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Abstract
We prove a nonuniform local limit theorem concerning approximation of the point
probabilities P(S = k), where S =

∑n
i=1 Xi , and X1, . . . ,Xn are independent Bernoulli

random variables with possibly different success probabilities. Our proof uses Stein’s
method, in particular, the zero bias transformation and concentration inequality
approaches.
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1 Introduction
In [1], Charles Stein introduced a powerful new method for bounding the approximation
error in the central limit theorem and other normal approximations. Let X1, X2 . . . , Xn be
independent random variables with finite third absolute moments, standardized so that
EXi = 0, 1 ≤ i ≤ n, and Var(

∑n
i=1 Xi) = 1. Stein’s method yields a characteristic function-

free proof of the Berry–Esseen theorem, i.e., that there exists an absolute constant C such
that

sup
x∈R

∣
∣P(W ≤ x) – �(x)

∣
∣ ≤ Cγ , (1.1)

where W =
∑n

i=1 Xi, γ =
∑n

i=1 E|Xi|3, and � is the standard normal distribution function.
See Theorem 3.6 of [2] for a proof with absolute constant C = 9.4.

Nonuniform versions of the Berry–Esseen theorem, which are more informative than
(1.1), have also been obtained by Stein’s method. For example, Chen and Shao [3] improve
on the earlier bound of

∣
∣P(W ≤ x) – �(x)

∣
∣ ≤ Cγ

1 + |x|3

from [4] and show that a similar result holds if we only assume the existence of second
moments of the Xi.

Local limit theorems, which quantify the accuracy of a normal approximation for the
point probabilities P(S = k), k ∈ Z, when S is a sum of integer-valued random variables,
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have seldom been considered using Stein’s method. Suppose now that X1, X2 . . . , Xn are
integer-valued random variables and set S =

∑n
i=1 Xi. Formally, S is said to satisfy the local

limit theorem if the quantity

� = sup
k∈Z

∣
∣
∣
∣P(S = k) –

1
σ
√

2π
exp

{

–
(k – μ)2

2σ 2

}∣
∣
∣
∣ (1.2)

satisfies � = o(1/σ ), where μ = ES and σ 2 = Var(S). Here and throughout, we suppress the
obvious dependence in n of quantities such as S, μ, and σ 2.

To understand the requirement that � = o(1/σ ), observe that (1.1) gives a bound on
the difference between the distribution functions of W = (S – μ)/σ and Z ∼ N(0, 1) that
is proportional to σ –3 ∑n

i=1 E|Xi – μi|3, where μi = EXi. In the typical situation where
∑n

i=1 E|Xi – μi|3 = O(n) and σ –2 = O(n–1), the Berry–Esseen bound is O(1/σ ), and it can
also be shown that � = O(1/σ ) in this case. Thus the requirement that � = o(1/σ ) in the lo-
cal limit theorem serves to ensure more refined information than is immediately available
from the Berry–Esseen bound.

A historical overview of local limit theorems can be found in [5], where it is noted that
they predate central limit theorems. The earliest such result, the DeMoivre–Laplace theo-
rem [6, 7], establishes the local limit theorem in the case of sums of identically distributed
Bernoulli random variables, i.e., where S is binomially distributed. In this case the defini-
tion of � in (1.2) is modified by taking the supremum over k ∈ [0, n] ∩Z. The DeMoivre–
Laplace theorem is also considered in [8], where it is shown that � ≤ 0.516/σ 2. Chap-
ter 7 of [9] shows that under mild conditions, when S is a sum of independent integer-
valued random variables, an approximation error of � = O(1/σ 2) is optimal. Siripraparat
and Neammanee [10] establish the optimal error of � = O(1/σ 2) in the case of indepen-
dent but not necessarily identically distributed Bernoulli random variables and give ex-
plicit constants in their bound. Siripraparat and Neammanee [11] generalize this work
to sums of arbitrary independent integer-valued random variables. The proofs of these
results typically involve Fourier analysis of characteristic functions.

Although Barbour et al. [12] use Stein’s method to prove local limit theorems, they con-
sider a rather more general setup, which does not restrict them to local approximation of
sums of integer-valued random variables. Consequently, the bounds they obtain are more
complicated than expected when one considers sums, and when applied to the particular
case of sums of independent integer-valued random variables, they do not yield the opti-
mal rate of � = O(1/σ 2), although the authors suggest how their methods can be adapted
to yield the optimal rate in this case. Fang [13] uses Stein’s method to give bounds for
the total-variation distance between an integer-valued random variable and a discretized
normal distribution, although bounds in the local metric are not considered. Barbour and
Choi [14] consider approximating the distribution of sums of integer-valued random vari-
ables by a translated Poisson distribution. They obtain nonuniform bounds in the total-
variation metric that are roughly analogous to the classical results of [4] and [3] for the
central limit theorem, although they do not consider local limit theorems.

All of the above studies involving local limit theorems consider only uniform bounds, so
that some information regarding the quality of the normal approximation of P(S = k) for
a specific fixed k is lost. In this paper, we prove a nonuniform local limit theorem when
X1, X2, . . . , Xn are independent but not necessarily identically distributed Bernoulli random
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variables. In this case, S =
∑n

i=1 Xi is said to be a Poisson binomial random variable and
follows a Poisson binomial distribution. Poisson binomial random variables, introduced in
[15], have been used in a wide range of contexts from finance [16], reliability analysis [17],
and machine learning [18, 19], to name a few. A survey of the Poisson binomial distribution
may be found in [20]. We now state our main result.

Theorem 1.1 Let X1, X2, . . . , Xn be jointly independent Bernoulli random variables such
that P(Xi = 1) = 1 – P(Xi = 0) = pi ∈ (0, 1), and let S =

∑n
i=1 Xi, μ = ES, and σ 2 = Var(S). If

σ 2 ≥ 1, then for each k ∈ [0, n] ∩Z,

∣
∣
∣
∣P(S = k) –

1
σ
√

2π
exp

{

–
(k – μ)2

2σ 2

}∣
∣
∣
∣ ≤ Ce–| k–μ

σ |

σ 2 (1.3)

for some positive absolute constant C.

