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Abstract
In this paper, we investigate the sufficient conditions that guarantee the stability,
continuity, and boundedness of solutions for a type of second-order stochastic delay
integro-differential equation (SDIDE).
To demonstrate the main results, we employ a Lyapunov functional. An example is

provided to demonstrate the applicability of the obtained result, which includes the
results of this paper and obtains better results than those available in the literature.
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1 Introduction
An integral equation is a mathematical expression that includes a required function under
an integration sign. Such equations often describe an elementary or a complex physical
process wherein the characteristics at a given point depend on values in the whole domain
and cannot be defined only on the bases of the values near the given point.

A differential equation is said to be an integro-differential equation (IDE) if it con-
tains the integrals of the unknown function. Most frequently, integral equations as well
as IDEs are found in such problems of heat and mass transfer as diffusion, potential the-
ory, and radiation heat transfer. Integral equations have a lot of applications such as ac-
tuarial science (ruin theory), computational electromagnetics, inverse problems, for ex-
ample, Marchenko equation (inverse scattering transform), options pricing under jump-
diffusion, radiative transfer, and viscoelasticity (see, for example, [12, 13, 17, 37, 39, 47]
and the references cited in therein).

In biological applications, the population dynamics and genetics are modeled by a sys-
tem of IDEs (see Kheybari et al. [19]). Next, initial value problems for a nonlinear system
of IDEs are used to model the competition between tumor cells and the immune system
(see Nicola et al. [9]).

Besides, in engineering, two systems of specific inhomogeneous IDEs are studied to ex-
amine the noise term phenomenon (see Wazwaz [46]). In addition, the scattered elec-
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tromagnetic fields from resistive strips and RLC circuits are governed by IDEs (see
Hatamzadeh et al. [16]).

An IDE is said to have a delay when the rate of variation in the equation state depends on
past states. In this case such an IDE is called delay integro-differential equation (DIDE).

Numerous sectors of science and technology, including biology, medicine, engineering,
information systems, control theory, and finance mathematics, have utilized the stability
and boundedness qualities of solutions for IDEs with and without delays.

The Lyapunov’s direct method, which includes an energy-like function, has proven to be
an effective tool in the qualitative study of ordinary differential equations (ODEs). Many
researchers have used this technique to solve delay differential equations (DDEs) and IDEs
over the last five decades. In contrast to Lyapunov functionals, which are frequently em-
ployed in the study of DDEs and IDEs (see, for instance, Burton [11, 40]).

The basic theory of stochastic differential equations (SDEs) has been systematically es-
tablished in [8, 14, 30, 32, 34]. There are many interesting results in the literature on the
stability and boundedness of solutions for stochastic delay differential equations (SDDEs),
see, for example, [18, 20, 21, 28, 29, 36] and others.

To the best of our information, we observe that only a few excellent and interesting works
on the stochastic stability and boundedness of solutions for second-, third-, and fourth-
order SDDEs have been developed in [1–6, 22–24, 26, 27, 38, 45] (see also the references
of these sources).

There are a number of results on the qualitative characteristics of first-, second-, and
third-order IDEs with and without delays, but none on the qualitative characteristics of
solutions for a particular class of second-order SDIDE.

The qualitative properties of DIDEs for the second- and third-order have been consid-
ered by numerous authors such as Adeyanju et al. [7], Bohner and Tunç [10], Graef and
Tunç [15], Mohammed [31], Napoles [33], Pinelas and Tunç [35], Tunç and Ayhan [41, 42],
Tunç [44], and Zhao and Meng [48] (see also the references therein). To the best of our
knowledge, this is the first attempt on the subject in the second-order SDIDE literature.

