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Abstract
We study the following nonlinear mass supercritical Kirchhoff equation:

–
(
a + b

∫

RN
|∇u|2

)
�u +μu = f (u) in R

N ,

where a,b,m > 0 are prescribed, and the normalized constrain
∫
RN |u|2 dx =m is

satisfied in the case 1≤ N ≤ 3. The nonlinearity f is more general and satisfies weak
mass supercritical conditions. Under some mild assumptions, we establish the
existence of ground state when 1≤ N ≤ 3 and obtain infinitely many radial solutions
when 2 ≤ N ≤ 3 by constructing a particular bounded Palais–Smale sequence.
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1 Introduction and main results
In this paper, we are concerned with the existence of ground normalized solutions and in-
finitely many radial normalized solutions to the following nonlinear Kirchhoff-type prob-
lem

–
(

a + b
∫

RN
|∇u|2

)
�u + μu = f (u) (1.1)

having the prescribed mass

∫

RN
|u|2 dx = m (1.2)

for a priori given a, b, m > 0 and f satisfying appropriate assumptions.
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To find the solutions of equation (1.1), we have two different choices. We can fix μ ∈ R

and look for solutions as critical points of the associated energy functional

Iμ(u) =
a
2
‖∇u‖2

2 +
b
4
‖∇u‖4

2 +
1
2
μ‖u‖2

2 –
∫

RN
F(u) dx,

where F(t) =
∫ t

0 f (s) ds. Alternatively, we can look for solutions to (1.1) having prescribed
mass (1.2). In this case the frequency μ ∈ R is part of the unknown and will appear as a
Lagrange multiplier. Similarly to the first case, the solutions of (1.1) are critical points of
the functional

I(u) =
a
2
‖∇u‖2

2 +
b
4
‖∇u‖4

2 –
∫

RN
F(u) dx (1.3)

under the constraint

u ∈ Sm =
{

u ∈ H1(
R

N)
: ‖u‖2

2 = m
}

. (1.4)

This case seems particularly interesting from the physical point of view, and hence we
focus on this issue.

Recall that in the case where f (u) = |u|p–2u, Ye [1] first proposed that the mass critical
exponent for the Kirchhoff constraint minimization problem should be

p = 2 +
8
N

,

which is the threshold exponent for many dynamical properties. The mass critical expo-
nent divides the fixed mass problem into the following three cases: the mass subcritical,
critical, and supercritical cases. At first, Ye [1] made a detailed analysis of the existence
behavior of the normalized solution in these three cases. Luo and Wang [2] considered
the multiplicity of solutions in the mass supercritical case where N = 3. Later, Ye [3] made
a further study in the mass critical case, obtaining a mountain pass critical point. After-
ward, the problem involving potentials such as trapping and periodic potentials has been
exploited and further developed in other contexts; we refer to [4–8].

Recently, normalized solutions for Kirchhoff equation with general nonlinearity at-
tracted much more attention. Chen and Xie [9] first generalized the special case to general
nonlinearities f satisfying limt→0

f (t)
|t| = 0 and limt→∞ F(t)

|t| 14
3

= +∞ and proved the existence

and multiplicity of solutions under some mild conditions on f in the case N = 3. Under a
sequence of technical assumptions, Tang and Chen [10] studied the nonautonomous case
with indefinite potential K(x)f (u), establishing the existence of normalized solutions for
both mass supercritical and subcritical cases. More recently, He, Lv, Zhang, and Zhong
[11] considered the general nonlinearities for mass supercritical case in the dimension
1 ≤ N ≤ 3. To make it more precise, it is convenient to recall the following assumptions.

(H0) f : R →R is continuous and odd.
(H1) There exists (α,β) ∈ R

2
+ satisfying 2 + 8

N < α ≤ β < 2∗ such that

0 < αF(t) ≤ f (t)t ≤ βF(t) for all t ∈R\{0},

where 2∗ := 2N
N–2 for N = 3 and 2∗ := +∞ for N = 1, 2.
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(H2) The function defined by F̃(t) := f (t)t – 2F(t) is of class C1 and satisfies

F̃ ′(t)t > αF̃(t) for all t ∈R.

In [11], under (H0)–(H2), they obtained a radial ground state normalized solution by con-
structing a min-max structure and compactness analysis. Afterward, [12] discussed the
same results by a global branch approach. Here the normalized ground state solution is a
solution of (1.1) having the minimal energy among all the solutions belonging to Sm.

Our aim in this paper is relaxing the growth assumptions (H0)–(H2) in the mass su-
percritical case and extending the previous results on the existence of ground state in
H1(RN ) and the multiplicity in H1

r (RN ). Compared with the mass subcritical case, the con-
strained functional I|Sm is no longer bounded from below and coercive, and the weaker
and more natural mass supercritical assumptions make the problem more complicated.
Indeed, since the functional has no global minimum on Sm, we need to identify a sus-
pected critical level; the Palais–Smale sequences may not be bounded and have no con-
vergent subsequence in H1(RN ), which brings great difficulties to our proof. Before stating
our main results, we present the following weaker assumptions on f .

(f0) f : R →R is continuous.
(f1) limt→0 f (t)/|t|1+ 8

N = 0.
(f2) limt→∞ f (t)/|t|5 = 0 if N = 3; limt→∞ f (t)/eγ t2 = 0 for all γ > 0 if N = 2.
(f3) limt→∞ F(t)/|t|2+ 8

N = +∞.
(f4) t �→ F̃(t)/|t|2+ 8

N is strictly decreasing on (–∞, 0) and strictly increasing on (0,∞).
(f5) f (t)t < 6F(t) for all t ∈R\{0} if N = 3.
It is not difficult to see that (H0)–(H2) are somehow similar to those in [13]. Notice that

the first part of (H1) is the known Ambrosetti–Rabinowitz condition, which not only plays
an important role in the mass supercritical case, but also helps to obtain the boundedness
of constrained Palais–Smale sequence. Inspired by [14–16], where a Nehari-type condi-
tion is used instead of the Ambrosetti–Rabinowitz condition, we propose the weaker ver-
sions of (f3) and (f4) instead of the first parts of (H1) and (H2). In addition, (f5) is a weaker
version of the second part, which guarantees the positivity of the Lagrange multiplier μ.
The following example shows that (f0)–(f5) are weaker than (H0)–(H2). Let

αN :=

⎧⎨
⎩

1 for N = 1, 2,
2
3 for N = 3,

f (t) :=
[(

2 +
8
N

)
ln(1 + αN ) +

αN |t|αN

1 + |t|αN

]
|t| 8

N t

with the primitive function F(t) := |t|2+ 8
N ln(1 + αN ). By a straightforward calculation we

can easily see that f satisfies (f0)–(f5) instead of (H1).

Theorem 1.1 Let 1 ≤ N ≤ 3 and assume that (f0)–(f5) hold. Then (1.1)–(1.2) admits a
ground state for any m > 0. In particular, if f is odd, then (1.1)–(1.2) admits a positive
ground state for any m > 0. Moveover, the associated Lagrange multiplier μ is positive.

Remark 1.2 The Lagrange multiplier μ > 0 is crucial to prove the compactness of embed-
ding. When N = 1, 2, we only need assumptions (f0)–(f4) for this purpose.
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Now we briefly describe the difficulties encountered in the present paper and sketch our
strategy to find normalized ground state solutions to (1.1). Define

Em := inf
u∈Pm

I(u), (1.5)

where

Pm :=
{

u ∈ Sm

∣∣∣ P(u) = a‖∇u‖2
2 + b‖∇u‖4

2 –
N
2

∫

RN
F̃(u) dx

}
. (1.6)

SincePm is a natural constraint of I|Sm , by proving that Em > 0 we identify the possible crit-
ical level Em. Notice that I is coercive on Pm if we can construct a Palais–Smale sequence
on Pm, then it is bounded. To find a Palais–Smale sequence satisfying Pm(u) = 0, we adopt
the arguments of [17, 18]. Notice that here F̃ is not C1, so we apply the techniques intro-
duced in [19, 20]. Thus we manage to construct a bounded Palais–Smale sequence {un}
by Lemma 4.1. Although the work space in general does not embed compactly into any
space Lp(RN ), inspired by [21], we finally overcome the lack of compactness by a series of
arguments.

Remark 1.3 By the definition of Em we can see that any minimizer u ∈ Pm of Em is a nor-
malized ground state solution of (1.1)–(1.2). However, despite this fact, it seems not a good
choice to prove Theorem 1.1 by solving directly the minimization problem. The main rea-
son why we choose a Palais–Smale sequence {un} ∈Pm instead of a minimizing sequence
of Em is that the nontrivial weak limit u ∈ H1(RN ) with s := ‖u‖2

2 ∈ (0, m] of minimizing
sequence may not be in the Pohozaev manifold Ps.

