
biunivalent functions in U by applying the m-fold Ruscheweyh derivative operator and to
obtain upper bounds on |am+1a3m+1 – a2

2m+1| for functions in the subclass ��m (λ,γ ;β).
In order to derive our main results, we need to define the following lemmas that will be

useful in proving the basic theorem of Sect. 2.

Lemma 1.1 [12] If the function h ∈P is given by the series (1.2), then

|hk| ≤ 2 (k ∈N) (1.8)

and

∣∣∣∣h2 –
h2

1
2

∣∣∣∣ ≤ 2 –
|h2|2

2
. (1.9)

Lemma 1.2 [14] If the function h ∈P is given by the series (1.2), then

2h2 = h2
1 + x

(
4 – h2

1
)

(1.10)

and

4h3 = h3
1 + 2

(
4 – h2

1
)
h1x – h1

(
4 – h2

1
)
x2 + 2

(
4 – h2

1
)(

1 – |x|2)z, (1.11)

for some x, z with |x| ≤ 1 and |z| ≤ 1.
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2 The main result and consequences
Our main aim in this section is to study estimates for the second Hankel determinant of
the subclass ��m (λ,γ ;β) of m-fold symmetric biunivalent functions in U, and we show
that our results are an improvement on the existing coefficient estimates.

Definition 2.1 A function f ∈ �m given by (1.5) is said to be in the class ��m (λ,γ ;β)
(λ ≥ 1, γ ∈N0, 0 ≤ β < 1 and m ∈ N) if it satisfies the conditions

Re

{
(1 – λ)

Rγ f (z)
z

+ λ
(
Rγ f (z)

)′
}

> β (2.1)

and

Re

{
(1 – λ)

Rγ f (w)
w

+ λ
(
Rγ f (w)

)′
}

> β , (2.2)

where z, w ∈U and the function g = f –1 is given by (1.7).

Theorem 2.1 Let f ∈ ��m (λ,γ ;β) be given by (1.5). Then,

∣∣am+1a3m+1 – a2
2m+1

∣∣

≤
⎧
⎨

⎩

4(1–β)2

(γ +1)2(mλ+1) [ (m+1)2(1–β)2

(γ +1)2(mλ+1)3 + 6
(γ +2)(γ +3)(3mλ+1) ], β ∈ [0, τ ],

4(1–β)2

(γ +1)2(γ +2)2(2mλ+1)2 [4 – [ω2(1–β)+9ω3–4ω4]2

ω4[ω1(1–β)2–2ω2(1–β)–12ω3+4ω4] ], β ∈ [τ , 1),

where

ω1 := (m + 1)2(γ + 2)2(γ + 3)(2mλ + 1)2(3mλ + 1), (2.3)

ω2 := m(γ + 1)(γ + 2)(γ + 3)(mλ + 1)2(2mλ + 1)(3mλ + 1), (2.4)

ω3 := (γ + 1)2(γ + 2)(mλ + 1)3(2mλ + 1)2, (2.5)

ω4 := (γ + 1)2(γ + 3)(mλ + 1)4(3mλ + 1) (2.6)

and

τ := 1 –
ω2 +

√
ω2

2 + 12ω1ω3

2ω1
.

Proof It follows from (2.1) and (2.2) that there exist p and q in the class P such that

(1 – λ)
Rγ f (z)

z
+ λ

(
Rγ f (z)

)′ = β + (1 – β)p(z) (2.7)

and

(1 – λ)
Rγ f (w)

w
+ λ

(
Rγ f (w)

)′ = β + (1 – β)q(z), (2.8)

where p and q are given by the series (1.6).
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We also find that

(1 – λ)
Rγ f (z)

z
+ λ

(
Rγ f (z)

)′

= 1 + (γ + 1)(mλ + 1)am+1zm +
1
2

(γ + 1)(γ + 2)(2λm + 1)a2m+1z2m

+
1
6

(γ + 1)(γ + 2)(γ + 3)(3λm + 1)a3m+1z3m + · · ·

(2.9)

and

(1 – λ)
Rγ g(w)

w
+ λ

(
Rγ g(w)

)′

= 1 – (γ + 1)(mλ + 1)am+1wm +
1
2

(γ + 1)(γ + 2)(2mλ + 1)

× [
(m + 1)a2

m+1 – a2m+1
]
w2m –

1
6

(γ + 1)(γ + 2)(γ + 3)(3mλ + 1)

×
[

1
2

(m + 1)(3m + 2)a3
m+1 – (3m + 2)am+1a2m+1 + a3m+1

]
w3m + · · · .