As a result, the goal of this paper is to investigate the stability, continuity, and bounded-
ness of solutions for a type of second-order SDIDE as follows:

ẍ(t) + P
(
t, x(t), ẋ(t)

)
ẋ(t) + Q

(
x
(
t – τ (t)

)
, ẋ

(
t – τ (t)

))
+ R(x

(
t – τ (t)

)

+ g
(
t, x(t)

)
ω̇(t) =

∫ t

0
C(t, s)f

(
s, ẋ(s)

)
ds,

(1.1)

where τ (t) is a variable delay with 0 ≤ τ (t) ≤ γ , γ is a positive constant that will be deter-
mined later, τ̇ (t) ≤ β , β ∈ (0, 1).

The functions Q and R are continuous differentiable functions such that Q ∈ C(R2,R)
and R ∈ C(R,R) for all R(x) �= 0, R(0) = 0 and Q(0, 0) = 0. The functions P ∈ C(R+ ×R

2,R),
f ∈ C(R+ × R,R), f (t, 0) = 0, and C ∈ C(R+ × R

+,R) is such that C(t, s) is a continuous
function for 0 ≤ s ≤ t < ∞, g(t, x(t)) is a continuous function, and ω(t) ∈ R

m is a standard
Wiener process.
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Equation (1.1) can be expressed in the following system form:

ẋ = y,

ẏ = –P(t, x, y)y – Q(x, y) – R(x) – g(t, x)ω̇(t) +
∫ t

0
C(t, s)f

(
s, y(s)

)
ds

+ �(t),

(1.2)

where

�(t) =
∫ t

t–τ (t)

{
Qx

(
x(s), y(s)

)
+ R′(x(s)

)}
y(s) ds.

In addition, it is supposed that the derivatives Qx(x, y) = ∂Q
∂x (x, y) and R′(x) = dR

dx (x) exist
and are continuous.

Let us consider the n-dimensional SDDE (see [25, 43]):

dx(t) = F(t, xt) dt + G(t, xt) dB(t), xt(θ ) = x(t + θ ) – r ≤ θ ≤ 0, t ≥ t0, (1.3)

with the initial condition x0 ∈ C([–r, 0];Rn). Suppose that F : R+ ×R
2n →R

n and G : R+ ×
R

2n →R
n×m are measurable functions such that F(t, 0) = 0 and G(t, 0) = 0.

To formulate the stability and boundedness criteria, we suppose that C1,2(R+ ×R
n;R+)

denotes the family of all nonnegative Lyapunov functionals W (t, xt) defined on R
+ ×R

n,
which are twice continuously differentiable in x and one in t. By Itô’s formula, we have

dW (t, xt) = LWt(t, xt) + Wx(t, xt)G(t, xt) dB(t),

where

LW (t, xt) = Wt(t, xt) + Wx(t, xt)F(t, xt) +
1
2

trace
[
GT (t, xt)Wxx(t, xt)G(t, xt)

]
(1.4)

with Wt = ∂W
∂t , Wx = ( ∂W

∂x1
, . . . , ∂W

∂xn
) and

Wxx =
(

∂2W
∂xi∂xj

)

n×n
=

⎛

⎜⎜
⎝

∂2W
∂x1∂x1

· · · ∂2W
∂x1∂xn

...
...

∂2W
∂xn∂x1

· · · ∂2W
∂xn∂xn

⎞

⎟⎟
⎠

n×n

.

2 Stochastic qualitative results
We introduce the following hypotheses before proving our main results.

Assume that there are positive constants f0, g0, p0, c0, α0, α, K∗, c, d, and N that satisfy
the following conditions:

(i) |f (t, y)| ≤ f0|y| for all t ∈R
+ and y ∈R;

(ii) P(t, x, y) ≥ p0 > 0 and g(t, x) ≤ g0x for all t ∈R
+ and x, y ∈R;

(iii) Q(0, 0) = 0, c ≤ Q(x,y)
x ≤ c0 for x �= 0 and | ∂Q

∂x (x, y)| ≤ d for all x, y ∈R;
(iv) α ≤ R(x)

x ≤ α0 for x �= 0 and |R′(x)| ≤ K∗ for all x ∈R;
(v) max{f 2

0
∫ ∞

t |C(u, s)|du,
∫ t

0 |C(t, s)|ds} < N ;
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(vi) There are γ > 0 and β ∈ (0, 1) such that 0 ≤ τ (t) ≤ γ and τ̇ (t) ≤ β .
The following theorem is the first result of this paper.