Theorem 1.4 Let 1 ≤ N ≤ 3 and assume that (f0)–(f5) hold. Then the function m �→ Em is
positive and continuous, and limm→0+ Em = +∞.

Theorem 1.5 Let 2 ≤ N ≤ 3 and assume that f is odd satisfying (f0)–(f5). Then (1.1)–(1.2)
has infinitely many radial solutions {uk}∞k=1 for any m > 0.

To prove Theorem 1.5, we work in H1
r (RN ). Since f is odd, it follows that I is even on Sm.

Combining this with the genus theory, we can construct an infinite sequence of critical
level Em,k . Meanwhile, it is not difficult to show that Em,k is nondecreasing and positive.
Then by an argument similar to the proof of Theorem 1.1 we obtain the existence of in-
finitely many radial solutions.

This paper is organized as follows. In Sect. 2, we collect some preliminary results. Sec-
tion 3 is devoted to the proof of Theorem 1.4. The proof of Theorem 1.1 is given in Sect. 4.
In Sect. 5, we prove Theorem 1.5. In this paper, “:=” denotes definition; ‖u‖p denotes the
Lp-norm; ‖u‖ is used only for the norm in H1(RN ); H1

r (RN ) stands for the space of radially
symmetric functions in H1(RN ); “⇀” denotes weak convergence in the related function
space; and u– = – min{0, u} stands for the negative part of u.
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2 Preliminaries and functional setting
In this section, we give several preliminary lemmas. For the notational convenience, we
define

Bm :=
{

u ∈ H1(
R

N) | ‖u‖2
2 ≤ m

}

for m > 0.

Lemma 2.1 Let 1 ≤ N ≤ 3. Assume that f satisfies (f0)–(f2).
(i) For any m > 0, there exists δ = δ(N , m) > 0 sufficiently small such that

a
4
‖∇u‖2

2 ≤ I(u) ≤ a‖∇u‖2
2 +

b
4
‖∇u‖4

2

for u ∈ Bm with ‖∇u‖2 ≤ δ.
(ii) Let {un} be a bounded sequence in H1(RN ). If limn→∞ ‖un‖2+ 8

N
= 0, then

lim
n→∞

∫

RN
F(un) dx = 0 = lim

n→∞

∫

RN
F̃(un) dx. (2.1)

(iii) Let {un} and {vn} be bounded sequences in H1(RN ). Assume that
limn→∞ ‖un‖2+ 8

N
= 0. Then

lim
n→∞

∫

RN
f (un)vn dx = 0.

Proof (i) It suffices to show that there exists a sufficiently small δ = δ(N , m) > 0 such that

∫

RN

∣∣F(u)
∣∣dx ≤ a

4
‖∇u‖2

2 for all u ∈ Bm with ‖∇u‖2 ≤ δ. (2.2)

If N = 3, then by (f0)–(f2)

∀ε > 0,∃Cε > 0 :
∣∣F(t)

∣∣ ≤ ε|t| 10
3 + Cε|t|6.

For any u ∈ Bm, by the Gagliardo–Nirenberg inequality we deduce

∫

R3

∣∣F(u)
∣∣dx ≤ ε‖u‖ 10

3
10
3

+ Cε‖u‖6
6

≤ εCm
2
3 ‖∇u‖2

2 + CεC′‖∇u‖6
2

=
[
εCm

2
3 + CεC′‖∇u‖4

2
]‖∇u‖2

2,

where C, C′ > 0. Then we derive (2.2) by taking

ε :=
a

8Cm 2
3

and δ :=
(

a
8CεC′

) 1
4

.
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If N = 2, then let γ := 1
m+1 . For any ε > 0, by (f0)–(f2) there exists C′

ε > 0 such that |f (t)| ≤
ε|t|3 + C′

ε|t|5eγ t2/2 for all t ∈ R. Since

∫ t

0
τ 5eγ τ2/2 dτ =

1
γ

t4(eγ t2/2 – 1
)

–
4
γ

∫ t

0
τ 3(eγ τ2/2 – 1

)
dτ

≤ 1
γ

t4(eγ t2/2 – 1
)

for all t ≥ 0,

it follows that |F(t)| ≤ ε|t|4 + 1
γ

C′
ε|t|4(eγ t2/2 –1) for all t ∈R. This, together with the Moser–

Trudinger inequality, implies that there exists C1 > 0 such that

∫

R2

(
eγ u2

– 1
)

dx ≤ C2
1 for all u ∈ Bm with ‖∇u‖2 ≤ 1.

For all δ ∈ (0, 1) and u ∈ Bm with ‖∇u‖2 ≤ δ, by the Hölder and Gagliardo–Nirenberg
inequalities we have

∫

R2

∣∣F(u)
∣∣dx ≤ ε‖u‖4

4 +
1
γ

C′
ε

∫

R2
u4(eγ u2/2 – 1

)
dx

≤ ε‖u‖4
4 +

1
γ

C′
ε‖u‖4

8

[∫

R2

(
eγ u2/2 – 1

)2 dx
] 1

2

≤ ε‖u‖4
4 +

1
γ

C′
ε‖u‖4

8

[∫

R2

(
eγ u2

– 1
)

dx
] 1

2

≤ εC2m‖∇u‖2
2 + C1C3C′

εm
1
2 (m + 1)‖∇u‖3

2

≤ [
εC2m + C1C3C′

εm
1
2 (m + 1)δ

]‖∇u‖2
2,

where C2, C3 > 0 are independent of m, ε, δ, and u. Taking ε > 0 and δ ∈ (0, 1) small enough,
we derive (2.2) with N = 2.

In the case N = 1, since H1(R) ↪→ L∞(R), there exists K > 0 such that

‖u‖∞ ≤ K for all u ∈ Bm with ‖∇u‖2 ≤ 1.

Let ε > 0 and δ ∈ (0, 1). By (f0) and (f1) there exists C′′
ε > 0 such that |F(t)| ≤ εt6 + C′′

ε t10

for |t| ≤ K . Therefore, for all u ∈ Bm with ‖∇u‖2 ≤ δ, the Gagliardo–Nirenberg inequality
implies that

∫

R

∣∣F(u)
∣∣dx ≤ ε‖u‖6

6 + C′′
ε ‖u‖10

10

≤ εC4m2‖∇u‖2
2 + C5C′′

ε m3‖∇u‖4
2

≤ (
εC4m2 + C5C′′

ε m3δ2)‖∇u‖2
2,

where C4, C5 > 0 are independent of m, ε, δ, and u. Choosing ε > 0 and δ ∈ (0, 1) small
enough, (2.2) holds with N = 1.

We only prove (ii) and (iii) in the case N = 2; the other cases can be presented similarly.
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(ii) Since {un} is bounded in H1(RN ), we can take a sufficiently large L > 0 such that
supn≥1 ‖un‖ ≤ L. Let γ := 1

L2 . It follows by the Moser–Trudinger inequality that there exists
D > 0 such that

sup
n≥1

∫

R2

(
eγ u2

n – 1
)

dx ≤ D. (2.3)

For given ε > 0, from (f0)–(f2) we obtain the existence of Dε > 0 such that

∣∣F̃(t)
∣∣ ≤ ε

(
eγ t2

– 1
)

+ Dεt6

for t ∈R. Then
∫

R2

∣∣F̃(un)
∣∣dx ≤ ε

∫

R2

(
eγ u2

n – 1
)

dx + Dε‖un‖6
6 ≤ εD + Dε‖un‖6

6.

By the arbitrariness of ε and limn→∞ ‖un‖6 = 0, we derive limn→∞
∫
R2 F̃(un) dx = 0. By a

similar argument we can show that

lim
n→∞

∫

R2
F(un) dx = 0 if lim

n→∞‖un‖6 = 0.

(iii) In view of (2.3), it follows that

sup
n≥1

∫

R2

(
eγ u2

n/2 – 1
)2 dx ≤ sup

n≥1

∫

R2

(
eγ u2

n – 1
)

dx ≤ D.

Let ε > 0 be arbitrary. By (f0)–(f2) there exists D′
ε > 0 such that

∣∣f (t)
∣∣ ≤ ε

(
eγ t2/2 – 1

)
+ D′

εt5

for t ∈R. Then we have
∫

R2

∣∣f (un)vn
∣∣dx ≤ ε

∫

R2

(
eγ u2

n/2 – 1
)|vn|dx + D′

ε

∫

R2
|un|5|vn|dx

≤ ε

[∫

R2

(
eγ u2

n/2 – 1
)2 dx

] 1
2 ‖vn‖2 + D′

ε‖un‖5
6‖vn‖6

≤ ε
√

D‖vn‖2 + D′
ε‖un‖5

6‖vn‖6.