Our proof of Theorem 1.1 uses a combination of the zero-bias transformation of [21], the
concentration inequality approach of [3], and some ideas from Chap. 7 of [2]. Our proof
may also be modified to give the classical uniform local limit theorem with an explicit
constant. Although we do not pursue this direction here, we intend to in a future note.

The remainder of the paper is structured as follows. Section 2 reviews the necessary
background in Stein’s method and the zero-bias framework required for the remainder of
the paper. Section 3 gives some auxiliary technical results needed for the proof of Theorem
1.1 in Sect. 4. The Appendix gives the proof of a lemma that is stated in Sect. 3.

2 Stein’s method
The starting point of Stein’s method is the following characterization of the standard nor-
mal distribution. If the random variable W has a standard normal distribution, then

Ef ′(W ) – EWf (W ) = 0 (2.1)

for all absolutely continuous functions f : R → R with E|f ′(W )| < ∞. Conversely, if (2.1)
holds for all bounded, continuous, and piecewise continuously differentiable functions f
with E|f ′(Z)| < ∞, Z ∼ N(0, 1), then W has a standard normal distribution.

Intuitively, if W is approximately standard normal, then for Z ∼ N(0, 1), Eh(W ) –Eh(Z)
should be close to zero for h in a sufficiently large class of test functions. Also, if W is in
some sense close to Z, then from (2.1), Ef ′(W ) – EWf (W ) should be close to zero. These
two observations lead to consideration of the ordinary differential equation

f ′(w) – wf (w) = h(w) – Eh(Z), (2.2)

known as the Stein equation, which may be solved for f by the method of integrating
factors. For a given choice of h, with f the solution of the Stein equation (2.2), we see
that bounding Eh(W ) – Eh(Z) is equivalent to bounding E{f ′(W ) – Wf (W )}. The latter
expectation often turns out to be easier to bound than the former, particularly when W is
a sum of random variables.

To analyze the approximation error in the central limit theorem when W is a sum or
sample mean, fix x ∈ R, and take h(w) = 1(–∞,x](w). Then, replacing w by W and taking
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expectations, the right-hand side of (2.2) becomes P(W ≤ x) – �(x), which is the desired
difference to be analyzed. The class of test functions to be used for our problem is identi-
fied in Sect. 3.1.

We will use the zero-bias framework of [21], which defines a new random variable W ∗

on the same space as W to assess the proximity of W to a normal random variable. When
W ∼ N(0,σ 2

W ), the characterizing equation analogous to (2.1) is EWf (W ) = σ 2
WEf ′(W ).

This motivates the following definition.

Definition 1 Let W be a zero-mean random variable with finite nonzero variance σ 2
W . We

say that W ∗ has the W -zero bias distribution if for all differentiable f for which EWf (W )
is finite,

EWf (W ) = σ 2
WEf ′(W ∗).

Goldstein and Reinert [21] prove the existence and uniqueness of W ∗. Regarding the
zero-bias transformation as the mapping W → W ∗, a random variable with N(0,σ 2

W ) dis-
tribution is seen to be the unique fixed point of this transformation. If W is in some sense
close to W ∗, then we expect W to be approximately normally distributed. Indeed, a key
step in proving the nonuniform bound for S in Theorem 1.1 is showing that an analo-
gous approximation holds for W ∗ when W is a sum of appropriately centered and scaled
Bernoulli random variables.

An important example for our problem is when X is Bernoulli with P(X = 1) = 1 – P(X =
0) = p. Although EX = p, so that X∗ does not exist, we may calculate (X – p)∗ as follows.
Letting Y = X – p, which has the variance σ 2

Y = p(1 – p), we have

EYf (Y ) = E
[
(X – p)f (X – p)

]
= p(1 – p)f (1 – p) – (1 – p)pf (–p)

= σ 2
Y
[
f (1 – p) – f (–p)

]
= σ 2

Y

∫ 1–p

–p
f ′(u) du = σ 2

YEf ′(U),

where U is uniformly distributed on [–p, 1 – p], and thus (X – p)∗ d= U[–p, 1 – p].
A useful and easily verified property of the zero-bias transformation is that if EX = 0 and

a = 0, then (aX)∗ = aX∗ [2, p. 29]. Note now, for later use, that if X ∼ Bernoulli(p), then for
σ > 0,

(
X – p

σ

)∗
∼ U

[
–p
σ

,
1 – p

σ

]

, (2.3)

where U[–p/σ , (1 – p)/σ ] is the uniform distribution on the interval [–p/σ , (1 – p)/σ ].
The following fundamental result from [21] shows how W ∗ may be obtained when W

is a sum of independent zero-mean random variables.

Lemma 2.1 Let ξi, 1 ≤ i ≤ n, be independent zero-mean random variables with Var(ξi) =
σ 2

i , and set W =
∑n

i=1 ξi. If Var(W ) = σ 2
W , then let I be a random index independent of the

ξi such that P(I = i) = σ 2
i /σ 2

W . Then

W ∗ d= W – ξI + ξ ∗
I . (2.4)
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3 Auxiliary results
3.1 Selection of test functions and the Stein equation
In this section, we lay out our setup that is required to prove Theorem 1.1 using Stein’s
method. As S has mean μ and variance σ 2, comparing its distribution to that of a stan-
dard normal random variable is inappropriate. For a random variable W with N(μ,σ 2)
distribution, the characterizing equation analogous to (2.1) is

σ 2
Ef ′(W ) – E

[
(W – μ)f (W )

]
= 0. (3.1)

Working with (3.1) and deriving properties of the solution f are more awkward than for
(2.1) and moreover do not allow us to use the zero-bias framework. For these reasons, we
temporarily reduce our problem to the zero-mean unit-variance case.