Theorem 2.1 Let conditions (i)–(vi) hold. Then all the solutions of system (1.2) are con-
tinuous and bounded provided that

γ < min

{
2c + 2α – p0 – g2

0 – N
2(d + K∗)

,
(2p0 – 3N)(1 – β)
2(d + K∗)(3 – β)

}

with

2p0 > 3N , 2c + 2α – p0 – N > g2
0 .

Proof The proof of this theorem rests on the differentiable scalar Lyapunov functional
V (t) := V (t, xt , yt) defined as follows:

V (t) =
1
2

y2 + xy +
∫ x

0
Q(η, y) dη +

∫ x

0
R(η) dη + λ

∫ 0

–τ (t)
dθ

∫ t

t+θ

y2(φ) dφ

+
∫ t

0
ds

∫ ∞

t

∣∣C(u, s)
∣∣f 2(s, y(s)

)
du,

(2.1)

where λ is a positive constant that will be determined later.
In view of assumptions (iii) and (iv), we obtain

V (t) ≥ 1
2

y2 + xy +
1
2

cx2 +
1
2
αx2 + λ

∫ 0

–τ (t)
dθ

∫ t

t+θ

y2(φ) dφ

+
∫ t

0
ds

∫ ∞

t

∣∣C(u, s)
∣∣f 2(s, y(s)

)
du.

It follows that

V (t) ≥
(

x +
1
2

y
)2

+
1
2

(c + α – 2)x2 +
1
4

y2 + λ

∫ 0

–τ (t)
dθ

∫ t

t+θ

y2(φ) dφ

+
∫ t

0
ds

∫ ∞

t

∣
∣C(u, s)

∣
∣f 2(s, y(s)

)
du

≥ 1
2

(c + α – 2)x2 +
1
4

y2 + λ

∫ 0

–τ (t)
dθ

∫ t

t+θ

y2(φ) dφ

+
∫ t

0
ds

∫ ∞

t

∣
∣C(u, s)

∣
∣f 2(s, y(s)

)
du.

Then we obtain

V (t) ≥ 1
2

(c + α – 2)x2 +
1
4

y2.

Hence, it is clear that there exists a sufficiently small positive constant δ1 such that

V (t) ≥ δ1
(
x2 + y2) for all x, y, (2.2)
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where

δ1 =
1
2

min

{
c + α – 2,

1
2

}
> 0.

As a result, the Lyapunov functional V (t) is positive definite at all (x, y) points and zero
only at x = y = 0.

Itô’s formula (1.4) gives the derivative of the Lyapunov functional V (t) in (2.1) along any
solution (x(t), y(t)) of system (1.2) as follows:

LV (t) = (x + y)
{

–P(t, x, y)y – Q(x, y) – R(x) +
∫ t

0
C(t, s)f

(
s, y(s)

)
ds + �(t)

}

+ y2 + Q(x, y)y + R(x)y + λτ (t)y2 – λ
(
1 – τ̇ (t)

)∫ t

t–τ (t)
y2(s) ds

+ f 2(t, y)
∫ ∞

t

∣∣C(u, s)
∣∣du –

∫ t

0

∣∣C(t, s)
∣∣f 2(s, y(s)

)
ds +

1
2

g2(t, x).

It follows that

LV (t) = –P(t, x, y)y2 + y
∫ t

0
C(t, s)f

(
s, y(s)

)
ds + y�(t) + x�(t) + y2

– P(t, x, y)xy – xQ(x, y) – R(x)x + x
∫ t

0
C(t, s)f

(
s, y(s)

)
ds

+ λτ (t)y2 – λ
(
1 – τ̇ (t)

)∫ t

t–τ (t)
y2(s) ds + f 2(t, y)

∫ ∞

t

∣
∣C(u, s)

∣
∣du

–
∫ t

0

∣
∣C(t, s)

∣
∣f 2(s, y(s)

)
ds +

1
2

g2(t, x).