(2.10)

Equating coefficients in (2.7) and (2.8) we have

(γ + 1)(mλ + 1)am+1 = (1 – β)pm, (2.11)

1
2

(γ + 1)(γ + 2)(2λm + 1)a2m+1 = (1 – β)p2m, (2.12)

1
6

(γ + 1)(γ + 2)(γ + 3)(3mλ + 1)a3m+1 = (1 – β)p3m (2.13)

and

–(γ + 1)(mλ + 1)am+1 = (1 – β)qm, (2.14)

1
2

(γ + 1)(γ + 2)(2mλ + 1)
[
(m + 1)a2

m+1 – a2m+1
]

= (1 – β)q2m, (2.15)

–
1
6

(γ + 1)(γ + 2)(γ + 3)(3mλ + 1)

×
[

1
2

(m + 1)(3m + 2)a3
m+1 – (3m + 2)am+1a2m+1 + a3m+1

]
= (1 – β)q3m.

(2.16)

From (2.11) and (2.14), we obtain

pm = –qm (2.17)

and

am+1 =
1 – β

(γ + 1)(mλ + 1)
pm. (2.18)

Now, from (2.12), (2.15), and (2.18), we obtain

a2m+1 =
(m + 1)(1 – β)2

2(γ + 1)2(mλ + 1)2 p2
m +

(1 – β)
(γ + 1)(γ + 2)(2mλ + 1)

(p2m – q2m). (2.19)
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Also, from (2.13), (2.16), (2.18), and (2.19), we find that

a3m+1 =
(3m + 2)(1 – β)2

2(γ + 1)2(γ + 2)(mλ + 1)(2mλ + 1)
pm(p2m – q2m)

+
3(1 – β)

(γ + 1)(γ + 2)(γ + 3)(3mλ + 1)
(p3m – q3m).

(2.20)

Then, from (2.18), (2.19), and (2.20) we have that

am+1a3m+1 – a2
2m+1

= –
(m + 1)2(1 – β)4

4(γ + 1)4(mλ + 1)4 p4
m

+
m(1 – β)3

2(γ + 1)3(γ + 2)(mλ + 1)2(2mλ + 1)
p2

m(p2m – q2m)

+
3(1 – β)2

(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)
pm(p3m – q3m)

–
(1 – β)2

(γ + 1)2(γ + 2)2(2mλ + 1)2 (p2m – q2m)2.

(2.21)

According to Lemma 1.2 and (2.17), we can write

p2m – q2m =
4 – p2

m
2

(x – y) (2.22)

and

p3m – q3m =
p3

m
2

+
pm(4 – p2

m)
2

(x + y) –
pm(4 – p2

m)
4

(
x2 + y2)

+
4 – p2

m
2

[(
1 – |x|2)z –

(
1 – |y|2)w

]
,

(2.23)

p2m + q2m = p2
m +

4 – p2
m

2
(x + y), (2.24)

for some x, y, z, and w with |x| ≤ 1, |y| ≤ 1, |z| ≤ 1, and |w| ≤ 1. Using (2.22) and (2.23) in
(2.21) we obtain

∣∣am+1a3m+1 – a2
2m+1

∣∣

=
∣∣∣∣–

(m + 1)2(1 – β)4

4(γ + 1)4(mλ + 1)4 p4
m +

m(1 – β)3

4(γ + 1)3(γ + 2)(mλ + 1)2(2mλ + 1)