Thus, for the remainder of Sect. 3, we let W = (S – μ)/σ , so that W =
∑n

i=1 ξi with ξi =
(Xi – pi)/σ and Xi ∼ Bernoulli(pi). Then EW = 0, Var(W ) = 1, and W takes values in the
set An := {(k – μ)/σ : k ∈ [0, n] ∩ Z}. We may then write the difference to be analyzed in
Theorem 1.1 as

∣
∣
∣
∣P(S = k) –

1
σ
√

2π
exp

{

–
(k – μ)2

2σ 2

}∣
∣
∣
∣ =

∣
∣
∣
∣P(W = x) –

1
σ
√

2π
e–x2/2

∣
∣
∣
∣, (3.2)

where x = (k – μ)/σ ∈ An with k ∈ [0, n] ∩ Z. Observing (3.2), we would like to select a
test function h such that Eh(W ) – Eh(Z) = P(W = x) – φ(x)/σ , where φ is the standard
normal density function. To this end, for a given x ∈ R, define hx(w) = 1(x– 1

σ ,x](w). Then,
for x = (k – μ)/σ ∈ An, we have Ehx(W ) = P(x – 1/σ < W ≤ x) = P(W = x) = P(S = k). We
would also like to have Ehx(Z) = φ(x)/σ when Z ∼ N(0, 1). Although this is not the case,
we may show, as in the proof of Lemma 4.1, that Ehx(Z) is equal to φ(x)/σ plus a remainder
of magnitude O(1/σ 2).

Having identified the appropriate class of test functions, we are then led to consider the
corresponding Stein equation

f ′
x(w) – wfx(w) = 1(x– 1

σ ,x](w) – Nhx, (3.3)

where here and throughout, Nhx := Ehx(Z), Z ∼ N(0, 1), and hx(w) = 1(x–1/σ ,x](w). Using
the method of integrating factors, the unique bounded solution to (3.3) may be written in
the two equivalent forms:

fx(w) = ew2/2
∫ w

–∞

[
1(x– 1

σ ,x](t) – Nhx
]
e–t2/2 dt (3.4)

= –ew2/2
∫ ∞

w

[
1(x– 1

σ ,x](t) – Nhx
]
e–t2/2 dt. (3.5)

The equivalence of (3.4) and (3.5) follows from the fact that the difference in these two
expressions is (

√
2π )ew2/2

E{1(x– 1
σ ,x](Z) – Nhx} = 0.



Auld and Neammanee Journal of Inequalities and Applications         (2024) 2024:10 Page 6 of 18

Expanding out the integrals in terms of �, the standard normal distribution function,
we may write fx as

fx(w) =

⎧
⎪⎪⎨

⎪⎪⎩

(
√

2π )Nhxew2/2[1 – �(w)], w > x,

(
√

2π )ew2/2[�(w)(1 – �(x)) – �(x – 1
σ

)(1 – �(w))], w ∈ (x – 1
σ

, x],

–(
√

2π )Nhxew2/2�(w), w ≤ x – 1
σ

.

(3.6)

As hx is a bounded function and |hx(w) – Nhx| ≤ 1 for all w, we have, by Lemma 2.4 of [2],
that |fx(w)| ≤ √

π/2 and |f ′
x(w)| ≤ 2 for all w. In Lemma 3.2, we derive some more useful

bounds for fx given our specific choice of hx. We first give a symmetry property of the
solution of the Stein equation, which is useful in simplifying some calculations.

Lemma 3.1 The solution fx of the Stein equation (3.3) satisfies

f–x+1/σ (–w) = –fx(w). (3.7)

Proof With Nhx = P(x – 1/σ < Z ≤ x), using the fact that Z d= –Z and Z is continuous, we
have

Nh–x+1/σ = P(–x < Z ≤ –x + 1/σ ) = P(x – 1/σ ≤ –Z < x) = P(x – 1/σ < Z ≤ x) = Nhx.

Writing the solution of the Stein equation as in (3.4), i.e.,

fx(w) = ew2/2
∫ w

–∞

[
1(x– 1

σ ,x](t) – Nhx
]
e–t2/2 dt,

we get that

f–x+1/σ (–w) = ew2/2
∫ –w

–∞

[
1(–x,–x+ 1

σ ](t) – Nh–x+ 1
σ

]
e–t2/2 dt

= –ew2/2
∫ w

∞

[
1[x– 1

σ ,x)(u) – Nhx
]
e–u2/2 du

= ew2/2
∫ ∞

w

[
1(x– 1

σ ,x](u) – Nhx
]
e–u2/2 du = –fx(w)

by (3.5). �

We now give some basic bounds and properties of the function fx and the term Nhx

appearing in the Stein equation (3.3).

Lemma 3.2 For x ∈R, let fx be the solution of (3.3). Then
(a) 0 ≤ f ′

x(w) ≤ 1, w ∈ (x – 1/σ , x],
(b) fx is continuous, increasing on the interval w ∈ (x – 1/σ , x], and decreasing otherwise,
(c) if σ 2 ≥ 1, then

∣
∣fx(w)

∣
∣ ≤ 1

σ
, w ∈ R, (3.8)
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(d) if σ 2 ≥ 1, then

Nhx = P(x – 1/σ < Z ≤ x) ≤ Ce–|x|

σ

for some positive absolute constant C.

Proof The proof is given in the Appendix. �

Remark 1 Although in proving Theorem 1.1, we will choose x to be of the form x = (k –
μ)/σ , k ∈ [0, n] ∩Z, the bounds of Lemma 3.2 hold for arbitrary x ∈R.

3.2 Concentration inequalities and other bounds
In this section, we derive some useful bounds and concentration inequalities that will be
used in the proofs of Theorems 1.1 and 3.1. Theorem 3.1 provides a bound on the error in
the local normal approximation of W ∗ and is crucial in our proof of Theorem 1.1. As in
the statement of Theorem 1.1, we also assume that σ 2 ≥ 1. For the remainder of the paper,
throughout the proofs, C denotes an absolute constant that may take different values in
different places.

As in our problem W is a bounded random variable, EW q is finite for all q ≥ 1, and since
EW = 0 and Var(W ) = 1, it is trivial that EW 2 = 1 for all n. Lemma 3.3 below gives a bound
on EW q, which is uniform in n when q is even.