(2.3)

By assumption (i), we get the following inequality:

f 2(t, y)
∫ ∞

t

∣∣C(u, s)
∣∣du ≤ f 2

0 y2
∫ ∞

t

∣∣C(u, s)
∣∣du. (2.4)

From the inequality 2|mn| ≤ m2 + n2, we get the following relations:

y
∫ t

0
C(t, s)f

(
s, y(s)

)
ds ≤ |y|

∫ t

0

∣
∣C(t, s)

∣
∣
∣
∣f

(
s, y(s)

)∣∣ds

≤ 1
2

∫ t

0

∣∣C(t, s)
∣∣(y2(t) + f 2(s, y(s)

))
ds

=
1
2

∫ t

0

∣
∣C(t, s)

∣
∣y2(t) ds +

1
2

∫ t

0

∣
∣C(t, s)

∣
∣f 2(s, y(s)

)
ds

=
1
2

y2
∫ t

0

∣∣C(t, s)
∣∣ds +

1
2

∫ t

0

∣∣C(t, s)
∣∣f 2(s, y(s)

)
ds.

(2.5)

In the same way, we obtain

x
∫ t

0
C(t, s)f

(
s, y(s)

)
ds ≤ 1

2
x2

∫ t

0

∣
∣C(t, s)

∣
∣ds +

1
2

∫ t

0

∣
∣C(t, s)

∣
∣f 2(s, y(s)

)
ds. (2.6)
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The following estimations can be confirmed using assumptions (ii)–(iv) and the inequality
2|mn| ≤ m2 + n2:

1
2

g2(t, x) ≤ 1
2

g2
0 x2,

–P(t, x, y)y2 ≤ –p0y2,

–P(t, x, y)xy ≤ –p0xy ≤ 1
2

p0
(
x2 + y2) since p0 > 0,

–xQ(x, y) ≤ –cx2,

–R(x)x ≤ –αx2.

(2.7)

Hence, in view of assumptions (iii), (iv) and by using the inequality 2|mn| ≤ m2 + n2, we
can conclude that

x�(t) = x
∫ t

t–τ (t)

{
Qx

(
x(s), y(s)

)
y(s) + R′(x(s)

)
y(s)

}
ds

≤ |x|
∫ t

t–τ (t)

∣∣Qx
(
x(s), y(s)

)∣∣∣∣y(s)
∣∣ds + |x|

∫ t

t–τ (t)

∣∣R′(x(s)
)∣∣∣∣y(s)

∣∣ds

≤ 1
2

d
∫ t

t–τ (t)

(
x2(t) + y2(s)

)
ds +

1
2

K∗
∫ t

t–τ (t)

(
x2(t) + y2(s)

)
ds

=
1
2

x2(t)
(
d + K∗)τ (t) +

1
2
(
d + K∗)

∫ t

t–τ (t)
y2(s) ds.

Similar to the preceding, we have

y�(t) ≤ 1
2

d
∫ t

t–τ (t)

(
y2(t) + y2(s)

)
ds +

1
2

K∗
∫ t

t–τ (t)

(
y2(t) + y2(s)

)
ds

=
1
2

y2(t)
(
d + K∗)τ (t) +

1
2
(
d + K∗)

∫ t

t–τ (t)
y2(s) ds.

By adding the above two inequalities and since 0 ≤ τ (t) ≤ γ , we get the following:

(x + y)�(t) ≤ 1
2
γ
(
d + K∗)(x2(t) + y2(t)

)
+

(
d + K∗)

∫ t

t–τ (t)
y2(s) ds. (2.8)

Furthermore, from condition (vi), it follows that

λτ (t)y2 – λ
(
1 – τ̇ (t)

)∫ t

t–τ (t)
y2(s) ds ≤ λγ y2(t) – λ(1 – β)

∫ t

t–τ (t)
y2(s) ds. (2.9)