× p2
m
(
4 – p2

m
)
(x – y)

+
3(1 – β)2

(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)
pm

[
p3

m
2

+
pm(4 – p2

m)
2

(x + y)

–
pm(4 – p2

m)
4

(
x2 + y2) +

4 – p2
m

2
[(

1 – |x|2)z –
(
1 – |y|2)w

]
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–
(1 – β)2

4(γ + 1)2(γ + 2)2(2mλ + 1)2

(
4 – p2

m
)2(x – y)2

∣∣∣∣

≤ (m + 1)2(1 – β)4

4(γ + 1)4(mλ + 1)4 p4
m +

3(1 – β)2

2(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)
p4

m

+
3(1 – β)2

(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)
pm

(
4 – p2

m
)

+
[

m(1 – β)3

4(γ + 1)3(γ + 2)(mλ + 1)2(2mλ + 1)
p2

m
(
4 – p2

m
)

+
3(1 – β)2

2(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)
p2

m
(
4 – p2

m
)](|x| + |y|)

+
[

3(1 – β)2

4(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)
p2

m
(
4 – p2

m
)

–
3(1 – β)2

2(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)
pm

(
4 – p2

m
)](|x|2 + |y|2)

+
(1 – β)2

4(γ + 1)2(γ + 2)2(2mλ + 1)2

(
4 – p2

m
)2(|x| + |y|)2.

Since p in the class P , we have (Lemma 1.1) |pm| ≤ 2. Letting pm = ρ , we may assume,
without loss of generality, that ρ ∈ [0, 2]. Thus, for μ1 = |x| ≤ 1 and μ2 = |y| ≤ 1, we obtain

∣∣am+1a3m+1 – a2
2m+1

∣∣ ≤ F1 + F2(μ1 + μ2) + F3
(
μ2

1 + μ2
2
)

+ F4(μ1 + μ2)2,

where

F1 = F1(ρ)

=
(m + 1)2(1 – β)4ρ4

4(γ + 1)4(mλ + 1)4 +
3(1 – β)2ρ4

2(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)

+
3(1 – β)2ρ(4 – ρ2)

(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)
≥ 0,

F2 = F2(ρ)

=
m(1 – β)3ρ2(4 – ρ2)

4(γ + 1)3(γ + 2)(mλ + 1)2(2mλ + 1)

+
3(1 – β)2ρ2(4 – ρ2)

2(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)
≥ 0,

F3 = F3(ρ)

=
3(1 – β)2ρ2(4 – ρ2)

4(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)

–
3(1 – β)2ρ(4 – ρ2)

2(γ + 1)2(γ + 2)(γ + 3)(mλ + 1)(3mλ + 1)
≤ 0,

F4 = F4(ρ) =
(1 – β)2(4 – ρ2)2

4(γ + 1)2(γ + 2)2(2mλ + 1)2 ≥ 0.

Figure 1 demonstrates that F1, F2, F4 are non-negatives, and F3 is non-positive.
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Figure 1 Graph of F1, F2, F3, and F4 for γ = 0 and λ =m = 1

Figure 2 Graph of F3 + 2F4 for γ = 0 and λ =m = 1

Now, we need to maximize

F(μ1,μ2) = F1 + F2(μ1 + μ2) + F3
(
μ2

1 + μ2
2
)

+ F4(μ1 + μ2)2

in the closed square S = [0, 1] × [0, 1] for ρ ∈ [0, 2]. We investigate the maximum of
F(μ1,μ2) when ρ ∈ (0, 2), ρ = 0 and ρ = 2, keeping in mind the sign of

Fμ1μ1 Fμ2μ2 – (Fμ1μ2 )2

(according to the Second Derivative Test for functions of the two dependent variables μ1

and μ2).
First, let ρ ∈ (0, 2). Since F3 < 0 and F3 + 2F4 > 0 for ρ ∈ (0, 2) (see Fig. 2), we see that

Fμ1μ1 Fμ2μ2 – (Fμ1μ2 )2 = 4F3 (F3 + 2F4) < 0.
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Figure 3 Graph of F2 + 2(F3 + F4) for γ = 0 and λ =m = 1

Thus, the function F cannot have a local maximum in the interior of the square S. Now,
we investigate the maximum of F on the boundary of the square S.