Lemma 3.3 For all n ∈N, we have

EW 2m ≤ p(2m), m ∈N, (3.9)

where p(2m) denotes the number of partitions of 2m, i.e., the number of ways that 2m may
be expressed as a sum of positive integers irrespective of order.

Proof Let P1(2m) denote the set of partitions of 2m that do not contain 1. So (r1, . . . , rk) ∈
P1(2m) if and only if r1, . . . , rk ∈N \ {1} and

∑k
j=1 rj = 2m.

By expanding W 2m and taking expectations we see that each (r1, . . . , rk) ∈ P1(2m) gives
a nonzero contribution to EW 2m of the form

∑

(i1,...,ik )∈An
k

k∏

j=1

Eξ
rj
ij , (3.10)

where An
k is the set of k-tuples (i1, . . . , ik) with positive integer entries of at most n, such

that no two elements of the k-tuple are the same. Since Eξi = 0 for each i, we do not need to
consider the terms where any rj = 1 as these terms give zero contribution to EW 2m. Also,
since |ξi| ≤ 1 for each i, we have |ξij |rj ≤ ξ 2

ij , and so (3.10) is bounded in absolute value by
(
∑n

i=1 Eξ 2
i )k = 1.

As the number of terms of the form (3.10) in the expansion of EW 2m is no more than
p(2m), we have EW 2m ≤ p(2m), as required. �

Lemma 3.4 There exists an absolute constant C such that for all n,

Ee(1+|W |)2 ≤ C. (3.11)
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Proof First, we show that there is an absolute constant C such that EeW 2 ≤ C for all n. By
a Taylor expansion we have

EeW 2
= 1 +

∞∑

m=1

EW 2m

m!
≤ 1 +

∞∑

m=1

p(2m)
m!

(3.12)

by Lemma 3.3. The second sum in (3.12) does not depend on n, and it converges by the
root test and the fact that limm→∞ p(2m)1/2m = 1 [22, Sect. 6.4]. Thus we have that, uni-
formly in n, EeW 2 ≤ C < ∞. Since (1 + |W |)2m ≤ 22m(1 + |W |2m), we have E(1 + |W |)2m ≤
max{22m+1, 22m+1

E|W |2m}. Again, applying Lemma 3.3 and the root test to the Taylor ex-
pansion of Ee(1+|W |)2 give the result. �

Remark 2 As W is a bounded random variable, it is trivial that the expectation in (3.11)
is finite. However, as the support of W depends on n, the utility of Lemma 3.4 is that we
can bound the expectation by the same constant for all n.

We now give two concentration inequalities that are used in the proofs of Theorems 1.1
and 3.1.

Lemma 3.5 For all a ≤ b < ∞,

P(a ≤ W ≤ b) ≤ b – a +
2
σ

, (3.13)

and

P(a ≤ W ≤ b) ≤ C
(

b – a +
1
σ

)

e–2a (3.14)

for some absolute positive constant C.

Proof (3.13) follows immediately from Proposition 3.1 from [2] upon noting that since
σ 2 ≥ 1, we have 1[|ξi|>1] ≡ 0 and 1[|ξi|≤1] ≡ 1, and thus since |Xi – pi| ≤ 1,

β3 :=
n∑

i=1

E|ξi|31[|ξi|≤1] =
1
σ 3

n∑

i=1

E|Xi – pi|3 ≤ 1
σ 3

n∑

i=1

E|Xi – pi|2 =
1
σ

.

The proof of (3.14) is similar to that of Lemma 3.1 and Proposition 8.1 from [2], and so we
only give the essential differences.

Set γ =
∑n

i=1 E|ξi|3, so that we have γ = σ –3 ∑n
i=1 E|Xi – μi|3 ≤ σ –3 ∑n

i=1 E|Xi – μi|2 =
1/σ . We observe that for each t > 0, EetW ≤ A < ∞, for some constant A, which depends
only on t. This may be verified in a similar way to the proof of Lemma 3.4 or by applying
Lemma 8.1 of [2].

Let δ = γ /2 and define

f (w) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if w < a – δ,

e2w(w – a + δ) if a – δ ≤ w ≤ b + δ,

e2w(b – a + 2δ) if w > b + δ,
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for which f ′(w) ≥ 0 and f ′(w) ≥ e2w for w ∈ (a – δ, b + δ). Arguing in the same way as in the
lead up to (8.16) in [2], we find

EWf (W ) ≥ e–2δ(H1 – H2), (3.15)

where

H1 =
[
Ee2W 1[a,b](W )

]
[ n∑

i=1

E|ξi|min
(
δ, |ξi|

)
]

and

H2 = E

[

e2W

∣
∣
∣
∣
∣

n∑

i=1

{|ξi|min
(
δ, |ξi|

)
– E|ξi|min

(
δ, |ξi|

)}
∣
∣
∣
∣
∣

]

.

Using min(x, y) ≥ y – y2/4x for x > 0 and y > 0, we get

n∑

i=1

E|ξi|min
(
δ, |ξi|

) ≥
n∑

i=1

{
Eξ 2

i – E|ξi|3/4δ
}

= 1/2,

so that H1 ≥ 1
2 e2aP(a ≤ W ≤ b).