By considering the preceding inequalities (2.4)–(2.8) in the derivative (2.3), we can arrive
at

LV (t) = –p0y2 – cx2 – αx2 + f 2
0 y2

∫ ∞

t

∣
∣C(u, s)

∣
∣du +

1
2

y2
∫ t

0

∣
∣C(t, s)

∣
∣ds

+
1
2

x2
∫ t

0

∣
∣C(t, s)

∣
∣ds +

1
2

p0
(
x2 + y2) +

1
2

g2
0 x2
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+
1
2
γ
(
d + K∗)(x2 + y2) +

(
d + K∗)

∫ t

t–τ (t)
y2(s) ds

+ λγ y2 – λ(1 – β)
∫ t

t–τ (t)
y2(s) ds.

With some rearrangement of terms, we can get

LV (t) ≤ –
{

c + α –
1
2

p0 –
1
2
γ
(
d + K∗) –

1
2

g2
0

}
x2

–
{

p0 –
1
2
γ
(
d + K∗) – λγ

}
y2 +

1
2

x2
∫ t

0

∣
∣C(t, s)

∣
∣ds

+
{

d + K∗ – λ(1 – β)
}∫ t

t–τ (t)
y2(s) ds

+
{

f 2
0

∫ ∞

t

∣∣C(u, s)
∣∣du +

1
2

∫ t

0

∣∣C(t, s)
∣∣ds

}
y2.

Then, from condition (v), we obtain

LV (t) ≤ –
{

c + α –
1
2

p0 –
1
2
(
d + K∗)γ –

1
2

g2
0 –

1
2

N
}

x2

–
{

p0 –
1
2
(
d + K∗)γ – λγ –

3
2

N
}

y2

+
{

d + K∗ – λ(1 – β)
}∫ t

t–τ (t)
y2(s) ds.

If we now choose

λ =
d + K∗

1 – β
,

then we can observe

LV (t) ≤ –
1
2
{

2c + 2α – p0 –
(
d + K∗)γ – g2

0 – N
}

x2

–
1
2

{
2p0 –

(
d + K∗)γ –

2(d + K∗)
1 – β

γ – 3N
}

y2.

If we take

γ < min

{
2c + 2α – p0 – g2

0 – N
2(d + K∗)

,
(2p0 – 3N)(1 – β)
2(d + K∗)(3 – β)

}
,

then there exists a positive constant δ2 such that

LV (t) ≤ –δ2
(
x2 + y2), δ2 ∈R. (2.10)

This implies that LV (t) ≤ 0. Because of all functions appearing in (1.1), it is obvious that
there exists at least one solution of (1.1) defined on [t0, t0 + ρ) for some ρ > 0.
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It is necessary to show that the solution can be extended onto the entire interval [t0,∞).
We suppose on the contrary that there is a first time T < ∞ such that the solution exists
on [t0, T) and

lim
t→T–

(|x| + |y|) = ∞.

Suppose that (x(t), y(t)) is a solution of system (1.2) with the initial condition (x0, y0). Since
the Lyapunov functional V (t) is a positive definite and decreasing functional on the tra-
jectories of system (1.2), also we have

LV (t) ≤ 0.

Then we can say that V (t) is bounded on [t0, T). Now, integrating the above inequality
from t0 to T , we have

V
(
T , x(T), y(T)

) ≤ V
(
t0, x(t0), y(t0)

)
= V0.

Hence, it follows from (2.2) that

x2(T) + y2(T) ≤ V0

δ1
.

This inequality implies that |x(t)| and |y(t)| are bounded on t → T–. Thus, we conclude
that T < ∞ is not possible, we must have T = ∞.

This completes the proof of Theorem 2.1. �

Theorem 2.2 If assumptions (i)–(vi) of Sect. 2 hold, then the null solution of system (1.2)
is uniformly stochastically asymptotically stable.