As a result, limn→∞
∫
RN f (un)vn dx = 0. �

Remark 2.2 Under the assumptions of Lemma 2.1, for any m > 0, as in the proof of (2.2)
with minor changes, there exists δ = δ(N , m) > 0 sufficiently small such that

∫

RN

∣∣F̃(u)
∣∣dx ≤ a

N
‖∇u‖2

2

for u ∈ Bm with ‖∇u‖2 ≤ δ. Thus it follows that

P(u) := a‖∇u‖2
2 + b‖∇u‖4

2 –
N
2

∫

RN
F̃(u) dx ≥ a

2
‖∇u‖2

2

for u ∈ Bm with ‖∇u‖2 ≤ δ.
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For u ∈ H1(RN ) and s ∈ R, define the radial dilation

(s 
 u)(x) := e
Ns
2 u

(
esx

)
for a.e. x ∈R

N .

It is straightforward to check that s 
 u ∈ H1(RN ) and ‖s 
 u‖2
2 = ‖u‖2

2 for every s ∈R.

Lemma 2.3 Let 1 ≤ N ≤ 3. Assume that f satisfies (f0)–(f3). Then for all u ∈ H1(RN )\{0},
we have

(i) I(s 
 u) → 0+ as s → –∞ and
(ii) I(s 
 u) → –∞ as s → +∞.

Proof (i) Let m := ‖u‖2
2 > 0. The fact that s 
 u ∈ Sm ⊂ Bm and ‖∇(s 
 u)‖2 = es‖∇u‖2, com-

bined with Lemma 2.1(i), implies

a
4

e2s‖∇u‖2
2 ≤ I(s 
 u) ≤ ae2s‖∇u‖2

2 +
b
4

e4s‖∇u‖4
2.

Then lims→–∞ I(s 
 u) = 0+.
(ii) For λ ≥ 0, we define the function

hλ(t) :=

⎧
⎨
⎩

F(t)

|t|2+ 8
N

+ λ for t �= 0,

λ for t = 0.
(2.4)

Obviously, F(t) = hλ(t)|t|2+ 8
N –λ|t|2+ 8

N for t ∈R. By (f0), (f1), and (f3), we can easily see that
hλ is continuous and

hλ(t) → +∞ as t → ∞.

Taking λ > 0 sufficiently large such that hλ(t) ≥ 0 for all t ∈R, by Fatou’s lemma we deduce

lim
s→+∞

∫

RN
hλ

(
e

Ns
2 u

)|u|2+ 8
N dx = +∞.

From

I(s 
 u) =
a
2
∥∥∇(s 
 u)

∥∥2
2 +

b
4
∥∥∇(s 
 u)

∥∥4
2 + λ‖s 
 u‖2+ 8

N
2+ 8

N
–

∫

RN
hλ(s 
 u)|s 
 u|2+ 8

N dx

= e4s
[

e–2s a
2
‖∇u‖2

2 +
b
4
‖∇u‖4

2 + λ‖u‖2+ 8
N

2+ 8
N

–
∫

RN
hλ

(
e

Ns
2 u

)|u|2+ 8
N dx

]
(2.5)

we conclude that I(s 
 u) → –∞ as s → +∞. �

Remark 2.4 Let 1 ≤ N ≤ 3. Assume that f satisfies (f0), (f1), and (f4). Define g by

g(t) :=

⎧⎨
⎩

f (t)t–2F(t)

|t|2+ 8
N

for t �= 0,

0 for t = 0.
(2.6)

Clearly, g is continuous, strictly decreasing on (–∞, 0], and strictly increasing on [0,∞).
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Lemma 2.5 Let 1 ≤ N ≤ 3. If f satisfies (f0), (f1), (f3), and (f4)„ then

f (t)t >
(

2 +
8
N

)
F(t) > 0 for all t �= 0.

Proof The proof of the lemma is divided into several claims.

Claim 1 F(t) > 0 for all t �= 0.

Suppose by contradiction that there exists some t0 �= 0 such that F(t0) ≤ 0. According to
(f1) and (f3), we can see that F(t)

|t|2+ 8
N

reaches the global minimum at some τ �= 0 satisfying

F(τ ) ≤ 0 and

[
F(t)

|t|2+ 8
N

]′

t=τ

=
f (τ )τ – (2 + 8

N )F(τ )

|τ |3+ 8
N sign(τ )

= 0.

Since Remark 2.4 yields f (t)t > 2F(t) for all t �= 0, we deduce

0 < f (τ )τ – 2F(τ ) =
8
N

F(τ ) ≤ 0,

a contradiction.

Claim 2 There exist a positive sequence {τ+
n } and a negative sequence {τ–

n } such that
|τ±

n | → 0 and f (τ±
n )τ±

n > (2 + 8
N )F(τ±

n ) > 0 for n ≥ 1.

We only consider the existence of {τ+
n }. Suppose by contradiction that there exists Ts > 0

sufficiently small such that f (t)t ≤ (2 + 8
N )F(t) for t ∈ (0, Ts]. From Claim 1 we obtain

F(t)

|t|2+ 8
N

≥ F(Ts)

|Ts|2+ 8
N

> 0 for t ∈ (0, Ts]

in contradiction with limt→0
F(t)

|t|2+ 8
N

= 0.

Claim 3 There exist a positive sequence {ς+
n } and a negative sequence {ς–

n } such that
|ς±

n | → +∞ and f (ς±
n )ς±

n > (2 + 8
N )F(ς±

n ) > 0 for n ≥ 1.

We only prove the existence of {ς–
n }. Otherwise, there would exist Tl > 0 such that f (t)t ≤

(2 + 8
N )F(t) for t ≤ –Tl . Then

F(t)

|t|2+ 8
N

≤ F(–Tl)

T2+ 8
N

l

< +∞ for t ≤ –Tl,

a contradiction to (f3).

Claim 4 f (t)t ≥ (2 + 8
N )F(t) for all t �= 0.
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Assume by contradiction that there exists t0 �= 0 such that f (t0)t0 < (2 + 8
N )F(t0). Without

loss of generality, we may assume that t0 < 0. Claims 2 and 3 imply that there exist τ1, τ2 ∈R

such that τ1 < t0 < τ2 < 0,

f (t)t <
(

2 +
8
N

)
F(t) for all t ∈ (τ1, τ2), (2.7)

and

f (t)t =
(

2 +
8
N

)
F(t) if t = τ1, τ2. (2.8)

From (2.7) it follows that

F(τ1)

|τ1|2+ 8
N

<
F(τ2)

|τ2|2+ 8
N

. (2.9)

In addition, (2.8) and (f4) imply that

F(τ1)

|τ1|2+ 8
N

=
N
8

F̃(τ1)

|τ1|2+ 8
N

>
N
8

F̃(τ2)

|τ2|2+ 8
N

=
F(τ2)

|τ2|2+ 8
N

. (2.10)

Thus (2.9) and (2.10) give a contradiction.

Claim 5 f (t)t > (2 + 8
N )F(t) for all t �= 0.

According to Claim 4, the function F(t)

|t|2+ 8
N

is nonincreasing on (–∞, 0) and nondecreas-

ing on (0,∞). Combining this with (f4), we deduce that the function f (t)

|t|1+ 8
N

is strictly in-

creasing on (–∞, 0) and (0,∞). Thus, for all t �= 0, we have

(
2 +

8
N

)
F(t) =

(
2 +

8
N

)∫ t

0
f (s) ds

<
(

2 +
8
N

)
f (t)

|t|1+ 8
N

∫ t

0
|s|1+ 8

N ds = f (t)t,

which concludes the proof. �

Lemma 2.6 Let 1 ≤ N ≤ 3. Assume that f satisfies (f0)–(f4). Then for all u ∈ H1(RN )\{0},
the following statements hold.

(i) There exists a unique s(u) ∈R such that P(s(u) 
 u) = 0.
(ii) I(s(u) 
 u) > I(s 
 u) for s �= s(u). Moveover, I(s(u) 
 u) > 0.

(iii) u �→ s(u) is continuous in u ∈ H1(RN )\{0}.
(iv) s(u(· + y)) = s(u) for all y ∈R

N . If f is odd, then s(–u) = s(u).

Proof (i) Recalling that

I(s 
 u) =
a
2

e2s‖∇u‖2
2 +

b
4

e4s‖∇u‖4
2 – e–Ns

∫

RN
F
(
e

Ns
2 u

)
dx,
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I(s 
 u) clearly is in C1. By a straightforward calculation it follows that

d
ds

I(s 
 u) = ae2s‖∇u‖2
2 + be4s‖∇u‖4

2 –
N
2

e–Ns
∫

RN
F̃
(
e

Ns
2 u

)
dx = P(s 
 u).