Also, arguing as in [2], we may bound H2 as H2 ≤ Cδ, where C is an absolute constant.
On the other hand, since 0 ≤ f (w) ≤ e2w(b – a + 2δ) for all w, by the Cauchy–Schwarz

inequality we have

0 ≤ EWf (W ) ≤ (b – a + 2δ)
(
EW 2)1/2(

Ee4W )1/2 ≤ C(b – a + 2δ), (3.16)

where C is an absolute constant.
Rearranging (3.15) as H1 ≤ e2δ

EWf (W ) + H2 and using our bounds for H1 and H2 to-
gether with (3.16) imply that

1
2

e2aP(a ≤ W ≤ b) ≤ C(b – a + δ), (3.17)

which in turn implies (3.14) since γ ≤ 1/σ . �

Remark 3 It is easy to check that (3.14) holds in the more general case that X1, X2, . . . is a
uniformly bounded sequence, i.e., where there exists a constant A such that |Xi| ≤ A for
all i. If a and b are both negative, then the bound implied by (3.14) may not be useful as the
factor e–a may be large. In this case, as –W is also a sum of mean zero uniformly bounded
random variables, we have

P(a ≤ W ≤ b) = P
(|b| ≤ –W ≤ |a|) ≤ C

(

b – a +
1
σ

)

e–2|b|. (3.18)

3.3 Local approximation of W∗

We now prove a nonuniform bound concerning normal approximation of W ∗ that forms
a key step in our proof of Theorem 1.1.
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Theorem 3.1 If hx(w) = 1(x– 1
σ ,x](w), x ∈R, then

∣
∣Ehx

(
W ∗) – Nhx

∣
∣ ≤ Ce–|x|

σ 2

for some positive absolute constant C.

Proof Throughout the proof, we write f and f ′ in place of fx and f ′
x , where fx is the solution

of the Stein equation (3.3). From (3.3) we have

∣
∣Ehx

(
W ∗) – Nhx

∣
∣ =

∣
∣E

{
f ′(W ∗) – W ∗f

(
W ∗)}∣∣ =

∣
∣E

{
Wf (W ) – W ∗f

(
W ∗)}∣∣

≤ ∣
∣E

{
W

[
f (W ) – f

(
W ∗)]}∣∣ +

∣
∣E

{
f
(
W ∗)[W – W ∗]}∣∣. (3.19)

For the first term of (3.19), we use the fact there exists a random W̄ between W and W ∗

such that f (W ) – f (W ∗) = f ′(W̄ )(W – W ∗). From (2.4), W – W ∗ = ξ ∗
I – ξI , and hence by

(2.3), |W – W ∗| ≤ 1/σ . Therefore we may bound the first term of (3.19) as

∣
∣EW

[
f (W ) – f

(
W ∗)]∣∣ ≤ 1

σ

3∑

i=1

E
∣
∣f ′(W̄ )W

∣
∣1Ai (W̄ ), (3.20)

where A1 = (–∞, x – 1/σ ], A2 = (x – 1/σ , x], and A3 = (x,∞).
Since from (3.3), f ′(w) = wf (w) – Nhx for w ∈ A1 and |f (w)| = (

√
2π )Nhxew2/2�(w) in this

case, we have

E
∣
∣f ′(W̄ )W

∣
∣1A1 (W̄ ) ≤ (

√
2π )NhxE

∣
∣W W̄ eW̄ 2/2�(W̄ )

∣
∣1A1 (W̄ ) + Nhx. (3.21)

As |W̄ | ≤ |W | + 1/σ ≤ |W | + 1, the Cauchy–Schwarz inequality, together with Lemmas
3.3 and 3.4, shows that E|W W̄eW̄ 2/2| may be bounded by the same absolute constant for
each n, since

E
∣
∣W W̄ eW̄ 2/2∣∣ ≤ EW 2e

1
2 (1+|W |)2

+ E
∣
∣We

1
2 (1+|W |)2 ∣∣

≤ (
EW 4)1/2(

Ee(1+|W |)2)1/2 +
(
EW 2)1/2(

Ee(1+|W |)2)1/2 ≤ C.

Thus from (3.21) and the nonuniform bound for Nhx by Lemma 3.2(d) we get

E
∣
∣f ′(W̄ )W

∣
∣1A1 (W̄ ) ≤ Ce–|x|

σ
. (3.22)

In exactly the same way, we also find

E
∣
∣f ′(W̄ )W

∣
∣1A3 (W̄ ) ≤ Ce–|x|

σ
. (3.23)

For the second term in (3.20), as |W – W̄ | ≤ 1/σ and W̄ ∈ A2, this implies W ∈ [x – 2/σ , x +
1/σ ]. Since |f ′| ≤ 1 on A2, by Lemma 3.2(a) we have

E
∣
∣f ′(W̄ )W

∣
∣1A2 (W̄ ) ≤ max

{|x – 2/σ |, |x + 1/σ |}P(x – 2/σ ≤ W ≤ x + 1/σ ). (3.24)
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To bound (3.24) further, we now consider three subcases according to the signs of x – 2/σ
and x + 1/σ .

Subcase 1: x – 2/σ ≥ 0. In this case, applying (3.14), we find

E
{∣
∣f ′(W̄ )W

∣
∣1A2 (W̄ )

} ≤ C(x + 1/σ )e–2(x–2/σ )

σ
≤ Ce–x

σ

since xe–2x ≤ Ce–x for x ≥ 0.
Subcase 2: x + 1/σ ≤ 0. In this case, noting that |x – 2/σ | = |x + 1/σ | + 3/σ and applying

(3.18), we have

E
{∣
∣f ′(W̄ )W

∣
∣1A2 (W̄ )

} ≤ C|x – 2/σ |e–2|x+1/σ |

σ
≤ Ce–|x|

σ
.

Subcase 3: x – 2/σ ≤ 0 ≤ x + 1/σ . In this case, we have |W | ≤ 3/σ , and so using (3.13)
gives

E
{∣
∣f ′(W̄ )W

∣
∣1A2 (W̄ )

} ≤ 3
σ

(
5
σ

)

≤ Ce–|x|

σ
,

as |x| ≤ 2/σ ≤ 2.
Considering all three subcases, we see that

E
{∣
∣f ′(W̄ )W

∣
∣1A2 (W̄ )

} ≤ Ce–|x|

σ
,

and so together with (3.22) and (3.23), by (3.20) the first term of (3.19) satisfies

E
∣
∣W

[
f (W ) – f

(
W ∗)]∣∣ ≤ Ce–|x|

σ 2 . (3.25)

Now we focus on the second term in (3.19). We have

E
∣
∣f

(
W ∗)(W – W ∗)∣∣ = E

∣
∣f

(
W ∗)(W – W ∗)∣∣1Ac

2

(
W ∗) +E

∣
∣f

(
W ∗)(W – W ∗)∣∣1A2

(
W ∗).