Proof From (2.1), using assumptions (iii) and (iv) and the inequality 2|mn| ≤ m2 + n2, we
have

V (t) ≤ δ3
(
x2 + y2) + λ

∫ 0

–τ (t)
dθ

∫ t

t+θ

y2(φ) dφ +
∫ t

0
ds

∫ ∞

t

∣∣C(u, s)
∣∣f 2(s, y(s)

)
du,

where

δ3 =:
1
2

max{1, 1 + c0 + α0}.

Then, from conditions (i) and (v), we obtain

V (t) ≤ δ3
(
x2 + y2) + κ‖y‖2. (2.11)

Therefore, by combining the two inequalities (2.2) and (2.11), we get

δ1
(
x2 + y2) ≤ V (t) ≤ δ3

(
x2 + y2) + κ‖y‖2. (2.12)
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It follows from (2.10) and (2.12) that the Lyapunov functional V (t) satisfies the following
inequalities:

ζ1
(|x|) ≤ V (t, x) ≤ ζ2

(|x|),

LV (t, x) ≤ –ζ3
(|x|) for all (t, x) ∈R

+ ×R
n.

Thus, by taking note of how the discussion above developed, the stability theorems 1 and
2 in [8, 30, 45] were established.

This completes the proof of Theorem 2.2. �

3 Example
In this section, we consider an example of how to illustrate the results for second-order
SDIDE.

ẍ(t) +
(
11 + t + x2 + ẋ2)ẋ(t) + 10x

(
t – τ (t)

)
+

x(t – τ (t))
1 + x2(t – τ (t))

+ 2x
(
t – τ (t)

)
+ xe–ẋ2

+
4t

t2 + 1
x(t)ω̇(t) = 2

∫ t

0
e2(s–t)ẋ(s) ds.

(3.1)

Then we can express (3.1) as the equivalent system:

ẋ = y,

ẏ = –
(
11 + t + x2 + y2)y –

(
10x +

x
1 + x2

)
+

(
2x + xe–y2)

+
∫ t

t–τ (t)

{
12 +

1 – x2(s)
(1 + x2(s))2

}
y(s) ds

–
4t

1 + t2 xω̇(t) + 2
∫ t

0
e2(s–t)y(s) ds.

(3.2)

When we compare systems (3.2) and (1.2), we see the following relationships:

P(t, x, y) = 11 + t + x2 + y2 ≥ 11 for all t ∈R
+ as x, y ∈R,

R(x) = 10x +
x

1 + x2 , R(0) = 0, 10 ≤ R(x)
x

= 10 +
1

1 + x2 ≤ 11,

R′(x) = 10 +
1 – x2

(1 + x2)2 such that
∣∣R′(x)

∣∣ ≤ 11.

The functions R(x)
x and R′(x) with their bounds are shown in Fig. 1.

Q(x, y) = 2x + xe–y2
, then Q(0, 0) = 0, 2 ≤ Q(x, y)

x
= 2 + e–y2 ≤ 3 and

∂Q(x, y)
∂x

= 2 + e–y2 ≤ 3 for all x �= 0 as x, y ∈R,

g(t, x) =
4t

1 + t2 x, g2(t, x) =
16t2

(1 + t2)2 x2 ≤ 4x2 = g2
0 x2,

f (t, y) = 2y,
∣∣f (t, y)

∣∣ ≤ 2|y|,
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Figure 1 Behaviors of the functions R(x)
x and R′(x) for x ∈ [–40, 40]

Figure 2 The behavior of the functions Q(x,y)
x for

x ∈ [–20, 20]

∫ t

0
C(t, s) ds =

∫ t

0
e2(s–t) ds =

1
2

–
1
2

e–2t ,

τ (t) =
1

16
sin t +

1
64

≤ 5
64

= γ ∼= 0.07825,

τ̇ (t) =
1

16
cos t ≤ 1

16
= β ∼= 0.0625 for all t ≥ 0.