In view of Lemma 2.3, we have

lim
s→–∞ I(s 
 u) = 0+ and lim

s→+∞ I(s 
 u) = –∞.

Hence there exists s(u) ∈ R such that I(s 
 u) reaches the global maximum at s(u), and

P
(
s(u) 
 u

)
=

d
ds

I
(
s(u) 
 u

)
= 0.

By (2.6)

F̃(t) = g(t)|t|2+ 8
N for all t ∈R,

and then

P(s 
 u) = e4s
[

ae–2s‖∇u‖2
2 + b‖∇u‖4

2 –
N
2

∫

RN
g
(
e

Ns
2 u

)|u|2+ 8
N dx

]
.

By (f4) and Remark 2.4 the function s �→ g(e Ns
2 u) is strictly increasing. Combining this with

the monotonicity of e–2s, we derive the uniqueness of s(u).
(ii) This statement is contained in the proof of (i).
(iii) By (i) we can see that u �→ s(u) is well-defined. To prove the continuity of s(u), as-

sume that un → u in H1(RN )\{0}. Let sn := s(un) for n ≥ 1. It is sufficient to prove that up
to a subsequence, sn → s(u) as n → ∞.

We claim that {sn} is bounded. Indeed, recalling the definition and properties of hλ in
(2.4), it follows from Lemma 2.5 that h0(t) ≥ 0 for all t ∈ R. If, up to a subsequence, sn →
+∞, then the fact that un → u �= 0 a.e. x ∈R

N , together with Fatou’s lemma, implies

lim
n→∞

∫

RN
h0

(
e

Nsn
2 un

)|un|2+ 8
N dx = +∞.

Coming back to (ii) and (2.5) with λ = 0, we conclude

0 ≤ e–4sn I(sn 
 un) = e–2s a
2
‖∇un‖2

2 +
b
4
‖∇un‖4

2 –
∫

RN
h0

(
e

Ns
2 un

)|un|2+ 8
N dx

→ –∞, (2.11)

a contradiction. Thus {sn} is bounded from above.
By (ii) we have

I(sn 
 un) ≥ I
(
s(u) 
 un

)
for all n ≥ 1.

Then since s(u) 
 un → s(u) 
 u in H1(RN ), we have

I
(
s(u) 
 un

)
= I

(
s(u) 
 u

)
+ on(1),
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and thus

lim inf
n→∞ I(sn 
 un) ≥ I

(
s(u) 
 u

)
> 0. (2.12)

Considering {sn 
 un} ⊂ Bm for m > 0 sufficiently large, by Lemma 2.1(i) and the fact that

∥∥∇(sn 
 un)
∥∥

2 = esn‖∇un‖2,

from (2.12) we conclude that {sn} is bounded from below.
Since {sn} is bounded, there exists some s∗ ∈R such that sn → s∗. Recalling that un → u

in H1(RN ), we have sn 
 un → s∗ 
 u in H1(RN ). The fact that P(sn 
 un) = 0 implies

P(s∗ 
 u) = 0.

By (i) we infer s∗ = s(u), and thus the proof is completed.
(iv) For any y ∈R

N , by a change of variables in the integrals we have

P
(
s(u) 
 u(· + y)

)
= P

(
s(u) 
 u

)
= 0,

which means s(u(· + y)) = s(u) by (i). If f is odd, then

P
(
s(u) 
 (–u)

)
= P

(
–
(
s(u) 
 u

))
= P

(
s(u) 
 u

)
= 0.

Therefore s(–u) = s(u). �

In what follows, we consider some statements about the Pohozeav manifold

Pm :=
{

u ∈ Sm

∣∣∣ P(u) = a‖∇u‖2
2 + b‖∇u‖4

2 –
N
2

∫

RN
F̃(u) dx = 0

}
.

Lemma 2.7 Let 1 ≤ N ≤ 3. Assume that f satisfies (f0)–(f4). Then
(i) Pm �= ∅,

(ii) infu∈Pm ‖∇u‖2 > 0,
(iii) infu∈Pm I(u) > 0,
(iv) I is coercive on Pm, i.e., I(un) → +∞ for any {un} ⊂Pm with ‖un‖ → ∞.

Proof (i) This item is a direct conclusion of Lemma 2.6(i).
(ii) We suppose by contradiction that there exists {un} ⊂ Pm such that ‖∇un‖2 → 0. In

view of Remark 2.2, we have

0 = P(un) ≥ a
2
‖∇un‖2

2 > 0 for n large enough,

a contradiction. Thus infu∈Pm ‖∇u‖2 > 0.
(iii) For any u ∈Pm, thanks to Lemma 2.6(i),(ii), we deduce

I(u) = I(0 
 u) ≥ I(s 
 u) for s ∈R.
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Letting δ be as in Lemma 2.1(i), and let s := ln( δ
‖∇u‖2

). Obviously, ‖∇(s 
 u)‖2 = δ. Then
Lemma 2.1(i) implies

I(u) ≥ I(s 
 u) ≥ a
4
∥∥∇(s 
 u)

∥∥2
2 =

a
4
δ2,

and hence (iii) follows.
(iv) Assume by contradiction that there exists a sequence {un} ⊂ Pm with ‖un‖ → ∞

such that supn≥1 I(un) ≤ c for some c ∈ (0, +∞). For any n ≥ 1, let

sn := ln
(‖∇un‖2

)
and vn := (–sn) 
 un.

Then it is easy to see that sn → +∞, {vn} ⊂ Sm, and ‖∇vn‖2 = 1. Take

ρ := lim sup
n→∞

(
sup

y∈RN

∫

B(y,1)
|vn|2 dx

)
.

There are two possible cases, nonvanishing and vanishing.
The nonvanishing case. Up to a subsequence, there exist {yn} ⊂R

N and w ∈ H1(RN )\{0}
such that

wn := vn(· + yn) ⇀ w in H1(
R

N)
and wn → w a.e. in R

N .

According to (2.4) with λ = 0, since sn → +∞, by Lemma 2.5 and Fatou’s lemma we have

lim
n→∞

∫

RN
h0

(
e

Nsn
2 wn

)|wn|2+ 8
N dx = +∞.

From (iii) and (2.5) with λ = 0 we conclude

0 ≤ e–4sn I(un) = e–4sn I(sn 
 vn)

=
a
2

e–2sn +
b
4

–
∫

RN
h0

(
e

Nsn
2 vn

)|vn|2+ 8
N dx

=
a
2

e–2sn +
b
4

–
∫

RN
h0

(
e

Nsn
2 wn

)|wn|2+ 8
N dx → –∞,

a contradiction.
The vanishing case. By Lions’ lemma ([22, Lemma I.1]) vn → 0 in L2+ 8

N (RN ). In view of
Lemma 2.1(ii), we have

lim
n→∞ e–Ns

∫

RN
F
(
e

Ns
2 vn

)
dx = 0 for all s ∈R.

Noticing that P(sn 
 vn) = P(un) = 0, due to Lemma 2.6(i),(ii), we obtain that for all s ∈R,

c ≥ I(un) = I(sn 
 vn)

≥ I(s 
 vn) =
a
2

e2s +
b
4

e4s – e–Ns
∫

RN
F
(
e

Ns
2 vn

)
dx =

a
2

e2s +
b
4

e4s + on(1),

which leads a contradiction for s sufficiently large. Hence I is coercive on Pm. �
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Remark 2.8 Let 1 ≤ N ≤ 3. Assume that f satisfies (f0)–(f4) for any sequence {un} ⊂
H1(RN )\{0} such that

P(un) = 0, sup
n≥1

‖un‖2 < +∞, and sup
n≥1

I(un) < +∞.

Then by arguments similar to those in Lemma 2.7 {un} is bounded in H1(RN ).

3 The behavior of the function m �→ Em

The purpose of this section is to characterize the behavior of Em. Under (f0)–(f4), for any
m > 0, by Lemma 2.7 we see that

Em := inf
u∈Pm

I(u)

is well defined. In particular, the proof of Theorem 1.4 can be deduced from the following
lemmas.

Lemma 3.1 Let 1 ≤ N ≤ 3. Assume that f satisfies (f0)–(f4). Then Em > 0.

Proof The lemma is a direct consequence of Lemma 2.7(iii). �

Lemma 3.2 Let 1 ≤ N ≤ 3. Assume that f satisfies (f0)–(f4). Then m �→ Em is continuous.

Proof For m > 0, assume that mk → m as k → ∞. Then limk→∞ Emk = Em will follow from
(3.1) and (3.2). We first claim that

lim sup
k→∞

Emk ≤ Em. (3.1)

Indeed, for any u ∈Pm, define

uk :=
√

mk

m
u ∈ Smk , k ∈N

+.