From (3.6), |f (W ∗)| ≤ (
√

2π )Nhxe(W∗)2/2 when W ∗ ∈ Ac
2, and so

E
∣
∣f

(
W ∗)(W – W ∗)∣∣1Ac

2

(
W ∗) ≤ (

√
2π )Nhx

σ
Ee(W∗)2/2 ≤ Ce–|x|

σ 2

using Lemma 3.2(d) and the fact that |W ∗| ≤ |W | + 1/σ with Lemma 3.4.
Also, since |f (w)| ≤ 1/σ , we get

E
∣
∣f

(
W ∗)(W – W ∗)∣∣1A2

(
W ∗) ≤ 1

σ 2 P(x – 2/σ ≤ W ≤ x + 1/σ ) ≤ Ce–|x|

σ 2

as W ∗ ∈ A2 implies W ∈ [x – 2/σ , x + 1/σ ]. Hence

E
∣
∣f

(
W ∗)(W – W ∗)∣∣ ≤ Ce–|x|

σ 2 ,
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which, together with (3.25), shows that

∣
∣Ehx

(
W ∗) – Nhx

∣
∣ ≤ Ce–|x|

σ 2 , (3.26)

as required. �

Remark 4 A uniform version of Theorem 3.1, i.e., showing that there is a constant C not
depending on x such that |Ehx(W ∗) – Nhx| ≤ C/σ 2, may be obtained in a similar manner
using, instead of (3.14), the concentration inequality P(a ≤ W ≤ b) ≤ 2(1 + a)–1(b – a +
(2 +

√
2)/σ ) for 0 ≤ a < b. The proof of this concentration inequality follows the same

basic structure as that of (3.14) and allows us to derive an explicit constant in the uniform
case.

4 Proof of Theorem 1.1
Before proceeding to the proof of Theorem 1.1, we observe that with our choice of test
functions, the result in Theorem 3.1 may be written as

∣
∣
∣
∣P

(

x –
1
σ

< W ∗ ≤ x
)

– P
(

x –
1
σ

< Z ≤ x
)∣

∣
∣
∣ ≤ Ce–|x|

σ 2 . (4.1)

Specializing to values of x of the form x = k–μ

σ
, k ∈ [0, n] ∩Z, (4.1) becomes

∣
∣P

(
k – 1 < σW ∗ + μ ≤ k

)
– P(k – 1 < σZ + μ ≤ k)

∣
∣ ≤ Ce–| k–μ

σ |

σ 2 . (4.2)

We define the integer-valued random variables Zμ,σ 2 and W ∗
μ,σ 2 , which are discretizations

of σZ + μ and σW ∗ + μ, respectively, as

P(Zμ,σ 2 = k) = P
(

k – μ – 1
σ

< Z ≤ k – μ

σ

)

, k ∈ Z, (4.3)

P
(
W ∗

μ,σ 2 = k
)

= P
(

k – μ – 1
σ

< W ∗ ≤ k – μ

σ

)

, k ∈ Z. (4.4)

The result of Theorem 3.1, specialized to x = (k – μ)/σ , k ∈ [0, n] ∩Z, may then be written
as

∣
∣P(Zμ,σ 2 = k) – P

(
W ∗

μ,σ 2 = k
)∣
∣ ≤ Ce–| k–μ

σ |

σ 2 . (4.5)

In Sect. 3.1, our main reason for working with the normalized sums W , rather than with
the raw sums S, was to allow us to use the zero-bias framework of [21]. It is also more
straightforward to derive properties of the solution to the simple Stein equation (2.2) com-
pared to the general form in (3.1). We have now translated the results of Theorem 3.1,
regarding the centered random variables W and Z, to statements about the uncentered
random variables Zμ,σ 2 and W ∗

μ,σ 2 in (4.5).
For the remainder of this section, we will work directly with the raw uncentered sums S

rather than with W . Now for fixed k, we define the test function gk as gk(w) = 1(k–1,k](w),
so that for k ∈ Z, Egk(S) = P(S = k).
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Lemma 4.1 If Z ∼ N(μ,σ 2) and gk(w) = 1(k–1,k](w), then Egk(Z) = (σ
√

2π )–1 ×
exp{– (k–μ)2

2σ 2 } + R, where

(a) |R| ≤ 1
σ 2

√
2πe

, and

(b) |R| ≤ C
σ 2 e–| k–μ

σ |

for some positive absolute constant C.

Proof By the mean value theorem for integrals we have

Ngk := Egk(Z) =
∫ k

k–1

1
σ
√

2π
e– (t–μ)2

2σ2 dt =
1

σ
√

2π
e– (c–μ)2

2σ2

for some c ∈ (k – 1, k). Then with φ the N(μ,σ 2) density function, by the mean value
theorem

∣
∣
∣
∣

1
σ
√

2π
e– (k–μ)2

2σ2 –
1

σ
√

2π
e– (c–μ)2

2σ2

∣
∣
∣
∣ ≤ φ′(d)

for some d ∈ (c, k), as |k – c| ≤ 1. As the maximum absolute value of the gradient on the
normal N(μ,σ 2) density curve is 1/(σ 2√2πe), this completes the proof of (a).

For (b), since |te–t2/2| ≤ 2.2e–|t| for all t ∈R, we have

|R| ≤ ∣
∣φ′(d)

∣
∣ =

1
σ 2

√
2π

∣
∣
∣
∣

(
d – μ

σ

)

e– 1
2 ( d–μ

σ )2
∣
∣
∣
∣ ≤ C

σ 2 e–| d–μ
σ |,

which completes the proof as d ∈ (k – 1, k). �

Remark 5 We will use part (b) of Lemma 4.1 to obtain the nonuniform bound in Theorem
1.1. If we only care about giving a uniform bound, then part (a) suffices.

We now give the proof of Theorem 1.1.