Case 1. For μ1 = 0 and μ2 ∈ [0, 1] (a similar argument can be applied for μ2 = 0 and
μ1 ∈ [0, 1], so we omit the details in that case), we obtain

F(0,μ2) = G(μ2) ≡ F1 + F2μ2 + (F3 + F4)μ2
2.

Subcase 1. Let F3 + F4 ≥ 0. In this case, for 0 < μ2 < 1 we have that

G′(μ2) = F2 + 2(F3 + F4)μ2 > 0,

that is, G(μ2) is an increasing function. Hence, the maximum of G(μ2) occurs at μ2 = 1
and

max
{

F(0,μ2) : μ2 ∈ [0, 1]
}

= max
{

G(μ2) : μ2 ∈ [0, 1]
}

= G(1) = F1 + F2 + F3 + F4.

Subcase 2. Let F3 + F4 < 0. Note that (see Fig. 3):

F2 + 2(F3 + F4) ≥ 0.

For μ2 ∈ (0, 1) since F3 + F4 < 0 we have that

F2 + 2(F3 + F4)μ2 > F2 + 2(F3 + F4) ≥ 0,

so G′(μ2) > 0. Thus, max{G(μ2) : μ2 ∈ [0, 1]} = G(1).
Case 2. For μ1 = 1 and μ2 ∈ [0, 1] (a similar argument can be applied for μ2 = 1 and

μ1 ∈ [0, 1], so we omit the details in that case), we obtain

F(1,μ2) = H(μ2) = F1 + F2 + F3 + F4 + (F2 + 2F4)μ2 + (F3 + F4)μ2
2.

Thus, an argument like in Subcases 1 and 2 yields

max
{

F(1,μ2) : μ2 ∈ [0, 1]
}

= max
{

H(μ2) : μ2 ∈ [0, 1]
}

= H(1) = F1 + 2(F2 + F3) + 4F4.
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Next, let ρ = 2. Now, let (μ1,μ2) ∈ S and note that

F(μ1,μ2) =
4(γ + 2)(γ + 3)(3mλ + 1)(m + 1)2(1 – β)4 + 24(γ + 1)2(mλ + 1)3(1 – β)2

(γ + 1)4(γ + 2)(γ + 3)(mλ + 1)4(3mλ + 1)
.

(2.25)

Keeping in mind the constant value in (2.25) we have

max
{

F(μ1,μ2) : μ1 ∈ [0, 1],μ2 ∈ [0, 1]
}

= F(1, 1) = F1 + 2(F2 + F3) + 4F4.

Finally, let ρ = 0. Now, let (μ1,μ2) ∈ S and note that

F(μ1,μ2) =
4(1 – β)2(μ1 + μ2)2

(γ + 1)2(γ + 2)2(2mλ + 1)2 .

We see that the maximum of F(μ1,μ2) occurs at μ1 = μ2 = 1 and

max
{

F(μ1,μ2) : μ1 ∈ [0, 1],μ2 ∈ [0, 1]
}

= F(1, 1) = F1 + 2(F2 + F3) + 4F4.

Combining all cases, note that since F1 + 2(F2 + F3) + 4F4 ≥ 0 when ρ ∈ [0, 2] (see Fig. 4),
we have

max
{

F(μ1,μ2) : μ1 ∈ [0, 1],μ2 ∈ [0, 1]
}

= F(1, 1).