The fact uk → u in H1(RN ), together with Lemma 2.6(iii), implies limk→∞ s(uk) = s(u) = 0,
and then

s(uk) 
 uk → s(u) 
 u = u in H1(
R

N)
as k → ∞.

Therefore

lim sup
k→∞

Emk ≤ lim sup
k→∞

I
(
s(uk) 
 uk

)
= I(u).

Since u ∈Pm is arbitrary, we have lim supk→∞ Emk ≤ Em.
We next to show that

lim inf
k→∞

Emk ≥ Em. (3.2)
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For any k ∈N
+, there exists vk ∈Pmk such that

I(vk) ≤ Emk +
1
k

. (3.3)

Define

tk :=
(

m
mk

) 1
N

and ṽk := vk(·/tk) ∈ Sm.

It follows from Lemma 2.6(ii) and (3.3) that

Em ≤ I
(
s(ṽk) 
 ṽk

) ≤ I
(
s(ṽk) 
 vk

)
+

∣∣I(s(ṽk) 
 ṽk
)

– I
(
s(ṽk) 
 vk

)∣∣

≤ I(vk) +
∣∣I(s(ṽk) 
 ṽk

)
– I

(
s(ṽk) 
 vk

)∣∣

≤ Emk +
1
k

+
∣∣I(s(ṽk) 
 ṽk

)
– I

(
s(ṽk) 
 vk

)∣∣

=: Emk +
1
k

+ C(k).

To complete the proof of (3.2), we only need to prove

lim
k→∞

C(k) = 0. (3.4)

Since s 
 (v(·/t)) = (s 
 v)(·/t), we obtain

C(k) =
∣∣∣∣
a
2
(
tN–2
k – 1

)∥∥∇(
s(ṽk) 
 vk

)∥∥2
2 +

b
4
(
tN–4
k – 1

)∥∥∇(
s(ṽk) 
 vk

)∥∥4
2

–
(
tN
k – 1

)∫

RN
F
(
s(ṽk) 
 vk

)
dx

∣∣∣∣

≤ a
2
∣∣tN–2

k – 1
∣∣ · ∥∥∇(

s(ṽk) 
 vk
)∥∥2

2 +
b
4
∣∣tN–4

k – 1
∣∣ · ∥∥∇(

s(ṽk) 
 vk
)∥∥4

2

+
∣∣tN

k – 1
∣∣ ·

∫

RN

∣∣F(
s(ṽk) 
 vk

)∣∣dx

=:
a
2
∣∣tN–2

k – 1
∣∣ · A(k) +

b
4
∣∣tN–4

k – 1
∣∣ · A(k)2 +

∣∣tN
k – 1

∣∣ · B(k).

The fact tk → 1 makes it clear that we will obtain (3.4) if

lim sup
k→∞

A(k) < +∞ and lim sup
k→∞

B(k) < +∞. (3.5)

Before proving (3.5), we justify the following three claims.

Claim 1 {vk} is bounded in H1(RN ).

Indeed, (3.1) and (3.3) imply that

lim sup
k→∞

I(vk) ≤ Em.

Noticing that vk ∈Pmk and mk → m, by Remark 2.8 we infer that Claim 1 follows.
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Claim 2 {ṽk} is bounded in H1(RN ), and there exist {yk} ⊂ R
N and v ∈ H1(RN ) such that,

up to a subsequence, ṽk(· + yk) → v �= 0 a.e. in R
N .

Indeed, combining tk → 1 with Claim 1, we deduce that {ṽk} is bounded in H1(RN ). Let

ρ := lim sup
k→∞

(
sup

y∈RN

∫

B(y,1)
|ṽk|2 dx

)
.

It suffices to show that ρ > 0. If ρ = 0, from Lions’ lemma ([22, Lemma I.1]) it follows that
ṽk → 0 in L2+ 8

N (RN ). Then

‖vk‖2+ 8
N

2+ 8
N

=
∥∥ṽk(tk·)

∥∥2+ 8
N

2+ 8
N

= t–N
k

∫

RN
|ṽk|2+ 8

N dx → 0.

By Lemma 2.1(ii) and P(vk) = 0 we obtain

a‖∇vk‖2
2 + b‖∇vk‖4

2 =
N
2

∫

RN
F̃(vk) dx → 0.

Thus we infer from Remark 2.2 that

0 = P(vk) ≥ a
2
‖∇vk‖2

2 > 0 for k large enough,

a contradiction.

Claim 3 lim supk→∞ s(ṽk) < +∞.

Indeed, we suppose by contradiction that, up to a subsequence,

s(ṽk) → +∞ as k → ∞. (3.6)

Coming back to Claim 2, it follows that, up to a subsequence,

ṽk(· + yk) → v �= 0 a.e. in R
N . (3.7)

By Lemma 2.6(iv) and (3.6) we have

s
(
ṽk(· + yk)

)
= s(ṽk) → +∞. (3.8)

Moveover, Lemma 2.6(ii) implies that

I
(
s
(
ṽk(· + yk)

)

 ṽk(· + yk)

)
> 0. (3.9)

Arguing as in (2.11) and using (3.7)–(3.9), we obtain a contradiction.
Now summing up Claim 1 and 3, we deduce that

lim sup
k→∞

∥∥s(ṽk) 
 vk
∥∥ < +∞,

which implies lim supk→∞ A(k) < +∞. Furthermore, since f satisfies (f0)–(f2), we can con-
clude that lim supk→∞ B(k) < +∞. Therefore (3.5) holds, and the lemma is completed. �
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Lemma 3.3 Let 1 ≤ N ≤ 3. Assume that f satisfies (f0)–(f4). Then Em → +∞ as m → 0+.

Proof We only need to show that for any sequence {un} ⊂ H1(RN )\{0} such that

P(un) = 0 and lim
n→∞‖un‖2 = 0,

we have I(un) → +∞ as n → ∞. Define

sn := ln
(‖∇un‖2

)
and vn := (–sn) 
 un.

Notice that ‖∇vn‖2 = 1 and ‖vn‖2 = ‖un‖2 → 0, and hence vn → 0 in L2+ 8
N (RN ). Thus it

follows from Lemma 2.1(ii) that

lim
n→∞ e–Ns

∫

RN
F
(
e

Ns
2 vn

)
dx = 0 for s ∈ R.

Since P(sn 
 vn) = P(un) = 0, by Lemma 2.6(i),(ii) we have

I(un) = I(sn 
 vn) ≥ I(s 
 vn)

=
a
2

e2s +
b
4

e4s – eNs
∫

RN
F
(
e

Ns
2 vn

)
dx =

a
2

e2s +
b
4

e4s + on(1).

By the arbitrariness of s ∈ R we deduce that I(un) → +∞. �

4 Ground states
This section is devoted to the proof of Theorem 1.1. The proof is divided into two main
steps: in the first part, we discuss the existence of a Palais–Smale sequence for I con-
strained on Sm; and in the second one, we study the convergence of the Palais–Smale se-
quence. For the rest of the proof, we suppose that 1 ≤ N ≤ 3 and f satisfies (f0)–(f4).

Lemma 4.1 There exists a Palais–Smale sequence {un} ⊂ Pm for I constrained on Sm at
the level Em. In addition, if f is odd, then ‖u–

n‖2 → 0.

The following our argument is somehow adopted from [17, 18]. Define the functional
� : H1(RN )\{0} →R by

�(u) := I
(
s(u) 
 u

)
=

a
2

e2s(u)‖∇u‖2
2 +

b
4

e4s(u)‖∇u‖4
2 – e–Ns(u)

∫

RN
F
(
e

Ns(u)
2 u

)
dx,

where s(u) ∈ R is given by Lemma 2.6. To prove Lemma 4.1, inspired by [19, Proposi-
tion 2.9] (see also [20, Proposition 9]), we first study several intermediate lemmas.