In Fig. 2, the behaviours of the functions Q(x,y)
x , (x �= 0), were plotted in [–20, 20] by MAT-

LAB software.
The shape and path of τ (t) and τ̇ (t) are shown in Fig. 3.
Then we obtain

P0 = 11, c = 2, d = 3, K∗ = 11, g0 = 2,

f0 = 2, α = 10, α0 = 11, and c0 = 3.
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Figure 3 The paths of the functions τ (t) and τ̇ (t) for t ∈ [–20, 20]

Figure 4 Trajectory of the solution to (3.1) for time t with x(t)

Therefore, we get

f 2
0

∫ ∞

t

∣∣C(u, s)
∣∣du = 4

∫ ∞

t

∣∣e2(s–u)∣∣du = 2
∣∣e2(s–t)∣∣ ≤ 2,

max

{
f 2
0

∫ ∞

t

∣∣C(u, s)
∣∣du,

∫ t

0

∣∣C(t, s)
∣∣ds

}
= max

{
2,

1
2

–
1
2

e–2t
}

= 2 < N = 3.

We can estimate the following from the information above:

2p0 = 22 > 9 = 3N ,

2c + 2α – p0 – N = 10 > 4 = g2
0 .

Finally, if

γ =
5

64
< min{0.214, 0.1482} ∼= 0.1482,

then the null solution of (3.1) is uniformly stochastically asymptotically stable.
Thus, all the conditions of Theorems 2.1 and 2.2 are fulfilled. Therefore, their results

hold.
In Fig. 4, the nonlinear SDIDE (3.1) of second order was solved by MATLAB software.
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Figure 5 Trajectory of the solution for (3.1) without stochastic term

Figure 6 Trajectory of the solution of (3.1) with stochastic term equals 30

In Fig. 5, the nonlinear SDIDE (3.1) of second order without stochastic term was solved
by MATLAB software.

In Fig. 6, the nonlinear SDIDE (3.1) of second order with stochastic term that equals 30
was solved by MATLAB software.

As a result, we may say that all the solutions of equation (3.1) are stable, continuous, and
bounded.

4 Conclusions
In this paper, a class of second-order SDIDE has been considered. Three new results have
been given on the qualitative properties of solutions for the investigated equation. The
proofs of the results are based on the construction of a new Lyapunov functional. To the
best of our knowledge, the considered SDIDE has not been investigated in the literature to
date. This work has contributed to the qualitative properties of ordinary, delay, stochastic,
and integro differential equations of the second order.

Funding
Not applicable.

Data availability
No data were generated or analyzed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
All authors contributed equally and significantly in writing this article.



Mahmoud and Tunç Journal of Inequalities and Applications         (2024) 2024:35 Page 13 of 14

Author details
1Department of Mathematics, Faculty of Science, New Valley University, El-Khargah 72511, Egypt. 2Department of
Mathematics, Faculty of Science, Van Yuzuncu Yil University, 65080, Van, Turkey.

Received: 5 November 2023 Accepted: 9 January 2024

References
1. Abou-El-Ela, A.M.A., Sadek, A.I., Mahmoud, A.M.: On the stability of solutions for certain second order stochastic delay

differential equations. Differ. Uravn. Protsessy Upr. 2, 1–13 (2015)
2. Abou-El-Ela, A.M.A., Sadek, A.I., Mahmoud, A.M., Farghaly, E.S.: Asymptotic stability of solutions for a certain

non-autonomous second order stochastic delay differential equation. Turk. J. Math. 41(3), 576–584 (2017)
3. Abou-El-Ela, A.M.A., Sadek, A.I., Mahmoud, A.M., Taie, R.O.A.: On the stochastic stability and boundedness of solutions

for stochastic delay differential equation of the second order. Chin. J. Math. 2015, Art. ID 358936 (2015)
4. Ademola, A.T., Akindeinde, S.O., Ogundare, B.S., Ogundiran, M.O., Adesina, O.A.: On the stability and boundedness of

solutions to certain second order nonlinear stochastic delay differential equations. J. Niger. Math. Soc. 38(2), 185–209
(2019)

5. Ademola, A.T., Moyo, S., Ogundare, B.S., Ogundiran, M.O., Adesina, O.A.: Stability and boundedness of solutions to a
certain second order non-autonomous stochastic differential equation. Int. J. Anal. 2016, Art. ID 2012315 (2016)