Let K : [0, 2] →R be given by

K(ρ) = F(1, 1) = F1 + 2(F2 + F3) + 4F4. (2.26)

Figure 4 Graph of F1 + 2(F2 + F3) + 4F4 for γ = 0 and λ =m = 1
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Substituting the values of F1, F2, F3, and F4 in the function K defined by (2.26), yields

K(ρ)

=
(1 – β)2

4(γ + 1)4(γ + 2)2(γ + 3)(1 + mλ)4(1 + 2mλ)2(1 + 3mλ)

× [[
(m + 1)2(γ + 2)2(γ + 3)(2mλ + 1)2(3mλ + 1)(1 – β)2

– 2m(γ + 1)(γ + 2)(γ + 3)(mλ + 1)2(2mλ + 1)(3mλ + 1)(1 – β)

– 12(γ + 1)2(γ + 2)(mλ + 1)3(2mλ + 1)2 + 4(γ + 1)2(γ + 3)(mλ + 1)4(3mλ + 1)
]
ρ4

+
[
8m(γ + 1)(γ + 2)(γ + 3)(1 + mλ)2(1 + 2mλ)(1 + 3mλ)(1 – β)

+ 72(γ + 1)2(γ + 2)(mλ + 1)3(2mλ + 1)2 – 32(γ + 1)2(γ + 3)(mλ + 1)4(3mλ + 1)
]
ρ2

+ 64(γ + 1)2(γ + 3)(1 + mλ)4(1 + 3mλ)
]
.

Now, the maximum of K(ρ) occurs either at ρ = 0, ρ ∈ (0, 2) or ρ = 2. Suppose first the
maximum of K(ρ) occurs at some ρ ∈ (0, 2). Note that for any ρ ∈ (0, 2) we have

K ′(ρ)

=
(1 – β)2

(γ + 1)4(γ + 2)2(γ + 3)(1 + mλ)4(1 + 2mλ)2(1 + 3mλ)

× [[
(m + 1)2(γ + 2)2(γ + 3)(2mλ + 1)2(3mλ + 1)(1 – β)2

– 2m(γ + 1)(γ + 2)(γ + 3)(mλ + 1)2(2mλ + 1)(3mλ + 1)(1 – β)

– 12(γ + 1)2(γ + 2)(mλ + 1)3(2mλ + 1)2 + 4(γ + 1)2(γ + 3)(mλ + 1)4(3mλ + 1)
]
ρ3

+
[
4m(γ + 1)(γ + 2)(γ + 3)(λm + 1)2(1 + 2mλ)(1 + 3mλ)(1 – β)

+ 36(γ + 1)2(γ + 2)(mλ + 1)3(2mλ + 1)2 – 16(γ + 1)2(γ + 3)(mλ + 1)4(3mλ + 1)
]
ρ
]
.

Next, we conclude the following results:
Result 1. Let

ω1(1 – β)2 – 2ω2(1 – β) – 12ω3 + 4ω4 ≥ 0,

that is,

β ∈
[

0, 1 –
ω2 +

√
ω2

2 + ω1[12ω3 – 4ω4]
ω1

]
,

where ω1, ω2, ω3, and ω4 are given by (2.3), (2.4), (2.5), and (2.6), respectively.
Note that K ′(ρ) > 0 for every ρ ∈ (0, 2). Thus,

max
{

K(ρ) : 0 < ρ < 2
}

= K
(
2–)

=
4(1 – β)2

(γ + 1)2(mλ + 1)

[
(m + 1)2(1 – β)2

(γ + 1)2(mλ + 1)3 +
6

(γ + 2)(γ + 3)(3mλ + 1)

]
.
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Result 2. Let

ω1(1 – β)2 – 2ω2(1 – β) – 12ω3 + 4ω4 < 0,

that is,

β ∈
(

1 –
ω2 +

√
ω2

2 + ω1[12ω3 – 4ω4]
ω1

, 1
)

.

Then, K ′(ρ) = 0 gives the critical point ρ1 = 0 or

ρ2 =

√
16ω4 – 4ω2(1 – β) – 36ω3

ω1(1 – β)2 – 2ω2(1 – β) – 12ω3 + 4ω4
.

When

β ∈
(

1 –
ω2 +

√
ω2

2 + ω1[12ω3 – 4ω4]
ω1

, 1 –
ω2 +

√
ω2

2 + 12ω1ω3

2ω1

]
,

we observe that ρ2 ≥ 2. Then, the maximum value of K(ρ) occurs at 0+ or 2–. This is a
contradiction since we assumed the maximum of K(ρ) occurs at some ρ ∈ (0, 2).