Proof With Ngk and R as in the proof of Lemma 4.1, by the triangle inequality we have

∣
∣
∣
∣P(S = k) –

1
σ
√

2π
e– (k–μ)2

2σ2

∣
∣
∣
∣ ≤ ∣

∣P(S = k) – Ngk
∣
∣ + |R|

≤ ∣
∣P(S = k) – P

(
S(I) + 1 = k

)∣
∣ (4.6)

+ |P(
S(I) + 1 = k

)
– Ngk| (4.7)

+
C
σ 2 e–| k–μ

σ |,

where S(I) = S – XI , and as in Lemma 2.1, I is a random index with distribution P(I = i) =
σ 2

i /σ 2.
We now consider each term, (4.6) and (4.7), in turn.
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For (4.6), using Lemma 7.1 from [2], as in their proof of Theorem 7.1, we have

∣
∣P(S = k) – P

(
S(I) + 1 = k

)
∣
∣
∣
∣
∣
=

1
σ 2 |E

{[ n∑

i=1

(1 – pi)(Xi – pi)

]

1(S = k)

}∣
∣
∣
∣
∣
. (4.8)

Now, for each γ ∈N, by Hölder’s inequality we have

∣
∣
∣
∣
∣
E

{[ n∑

i=1

(1 – pi)(Xi – pi)

]

1(S = k)

}∣
∣
∣
∣
∣
≤ E

{∣
∣
∣
∣
∣

n∑

i=1

(1 – pi)(Xi – pi)

∣
∣
∣
∣
∣
1(S = k)

}

≤
(

E

∣
∣
∣
∣
∣

n∑

i=1

(1 – pi)(Xi – pi)

∣
∣
∣
∣
∣

2γ )1/2γ
(
P(S = k)

)1–1/2γ . (4.9)

Arguing as in the proof of Lemma 3.3, we find

(

E

∣
∣
∣
∣
∣

n∑

i=1

(1 – pi)(Xi – pi)

∣
∣
∣
∣
∣

2γ )1/2γ

≤ p(2γ )1/2γ σ , (4.10)

where p(2γ ) is the number of partitions of 2γ .
Now we use the concentration inequality (3.14) to bound P(S = k). In the case k = μ, we

may choose ε ∈ (0, 1) sufficiently small so that (k – ε/2 – μ)/σ and (k + ε/2 – μ)/σ are of
the same sign. In the case that (k – ε/2 – μ)/σ > 0, we have

P(S = k) = P(k – ε/2 ≤ S ≤ k + ε/2) = P
(

k – ε/2 – μ

σ
≤ W ≤ k + ε/2 – μ

σ

)

≤ C
(

ε

σ
+

1
σ

)

e–( k–ε/2–μ
σ ),

and so letting ε → 0+, we get P(S = k) ≤ Cσ –1e–( k–μ
σ ).

In the case that (k + ε/2 – μ)/σ < 0, from (3.18) we get that

P(S = k) ≤ C
(

ε

σ
+

1
σ

)

e–| k+ε/2–μ
σ |,

so that P(S = k) ≤ Cσ –1e–| k–μ
σ |.

Finally, in the case k = μ, we have from (3.13) that for each ε ∈ (0, 1), P(S = k) ≤ C{(ε +
1)/σ }, and so P(S = k) ≤ Cσ –1 = Cσ –1e–| k–μ

σ |.
Hence for each k, we have

P(S = k) ≤ Ce–| k–μ
σ |

σ
. (4.11)

From (4.8) and (4.9) and our bounds (4.10) and (4.11) we get, upon upon letting γ → ∞
and using the fact that limγ→∞ p(2γ )1/2γ = 1 [22, Sect. 6.4], that (4.6) may be bounded as

∣
∣P(S = k) – P

(
S(I) + 1 = k

)∣
∣ ≤ Ce–| k–μ

σ |

σ 2 .
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Now we consider (4.7). Recalling that W =
∑n

i=1 ξi, where ξi = (Xi – pi)/σ , and W ∗ d= W –
ξI + ξ ∗

I with ξ ∗
i ∼ (U – pi)/σ and U uniform on [0, 1], we see that

P
(
W ∗

μ,σ 2 = k
)

= P
(
k – 1 < σW ∗ + μ ≤ k

)
= P

(
k – 1 < S(I) + U ≤ k

)
= P

(
S(I) = k – 1

)
,

and so S(I) + 1 d= W ∗
μ,σ 2 . As we clearly also have P(Zμ,σ 2 = k) = Ngk , (4.5) implies that

∣
∣P

(
S(I) + 1 = k

)
– Ngk

∣
∣ ≤ Ce–| k–μ

σ |

σ 2 ,

completing the proof. �

Appendix: Proof of Lemma 3.2
We will use the standard Gaussian tail inequalities

we–w2/2

(1 + w2)
√

2π
≤ 1 – �(w) ≤ e–w2/2

w
√

2π
, w ≥ 0. (A.1)

We also observe that by (3.3) we may write f ′
x as

f ′
x(w) = wew2/2

∫ w

–∞

[
1(x– 1

σ ,x](t) – Nhx
]
e–t2/2 dt + 1(x– 1

σ ,x](w) – Nhx (A.2)

= –wew2/2
∫ ∞

w

[
1(x– 1

σ ,x](t) – Nhx
]
e–t2/2 dt + 1(x– 1

σ ,x](w) – Nhx. (A.3)

Proof (a) In this case, 1(x– 1
σ ,x](w) = 1.

Case 1: w ≥ 0.
For all t ∈R, we have

–Nhxe–t2/2 ≤ [
1(x– 1

σ ,x](t) – Nhx
]
e–t2/2 ≤ (1 – Nhx)e–t2/2, (A.4)

so that integrating over [w,∞] gives

–(
√

2π )
[
1 – �(w)

]
Nhx ≤

∫ ∞

w

[
1(x– 1

σ ,x](t) – Nhx
]
e–t2/2 dt

≤ (
√

2π )
[
1 – �(w)

]
(1 – Nhx).