Lemma 4.2 For any u ∈ H1(RN )\{0} and ϕ ∈ H1(RN ), the functional � is in C1, and

d�(u)[ϕ] = ae2s(u)
∫

RN
∇u · ∇ϕ dx + be4s(u)

∫

RN
|∇u|2 dx

∫

RN
∇u · ∇ϕ dx

– e–Ns(u)
∫

RN
f
(
e

Ns(u)
2 u

)
e

Ns(u)
2 ϕ dx

= dI
(
s(u) 
 u

)[
s(u) 
 ϕ

]
.
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Proof For any u ∈ H1(RN )\{0} and ϕ ∈ H1(RN ), it is necessary to estimate the term

�(u + tϕ) – �(u) = I
(
st 
 (u + tϕ)

)
– I(s0 
 u),

where |t| is sufficiently small, and st := s(u + tϕ). Since s0 = s(u) is the maximum point of
I(s 
 u), combining this with the mean value theorem, we infer that

I
(
st 
 (u + tϕ)

)
– I(s0 
 u)

≤ I
(
st 
 (u + tϕ)

)
– I(st 
 u)

=
a
2

e2st

∫

RN

(∣∣∇(u + tϕ)
∣∣2 – |∇u|2)dx

+
b
4

e4st

[(∫

RN

∣∣∇(u + tϕ)
∣∣2 dx

)2

–
(∫

RN
|∇u|2 dx

)2]

– e–Nst

∫

RN

[
F
(
e

Nst
2 (u + tϕ)

)
– F

(
e

Nst
2 u

)]
dx

=
a
2

e2st

∫

RN

(
2t∇u · ∇ϕ + t2|∇ϕ|2)dx – e–Nst

∫

RN
f (e

Nst
2 (u + ηttϕ)e

Nst
2 tϕ dx

+
b
4

e4st

[
4t

∫

RN
|∇u|2 dx

∫

RN
∇u · ∇ϕ dx + 4t2

(∫

RN
∇u · ∇ϕ dx

)2

+ 2t2
∫

RN
|∇u|2 dx

∫

RN
|∇ϕ|2 dx

+ t3
∫

RN
∇u · ∇ϕ dx

∫

RN
|∇ϕ|2 dx + t4

(∫

RN
|∇ϕ|2 dx

)2

dx
]

,

where ηt ∈ (0, 1). Similarly, we also have

I
(
st 
 (u + tϕ)

)
– I(s0 
 u)

≥ I
(
s0 
 (u + tϕ)

)
– I(s0 
 u)

=
a
2

e2s0

∫

RN

(
2t∇u · ∇ϕ + t2|∇ϕ|2)dx – e–Ns0

∫

RN
f (e

Ns0
2 (u + τttϕ)e

Ns0
2 tϕ dx

+
b
4

e4s0

[
4t

∫

RN
|∇u|2 dx

∫

RN
∇u · ∇ϕ dx + 4t2

(∫

RN
∇u · ∇ϕ dx

)2

+ 2t2
∫

RN
|∇u|2 dx

∫

RN
|∇ϕ|2 dx

+ t3
∫

RN
∇u · ∇ϕ dx

∫

RN
|∇ϕ|2 dx + t4

(∫

RN
|∇ϕ|2 dx

)2

dx
]

,

where τt ∈ (0, 1). By Lemma 2.6(iii) we have limt→0 st = s0 = s(u). Combining the above two
inequalities, we conclude that the Gâteaux derivative of � exists and is given by

lim
t→0

�(u + tϕ) – �(u)
t

= ae2s(u)
∫

RN
∇u · ∇ϕ dx + be4s(u)

∫

RN
|∇u|2 dx

∫

RN
∇u · ∇ϕ dx

– e–Ns(u)
∫

RN
f
(
e

Ns(u)
2 u

)
e

Ns(u)
2 ϕ dx.
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Coming back to Lemma 2.6(iii) again, we get that the Gâteaux derivative is continuous in
u and � is C1 (see, e.g., [23, 24]). By a change of variables in the integrals we infer

d�(u)[ϕ] = a
∫

RN
∇(

s(u) 
 u
) · ∇(

s(u) 
 ϕ
)

dx

+ b
∫

RN

∣∣∇(
s(u) 
 u

)∣∣2 dx
∫

RN
∇(

s(u) 
 u
) · ∇(

s(u) 
 ϕ
)

dx

–
∫

RN
f
(
s(u) 
 u

)
s(u) 
 ϕ dx

= dI
(
s(u) 
 u

)[
s(u) 
 ϕ

]
.

The proof is completed. �

For any m > 0, we introduce the constrained functional

J := �|Sm : Sm →R.

As an immediate consequence of Lemma 4.2, we have the following lemma.

Lemma 4.3 For any u ∈ Sm and ϕ ∈ TuSm, the functional J : Sm →R is in C1, and

dJ(u)[ϕ] = d�(u)[ϕ] = dI
(
s(u) 
 u

)[
s(u) 
 ϕ

]
.

We recall a definition and the minimax principle under the standard boundary condi-
tion. By these we can establish a technical result, which helps us to obtain a “nice” Palais–
Smale sequence.

Definition 4.4 ([25, Definition 3.1]) Let B be a closed subset of a metric space X. We say
that a class G of compact subsets of X is a homotopy stable family with closed boundary
B if

(i) every set in G contains B and
(ii) for any set A ∈ G and any homotopy η ∈ C([0, 1] × X, X) satisfying η(t, u) = u for all

(t, u) ∈ ({0} × X) ∪ ([0, 1] × B), we have η({1} × A) ∈ G .

The above definition is still valid if the boundary B = ∅.

Lemma 4.5 ([25, Theorem 3.2]) Let ϕ be a C1-functional on a complete connected C1-
Finsler manifold X (without boundary) and consider a homotopy-stable family G of com-
pact subsets of X with closed boundary B. Set c = c(ϕ,G) = infA∈G maxx∈A ϕ(x) and suppose
that

supϕ(B) < c.

Then, for any sequence of sets (An)n in G such that limn supAn ϕ = c, there exists a sequence
(xn)n in X such that

(i) limn ϕ(xn) = c, (ii) limn ‖dϕ(xn)‖ = 0, and (iii) limn dist(xn, An) = 0.
Moveover, if dϕ is uniformly continuous, then xn can be chosen to be in An for each n.
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Lemma 4.6 Assume that G is a homotopy-stable family of compact subsets of Sm with
B = ∅. Define the level

Em,G := inf
A∈G

max
u∈A

J(u).

If Em,G > 0, then there exists a Palais–Smale sequence for I constrained on Sm at the level
Em,G . When f is odd and G is the class of singletons included in Sm, then ‖u–

n‖2 → 0.

Proof Let {An} ⊂ G be a minimizing sequence for Em,G . Set

η : [0, 1] × Sm → Sm, η(t, u) =
(
ts(u)

)

 u.

Then it follows from Lemma 2.6(iii) that η is continuous. Furthermore, η(t, u) = u for
(t, u) ∈ {0} × Sm. By the definition of G we have

Dn := η(1, An) =
{

s(u) 
 u | u ∈ An
} ∈ G. (4.1)

Obviously, Dn ⊂ Pm for n ∈ R
+. The fact that J(s(u) 
 u) = J(u) for all u ∈ An implies that

maxDn J = maxAn J → Em,G , and hence {Dn} ⊂ G is also a minimizing sequence of Em,G .
Therefore Lemma 4.5 yields a sequence {vn} ⊂ H1(RN ) such that, as n → ∞,

(1) J(vn) → Em,G ,
(2) dist(vn, Dn) → 0, and (3) ‖dJ(vn)‖vn ,∗ → 0, where ‖ · ‖u,∗ is the dual norm of (TuSm)∗.

That is, {vn} is a Palais–Smale sequence for J on Sm at level Em,G . Hereafter, set

sn := s(vn) and un := sn 
 vn = s(vn) 
 vn.

We will show that {un} ⊂Pm is a Palais–Smale sequence for I at level Em,G .

Claim There exists C > 0 such that e–2sn ≤ C, n = 1, 2, · · · .

Indeed, we can easily see that

e–2sn =
‖∇vn‖2

2
‖∇un‖2

2
.

Since {un} ⊂ Pm, by Lemma 2.7(ii) we infer that {‖∇un‖2} is bounded from below by a
positive constant. Thus the proof of Claim is reduced to showing that supn ‖∇vn‖2 < ∞.
Since Dn ⊂Pm, it is not difficult to check that

max
Dn

I = max
Dn

J → Em,G ,

and thanks to Lemma 2.7(iv), we have that {Dn} is uniformly bounded in H1(RN ). Then,
combining this with dist(vn, Dn) → 0, we derive supn ‖∇vn‖2 < ∞.

Noticing that {un} ⊂Pm again, we have

I(un) = J(un) = J(vn) → Em,G .
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Now it remains to prove that {un} ⊂ Pm is a Palais–Smale sequence for I . For any ψ ∈
Tun Sm, we can see that

∫

RN
vn

[
(–sn) 
 ψ

]
dx =

∫

RN
(sn 
 vn)ψ dx =

∫

RN
unψ dx = 0,

which implies (–sn) 
 ψ ∈ Tvn Sm. Using Claim, we derive ‖(–sn) 
 ψ‖ ≤ max{√C, 1}‖ψ‖.
Furthermore, it follows from Lemma 4.3 that

∥∥dI(un)
∥∥

un ,∗ = sup
ψ∈Tun Sm ,‖ψ‖≤1

∣∣dI(un)[ψ]
∣∣

= sup
ψ∈Tun Sm ,‖ψ‖≤1

∣∣dI(sn 
 vn)
[
sn 


(
(–sn)ψ

)]∣∣

= sup
ψ∈Tun Sm ,‖ψ‖≤1

∣∣dJ(vn)
[
(–sn) 
 ψ

]∣∣

≤ ∥∥dJ(vn)
∥∥

vn ,∗ · sup
ψ∈Tun Sm ,‖ψ‖≤1

∥∥(–sn) 
 ψ
∥∥

≤ max{√C, 1}∥∥dJ(vn)
∥∥

vn ,∗.