When

β ∈
(

1 –
ω2 +

√
ω2

2 + 12ω1ω3

2ω1
, 1

)
,

we observe that ρ2 ∈ (0, 2). Since K ′′(ρ2) < 0, the maximum value of K(ρ) occurs at ρ = ρ2.
Thus, we have

max
{

K(ρ) : ρ ∈ (0, 2)
}

= K(ρ2)

=
4(1 – β)2

(γ + 1)2(γ + 2)2(2mλ + 1)2

×
[

4 –
[ω2(1 – β) + 9ω3 – 4ω4]2

ω4[ω1(1 – β)2 – 2ω2(1 – β) – 12ω3 + 4ω4]

]
.

(2.27)

Next, suppose if β ∈ [0, τ ] and the maximum of K(ρ) occurs at ρ = 2. Then,

max
{

K(ρ) : ρ ∈ [0, 2]
}

= K(2)

=
4(1 – β)2

(γ + 1)2(mλ + 1)

[
(m + 1)2(1 – β)2

(γ + 1)2(mλ + 1)3 +
6

(γ + 2)(γ + 3)(3mλ + 1)

]
.
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We only now need to note that (see the idea in the second part of Result 2) if β ∈ (τ , 1)
then the maximum of K(ρ) cannot occur at ρ = 2 since

K(2) ≤ 4(1 – β)2

(γ + 1)2(γ + 2)2(2mλ + 1)2

×
[

4 –
[ω2(1 – β) + 9ω3 – 4ω4]2

ω4[ω1(1 – β)2 – 2ω2(1 – β) – 12ω3 + 4ω4]

] (
= K(ρ2)

)
.

Finally, let us consider β ∈ [0, 1) and the maximum of K(ρ) occurring at ρ = 0. Then,

max
{

K(ρ) : ρ ∈ [0, 2]
}

= K(0) =
16(1 – β)2

(γ + 1)2(γ + 2)2(2mλ + 1)2 .

We note that (see the ideas in the second part of Result 2) if β ∈ (τ , 1) then the maximum
of K(ρ) cannot occur at ρ = 0 since

K(0) ≤ 4(1 – β)2

(γ + 1)2(γ + 2)2(2mλ + 1)2

×
[

4 –
[ω2(1 – β) + 9ω3 – 4ω4]2

ω4[ω1(1 – β)2 – 2ω2(1 – β) – 12ω3 + 4ω4]

] (
= K(ρ2)

)
.

Finally, note that (see the ideas in Result 1 and the details in Result 2) if

β ∈
[

0, 1 –
ω2 +

√
ω2

2 + ω1[12ω3 – 4ω4]
ω1

]
,

or

β ∈
(

1 –
ω2 +

√
ω2

2 + ω1[12ω3 – 4ω4]
ω1

, 1
)

,

then the maximum of K(ρ) cannot occur at ρ = 0 since K(0) ≤ K(2).
This completes the proof. �

By setting λ = 1 and γ = 0 in Theorem 2.1, we obtain the following consequence.

Corollary 2.1 [3] Let f ∈ ��m (β) (0 ≤ β < 1) be given by (1.5). Then,

∣∣am+1a3m+1 – a2
2m+1

∣∣ ≤
⎧
⎨

⎩

4(1–β)2

m+1 [ (1–β)2

m+1 + 1
3m+1 ], β ∈ [0, v],

(1–β)2

(2m+1)2 [4 – [m(1–β)ψ1+3ψ2–2ψ3]2

ψ3[(2m+1)(1–β)2ψ1–m(1–β)ψ1+ψ3–2ψ2] ], β ∈ [v, 1),

where

ψ1 := (2m + 1)(3m + 1),

ψ2 := (m + 1)(2m + 1)2,

ψ3 := (m + 1)2(3m + 1)

and

v :=
(3m + 1)(7m + 4) –

√
m2(3m + 1)2 + 8ψ2(3m + 1)
4ψ1

.
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By taking m = 1 in Theorem 2.1, we conclude the following result.