From (A.3) we get

– (
√

2π )wew2/2[1 – �(w)
]
(1 – Nhx) + (1 – Nhx)

≤ f ′
x(w) ≤ (

√
2π )wew2/2[1 – �(w)

]
Nhx + (1 – Nhx),

from which (A.1) gives 0 ≤ f ′
x(w) ≤ 1.
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Case 2: w < 0.
Integrating (A.4) over (–∞, w) gives

–(
√

2π )�(w)Nhx ≤
∫ w

–∞

[
1(x– 1

σ ,x](t) – Nhx
]
e–t2/2 dt ≤ (

√
2π )�(w)(1 – Nhx),

implying

–(
√

2π )
[
1 – �

(|w|)]Nhx ≤
∫ w

–∞

[
1(x– 1

σ ,x](t) – Nhx
]
e–t2/2 dt (A.5)

≤ (
√

2π )
[
1 – �

(|w|)](1 – Nhx). (A.6)

Now using (A.2) and recalling w < 0, (A.5) and (A.6) give

(
√

2π )wew2/2[1 – �
(|w|)](1 – Nhx) + (1 – Nhx)

≤ f ′
x(w) ≤ –(

√
2π )wew2/2[1 – �

(|w|)]Nhx + (1 – Nhx)

or

– (
√

2π )|w|ew2/2[1 – �
(|w|)](1 – Nhx) + (1 – Nhx)

≤ f ′
x(w) ≤ (

√
2π )|w|ew2/2[1 – �

(|w|)]Nhx + (1 – Nhx),

and so applying (A.1) gives 0 ≤ f ′
x(w) ≤ 1.

(b) From (3.6) we see that fx is piecewise continuous and is easily checked to be con-
tinuous at w = x – 1/σ and w = x. From (3.3) and (3.6) we get f ′

x(w) = (
√

2π )Nhxwew2/2[1 –
�(w)] – Nhx for w > x, and this is ≤ 0 for w < 0 and also, by (A.1), for w ≥ 0. Hence fx is
decreasing on (x,∞). A similar argument shows that fx is decreasing on (–∞, x – 1/σ ]. The
fact that fx is increasing over (x – 1/σ , x] follows from (a).

(c) Using (A.1), we have limw→∞ fx(w) = limw→–∞ fx(w) = 0. From parts (a) and (b) we
know that fx is continuous and increasing on the interval w ∈ (x – 1/σ , x] and decreasing
otherwise. It follows that the global maximum and minimum of fx occur at w = x and
w = x – 1/σ , respectively, and so

fx(x – 1/σ ) ≤ fx(w) ≤ fx(x) for all w ∈R.

By Lemma 3.1, to show that |fx(w)| ≤ 1/σ , we may assume that x ≥ 0. We first obtain an
upper bound for fx. We know that the global maximum of fx occurs at w = x and equals
fx(x) =

√
2πNhxex2/2[1 – �(x)] and that

0 ≤ fx(x) ≤
(∫ x

x–1/σ
e–t2/2 dt

)

ex2/2. (A.7)

Case 1: x – 1
σ

≥ 0.
Subcase 1.1: 0 ≤ x ≤ σ /2.
From (A.7) and the fact that 1 – �(x) ≤ 1/2 we have

0 ≤ fx(x) ≤ e– 1
2 (x– 1

σ )2 ex2/2

2σ
=

ex/σ e– 1
2σ2

2σ
≤ e1/2

2σ
≤ 1

σ
.
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Subcase 1.2: x > σ /2.
As 1 – �(x) ≤ (x

√
2π )–1e–x2/2 and Nhx = (

√
2π )–1 ∫ x

x–1/σ e– 1
2 t2 dt ≤ (σ

√
2π )–1, we have

0 ≤ fx(x) ≤ Nhx

x
≤ 2Nhx

σ
≤ 2

σ 2
√

2π
≤ 1

σ

as σ 2 ≥ 1.
Case 2: x – 1

σ
≤ 0 ≤ x, i.e., 0 ≤ x ≤ 1/σ . In this case,

0 ≤ fx(x) ≤ √
2πNhxex2/2(1 – �(x)

) ≤ e1/2σ 2

2σ
≤ 1

σ

as σ ≥ 1.
Now we obtain a lower bound for fx. The global minimum of fx occurs at w = x – 1/σ ,

and we have

0 > fx(x – 1/σ ) = –
√

2πNhxe
1
2 (x– 1

σ )2
�(x – 1/σ ).

Case 1: x – 1
σ

≥ 0.
In this case,

Nhx =
1√
2π

∫ x

x–1/σ
e– 1

2 t2
dt ≤ 1

σ
√

2π
e– 1

2 (x– 1
σ )2

,

and so

∣
∣fx(x – 1/σ )

∣
∣ ≤ 1

σ
.

Case 2: x – 1
σ

≤ 0 ≤ x. In this case, using Nhx ≤ (σ
√

2π )–1 and �(x – 1/σ ) ≤ 1/2, we have

∣
∣fx(x – 1/σ )

∣
∣ ≤ e 1

2 (x–1/σ )2

2σ
≤ e1/2σ 2

2σ
≤ e1/2

2σ
≤ 1

σ
.

Considering all cases above, we see that for each fixed x ∈R, we have

∣
∣fx(w)

∣
∣ ≤ 1

σ
, w ∈R.

(d) We have Nhx = (
√

2π )–1 ∫ x
x–1/σ e–t2/2 dt.

Case 1: x ≥ 1.
In this case, Nhx ≤ (σ

√
2π )–1e– 1

2 (x–1/σ )2 and e– 1
2 (x–1/σ )2 = e1/σ 2–x2/2+x/σ ≤ e.e–x2/2+x ≤ Ce–x

using the fact that σ ≥ 1.
Case 2: x ≤ –1.
In this case, Nhx ≤ (σ

√
2π )–1e–x2/2 and e–x2/2 ≤ Ce–|x|.

Case 3: |x| < 1.
In this case, as e–|x| ∈ (e–1, 1) and Nhx ≤ (σ

√
2π )–1 for all x, it follows that Nhx ≤ Ce–|x|

σ

for |x| < 1. �
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