In view of ‖dJ(vn)‖vn ,∗ → 0, we conclude that ‖dI(un)‖un ,∗ → 0.
In particular, if f is odd, then we choose G as the class of singletons included in Sm. Obvi-

ously, G is a homotopy-stable family of compact subsets of Sm with B = ∅. The fact f is odd,
together with Lemma 2.6(iv), implies that J is even. Thus it is possible to choose a non-
negative minimizing sequence {An} ⊂ G ; then, naturally, the minimizing sequence {Dn} is
also nonnegative. By a similar argument as above, we can find a Palais–Smale sequence
{un} ⊂Pm for I constrained on Sm at the level Em,G satisfying

∥∥u–
n
∥∥2

2 =
∥∥s(vn) 
 v–

n
∥∥2

2 =
∥∥v–

n
∥∥2

2 → 0,

which concludes the proof. �

Proof of Lemma 4.1 Since Lemma 4.6 yields a Palais–Smale sequence for I constrained on
Sm at the level Em,G and Em > 0, we only need to prove that Em,G = Em. Clearly,

Em,G = inf
A∈G

max
u∈A

J(u) = inf
u∈Sm

I
(
s(u) 
 u

)
.

For any u ∈ Sm, since s(u) 
 u ∈Pm, we have I(s(u) 
 u) ≥ Em, which implies Em,G ≥ Em. On
the other hand, for any u ∈Pm, we infer I(u) = I(0 
 u) ≥ Em,G . Therefore Em,G ≤ Em. �

Lemma 4.7 Suppose (f5) holds. Let {un} be a bounded Palais–Smale sequence for I con-
strained on Sm at the level Em > 0 satisfying P(un) → 0. Then there exist u ∈ Sm and μ > 0
such that, up to a subsequence, un → u in H1(RN ) and –(a + b

∫
RN |∇u|2)�u + μu = f (u).

Proof Since {un} is bounded, by (f0)–(f2) we infer that limn ‖∇un‖2, limn
∫
RN F(un) dx, and

limn
∫
RN f (un)un dx exist. From ‖dI(un)‖un ,∗ → 0 and [26, Lemma 3] we deduce

–
(

a + b
∫

RN
|∇un|2

)
�un + μnun – f (un) → 0 in

(
H1(

R
N))∗, (4.2)
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where

μn := –
1
m

dI(un)[un].

Obviously, {μn} is a bounded sequence. In particular, from P(un) → 0, Lemma 2.5, and (f5)
it follows that

mμn =
∫

RN
f (un)un dx – a‖∇un‖2

2 – b‖∇un‖4
2

=
∫

RN
f (un)un dx –

N
2

∫

RN
F̃(un) dx + on(1)

=
∫

RN

[
NF(un) +

2 – N
2

f (un)un

]
dx + on(1)

≥ 0.

Thus, without loss of generality, we may assume that μn → μ ≥ 0. Then we show that {un}
is nonvanishing. Otherwise, using Lions’ lemma ([22, Lemma I.1)], we derive un → 0 in
L2+ 8

N (RN ). Therefore Lemma 2.1(ii) implies that
∫
RN F(un) dx → 0 and

∫
RN F̃(un) dx → 0.

Thanks to P(un) → 0, we deduce

a‖∇un‖2
2 + b‖∇un‖4

2 = P(un) +
N
2

∫

RN
F̃(un) dx → 0.

As a result,

0 < Em = lim
n→∞ I(un) =

a
2

lim
n→∞‖∇un‖2

2 +
b
4

lim
n→∞‖∇un‖4

2 – lim
n→∞

∫

RN
F(un) dx = 0,

a contradiction.
Thus, up to a subsequence, there exist {yn} ⊂R

N and u ∈ Bm\{0} such that

⎧⎪⎪⎨
⎪⎪⎩

un(· + yn) ⇀ u in H1(RN ),

un(· + yn) → u a.e. in R
N ,

un(· + yn) → u in Lp
loc(RN ) for p ∈ [1, 2∗).

In view of (4.2) and μn → μ, we can easily see that

–
(
a + b

∥∥∇un(· + yn)
∥∥2

2

)�un(· + yn) + μun(· + yn) – f
(
un(· + yn)

)

→ 0 in
(
H1(

R
N))∗, (4.3)

which means

(
a + b

∥∥∇un(· + yn)
∥∥2

2

)∫

RN
∇un(· + yn) · ∇ϕ dx + μ

∫

RN
un(· + yn)ϕ dx

–
∫

RN
f
(
un(· + yn)

)
ϕ dx = on(1) (4.4)
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for all ϕ ∈ C∞
0 (RN ). Since f satisfies (f0)–(f2), using the compactness lemma ([27, Lemma 2]

or [28, Lemma A.I]), we derive

lim
n→∞

∫

RN

∣∣[f
(
un(· + yn)

)
– f (u)

]
ϕ
∣∣dx ≤ ‖ϕ‖∞ lim

n→∞

∫

supp(ϕ)

∣∣f (un(· + yn)
)

– f (u)
∣∣dx = 0

for all ϕ ∈ C∞
0 (RN ). Defining B := limn→∞ ‖∇un‖2

2, we can see that

(a + bB)
∫

RN
∇u · ∇ϕ dx + μ

∫

RN
uϕ dx –

∫

RN
f (u)ϕ dx = 0. (4.5)

Testing (4.4)–(4.5) with ϕ = un(· + yn) – u, we deduce

(a + bB)
∥∥∇(

un(· + yn) – u
)∥∥2

2 + μ
∥∥un(· + yn) – u

∥∥2
2 = o(1), (4.6)

which implies that ‖∇(un(· + yn) – u)‖2
2 = o(1). Hence un(· + yn) → u in D1,2(RN ), and

‖∇un‖2
2 =

∥∥∇un(· + yn)
∥∥2

2 → ‖∇u‖2
2 = B.

So (4.5) can be expressed in the form

(
a + b‖∇u‖2

2
)∫

RN
∇u · ∇ϕ dx + μ

∫

RN
uϕ dx –

∫

RN
f (u)ϕ dx = 0

for all ϕ ∈ C∞
0 (RN ), which implies that u solves

–
(

a + b
∫

RN
|∇u|2

)
�u + μu = f (u).

Then by a similar argument as above we deduce that

mμ =
∫

RN
f (u)u dx – a‖∇u‖2

2 – b‖∇u‖4
2

=
∫

RN
f (u)u dx –

N
2

∫

RN
F̃(u) dx

=
∫

RN

[
NF(u) +

2 – N
2

f (u)u
]

dx

> 0.

Combining these with (4.6), we infer ‖un‖2
2 = ‖un(· + yn)‖2

2 = ‖u‖2
2. Thus u ∈ Sm, and the

lemma follows. �

Proof of Theorem 1.1 First, Lemmas 4.1 and 2.7(iv) yield a bounded Palais–Smale se-
quence {un} ⊂Pm for I constrained on Sm at the level Em > 0. By Lemma 4.7 we can show
the existence of a ground state u ∈ Sm at the level Em and the associated Lagrange mul-
tiplier μ > 0. In addition, if f is odd, then it follows from Lemma 4.1 that ‖u–

n‖2 → 0.
Applying Lemma 4.7 again, we can obtain a nonnegative ground state u ∈ Sm at the level
Em. Furthermore, it is not difficult to show that u > 0 by the strong maximum principle. �
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5 Radial solutions
In this section, we consider multiple solutions for problem (1.1)–(1.2) in the case 2 ≤ N ≤
3. Assume that f is odd and (f0)–(f5) hold. Define the transformation σ (u) = –u for u ∈
H1(RN ), and let X ⊂ H1(RN ). A set A ⊂ X satisfying σ (A) = A is said to be σ -invariant, and
for (t, u) ∈ [0, 1] × X, a homotopy η : [0, 1] × X → X is called σ -equivariant if η(t,σ (u)) =
σ (η(t, u)). For the subsequent proof, we now list some definitions and theorems.

Definition 5.1 ([25, Definition 7.1]) Let B be a σ -invariant subset of X ⊂ H1(RN ). We say
that a class G of compact subsets of X is a σ -homotopy-stable family with closed boundary
B if

(i) every set in G is σ -invariant,
(ii) every set in G contains B, and

(iii) for any set A ∈ G and any σ -equivariant η ∈ C([0, 1] × X, X) satisfying η(t, u) = u
for all (t, u) ∈ ({0} × X) ∪ ([0, 1] × B), we have η({1} × A) ∈ G .