Corollary 2.2 Let f ∈ ��(λ,γ ;β) (λ ≥ 1,γ ∈N0, 0 ≤ β < 1) be given by (1.1). Then,

∣∣a2a4 – a2
3
∣∣ ≤

⎧
⎨

⎩

8(1–β)2

(γ +1)2(λ+1) [ 2(1–β)2

(γ +1)2(λ+1)3 + 3
(γ +2)(γ +3)(3λ+1) ], β ∈ [0, ξ ],

4(1–β)2

(γ +1)2(γ +2)2(2λ+1)2 [4 – [ϑ2(1–β)+9ϑ3–4ϑ4]2

ϑ4[4ϑ1(1–β)2–2ϑ2(1–β)–12ϑ3+4ϑ4] ], β ∈ [ξ , 1),

where

ϑ1 := (γ + 2)2(γ + 3)(2λ + 1)2(3λ + 1),

ϑ2 := (γ + 1)(γ + 2)(γ + 3)(λ + 1)2(2λ + 1)(3λ + 1),

ϑ3 := (γ + 1)2(γ + 2)(λ + 1)3(2λ + 1)2,

ϑ4 := (γ + 1)2(γ + 3)(λ + 1)4(3λ + 1)

and

ξ := 1 –
ϑ2 +

√
ϑ2

2 + 48ϑ1ϑ3

8ϑ1
.

Remark 2.1 Corollary 2.2 improves a result in Altinkaya and Yalçin [2, Theorem 3].

By putting γ = 0 in Corollary 2.2, we obtain the following result.

Corollary 2.3 Let f ∈ ��(λ;β) (λ ≥ 1, 0 ≤ β < 1) be given by (1.1). Then,

∣∣a2a4 – a2
3
∣∣ ≤

⎧
⎨

⎩

8(1–β)2

λ+1 [ 2(1–β)2

(λ+1)3 + 1
2(3λ+1) ], β ∈ [0, ε],

(1–β)2

(2λ+1)2 [4 – [η2(1–β)+3η3–2η4]2

η4[8η1(1–β)2–2η2(1–β)–4η3+2η4] ], β ∈ [ε, 1),

where

η1 := (2λ + 1)2(3λ + 1),

η2 := (λ + 1)2(2λ + 1)(3λ + 1),

η3 := (λ + 1)3(2λ + 1)2,

η4 := (λ + 1)4(3λ + 1)

and

ε := 1 –
(λ + 1)2(3λ + 1) +

√
(λ + 1)4(3λ + 1)2 + 32(λ + 1)3(2λ + 1)2(3λ + 1)

16(2λ + 1)(3λ + 1)
.

Remark 2.2 Corollary 2.3 improves a result in Altinkaya and Yalçin [2, Corollary 5].

By setting λ = 1 in Corollary 2.3, we obtain the following consequence.
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Corollary 2.4 [10] Let f ∈ ��(β) (0 ≤ β < 1) be given by (1.1). Then,

∣∣a2a4 – a2
3
∣∣ ≤

⎧
⎨

⎩
(1 – β)2[(1 – β)2 + 1

2 ], β ∈ [0, 11–
√

37
12 ],

(1–β)2

32 [ 60β2–84β–25
9β2–15β+1 ], β ∈ [ 11–

√
37

12 , 1).

Remark 2.3 Corollary 2.4 recovers a result in Altinkaya and Yalçin [2, Corollary 4].

3 Concluding remarks
In this investigation, we consider a constructed subclass ��m (λ,γ ;β) of the class �m of m-
fold symmetric biunivalent functions and several properties of the results are discussed.
Moreover, with a specialization of the parameters, some consequences of the class are
mentioned and they improve some existing upper bounds for H2(2) on certain subclasses
of 1-fold symmetric biunivalent functions.
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