Lemma 5.2 ([25, Theorem 7.2]) Let ϕ be a σ -invariant C1-functional on a complete con-
nected C2-Finsler manifold X (without boundary). Let G be a σ -homotopy-stable family
with closed boundary B. Set c = c(ϕ,G), and let F be a closed σ -invariant subset of X satis-
fying

F ∩ B = ∅ and F ∩ A = ∅ for all A in G

and

infϕ(F) ≥ c – δ.

Suppose 0 < δ < max{ 1
32 dist2(B, F), 1

8 [infϕ(F) – supϕ(B)]} Then, for any A in G satisfying
maxϕ(A) ≤ c + δ, there exists a sequence xδ ∈ X such that

(i) c – δ ≤ ϕ(xδ) ≤ c + 9δ; (ii) ‖dϕ(xδ)‖ ≤ 18
√

δ; (iii) dist(xδ , F) ≤ 5
√

δ; and
(iv) dist(xδ , A) ≤ 3

√
δ.

From now on, we set {Vk} ⊂ H1
r (RN ) be a strictly increasing sequence of finite-

dimensional linear subspaces such that dim Vk = k and
⋃

k≥1 Vk is dense in H1
r (RN ). To

better characterize the critical level, it is necessary to recall the definition of the genus of
a σ -invariant set and its properties (we refer to [29, Sect. 7] or [30]).

Definition 5.3 ([29]) For any nonempty closed σ -invariant set A ⊂ H1
r (RN ), the genus of

A is defined by

Ind(A) := min
{

k ∈N
+ | ∃ φ : A →R

k\{0},φ is odd and continuous
}

.

Remark that Ind(A) = ∞ if such φ does not exist and Ind(A) = 0 if A = ∅.
Let � denote the family of compact σ -invariant subsets of Sm ∩ H1

r (RN ). Define

Gk :=
{

A ∈ � | Ind(A) ≥ k
}
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and

Em,k := inf
A∈Gk

max
u∈A

J(u).

The fact that f is odd, combined with Lemma 2.6(iv), implies that the functional

J(u) = I
(
s(u) 
 u

)
=

a
2

e2s(u)‖∇u‖2
2 +

b
4

e4s(u)‖∇u‖4
2 – e–Ns(u)

∫

RN
F
(
e

Ns(u)
2 u

)
dx

is even in u ∈ Sm. As a consequence, J is σ -invariant on Sm. With the help of Lemma 5.2,
we establish the following existence result.

Lemma 5.4
(i) Gk �= ∅ for all k ∈ N

+.
(ii) Em,k+1 ≥ Em,k > 0 for all k ∈N

+.
(iii) For all k ∈ N

+, there exists a Palais–Smale sequence {un} ⊂Pm ∩ H1
r (RN ) for I

constrained on Sm ∩ H1
r (RN ) at the level Em,k .

Proof (i) For all k ∈N
+, Sm ∩ Vk ∈ �. In view of the properties of genus, we infer

Ind(Sm ∩ Vk) = k,

which implies that Gk �= ∅.
(ii) Combining Definition 5.1 with the properties of genus, we deduce that Gk is a σ -

homotopy-stable family of compact subsets of Sm ∩ H1
r (RN ), which guarantees that Em,k

is well defined. For each u ∈ A ∈ Gk , since s(u) 
 u ∈Pm, by Lemma 2.7(iii) we have

max
u∈A

J(u) = max
u∈A

I
(
s(u) 
 u

) ≥ inf
v∈Pm

I(v) > 0.

Therefore Em,k > 0. Recalling the definition of Gk , it follows that Gk+1 ⊂ Gk , which implies
Em,k+1 ≥ Em,k .

(iii) Since Gk is a σ -homotopy-stable family of compact subsets of Sm ∩ H1
r (RN ), replac-

ing Lemma 4.5 by Lemma 5.2 in the proof of Lemma 4.6, we can easily obtain the particular
Palais–Smale sequence. We omit it for brevity. �

Lemma 5.5 Let {un} be a bounded Palais–Smale sequence for I constrained on Sm ∩
H1

r (RN ) at an arbitrary level c > 0 satisfying P(un) → 0. Then there exist u ∈ Sm ∩ H1
r (RN )

and μ > 0 such that, up to a subsequence, un → u in H1
r (RN ) and –(a + b

∫
RN |∇u|2)�u +

μu = f (u).

Proof Since {un} is bounded, using (f0)–(f2), we infer that limn ‖∇un‖2, limn
∫
RN F(un) dx

and limn
∫
RN f (un)un dx exist. From ‖dI(un)‖un ,∗ → 0 and [26, Lemma 3] we have

–
(

a + b
∫

RN
|∇un|2

)
�un + μnun – f (un) → 0 in

(
H1

r
(
R

N))∗, (5.1)

where

μn := –
1
m

dI(un)[un].



Wang and Qian Journal of Inequalities and Applications         (2024) 2024:48 Page 26 of 28

By a similar argument as in the proof of Lemma 4.7 we assume that μn → μ ≥ 0. Since
{un} is bounded, up to a subsequence, there exists some u ∈ Bm such that

⎧⎪⎪⎨
⎪⎪⎩

un ⇀ u in H1
r (RN ),

un → u a.e. in R
N ,

un → u in Lp(RN ) for p ∈ (2, 2∗).

Then we claim that u �= 0. Indeed, if not, then we have un → 0 in L2+ 8
N (RN ). By

Lemma 2.1(ii) it follows that
∫
RN F(un) dx → 0 and

∫
RN F̃(un) dx → 0. Since P(un) → 0,

we deduce

a‖∇un‖2
2 + b‖∇un‖4

2 = P(un) +
N
2

∫

RN
F̃(un) dx → 0.

As a consequence,

c = lim
n→∞ I(un) =

a
2

lim
n→∞‖∇un‖2

2 +
b
4

lim
n→∞‖∇un‖4

2 – lim
n→∞

∫

RN
F(un) dx = 0,

which contradicts c > 0. Coming back to (5.1) and μn → μ, we can easily see that

–
(
a + b‖∇un‖2

2
)�un + μun – f (un) → 0 in

(
H1

r
(
R

N))∗, (5.2)

which means

(
a + b‖∇un‖2

2
)∫

RN
∇un · ∇ϕ dx + μ

∫

RN
unϕ dx –

∫

RN
f (un)ϕ dx = on(1) (5.3)

for all ϕ ∈ C∞
0 (RN ). Since f satisfies (f0)–(f2), using the Lebesgue dominated convergence

theorem, we derive

lim
n→∞

∫

RN
f (un)ϕ dx =

∫

RN
f (u)ϕ dx

for all ϕ ∈ C∞
0 (RN ). Defining B := limn→∞ ‖∇un‖2

2, we can see that

(a + bB)
∫

RN
∇u · ∇ϕ dx + μ

∫

RN
uϕ dx –

∫

RN
f (u)ϕ dx = 0. (5.4)

Testing (5.3)–(5.4) with ϕ = un – u, we deduce

(a + bB)
∥∥∇(un – u)

∥∥2
2 + μ‖un – u‖2

2 = o(1), (5.5)

which implies that ‖∇(un – u)‖2
2 = o(1). Hence un → u in D1,2(RN ), and

‖∇un‖2
2 → ‖∇u‖2

2 = B.

As a result, (5.4) can be expressed in the form

(
a + b‖∇u‖2

2
)∫

RN
∇u · ∇ϕ dx + μ

∫

RN
uϕ dx –

∫

RN
f (u)ϕ dx = 0
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for all ϕ ∈ C∞
0 (RN ), which implies that u solves

–
(

a + b
∫

RN
|∇u|2

)
�u + μu = f (u).

Then, by arguments similar to those in Lemma 4.7 we deduce that

mμ =
∫

RN
f (u)u dx – a‖∇u‖2

2 – b‖∇u‖4
2

=
∫

RN
f (u)u dx –

N
2

∫

RN
F̃(u) dx

=
∫

RN

[
NF(u) +

2 – N
2

f (u)u
]

dx

> 0.

Combining these with (5.5), we infer ‖un‖2
2 = ‖u‖2

2. Thus u ∈ Sm, and the lemma follows. �

Proof of Theorem 1.5 For any k ∈ N
+, by Lemma 5.4 we can easily find a Palais–Smale

sequence {uk
n}∞n=1 for I constrained on Sm ∩ H1

r (RN ) at the level Em,k > 0. Combining this
with Lemma 2.7(iv), we obtain that it is bounded. Then the proof of Theorem 1.5 follows
by Lemma 5.5. �
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