6. Adesina, O.A., Ademola, A.T., Ogundiran, M.O., Ogundare, B.S.: Stability, boundedness and unique global solutions to
certain second order nonlinear stochastic delay differential equations with multiple deviating arguments. Nonlinear
Stud. 26(1), 71–94 (2019)

7. Adeyanju, A.A., Ademola, A.T., Ogundare, B.S.: On stability, boundedness and integrability of solutions of certain
second order integro-differential equations with delay. Sarajevo J. Math. 17(30), 61–77 (2021)

8. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)
9. Bellomo, N., Firmani, B., Guerri, L.: Bifurcation analysis for a nonlinear system of integro-differential equations

modelling tumor-immune cells competition. Appl. Math. Lett. 12(2), 39–44 (1999)
10. Bohner, M., Tunç, O.: Qualitative analysis of integro-differential equations with variable retardation. Discrete Contin.

Dyn. Syst., Ser. B 27(2), 639–657 (2022)
11. Burton, T.A.: Construction of Liapunov functionals for Volterra equations. J. Math. Anal. Appl. 85(1), 90–105 (1982)
12. Burton, T.A.: Volterra Integral and Differential Equations. Academic Press, New York (1983)
13. Corduneanu, C.: Integral Equations and Applications. Cambridge University Press, Cambridge (1991)
14. Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equations. Springer, Berlin (1972)
15. Graef, J., Tunç, C.: Continuability and boundedness of multi-delay functional integro-differential equations of the

second order. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 109(1), 169–173 (2015)
16. Hatamzadeh-Varmazyar, S., Naser-Moghadasi, M., Babolian, E., Masouri, Z.: Numerical approach to survey the problem

of electromagnetic scattering from resistive strips based on using a set of orthogonal basis functions. Prog.
Electromagn. Res. 81, 393–412 (2008)

17. Jerri, A.J.: Introduction to Integral Equations with Applications, 2nd edn. Wiley-Interscience, New York (1999)
18. Khasminskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, Germantown (1980)
19. Kheybari, S., Darvishi, M.T., Wazwaz, A.M.: A semi-analytical approach to solve integro-differential equations.

J. Comput. Appl. Math. 317, 17–30 (2017)
20. Kushner, G.J.: Stochastic Stability and Control. World Publ. Co., Moscow (1969)
21. Liu, R., Raffoul, Y.: Boundedness and exponential stability of highly nonlinear stochastic differential equations.

Electron. J. Differ. Equ. 2009, 143 (2009)
22. Mahmoud, A.M., Ademola, A.T.: On the behaviour of solutions to a kind of third order neutral stochastic differential

equation with delay. Adv. Cont. Discr. Mod. 2022, 28 (2022)
23. Mahmoud, A.M., Adewumi, A.O., Ademola, A.T.: Stochastic stability of solutions for a fourth-order stochastic

differential equation with constant delay. J. Inequal. Appl. 2023, 148 (2023)
24. Mahmoud, A.M., Bakhit, D.A.M.: On the properties of solutions for nonautonomous third order stochastic differential

equation with a constant delay. Turk. J. Math. 47(1), 135–158 (2023)
25. Mahmoud, A.M., Bakhit, D.A.M.: On behaviours for the solution to a certain third-order stochastic integro-differential

equation with time delay. Filomat 38(2), 487–504 (2024)
26. Mahmoud, A.M., Elamin, A.A.M.A., Elhussein, S.E.A., Eboelhasan, M.E.: Some qualitative properties of solutions for

multi-delay nonautonomous stochastic Liénard equation. Dyn. Syst. Appl. 32, 81–101 (2023)
27. Mahmoud, A.M., Tunç, C.: Boundedness and exponential stability for a certain third order stochastic delay differential

equation. Dyn. Syst. Appl. 29(2), 288–302 (2020)
28. Mao, X.: Stability of Stochastic Differential Equations with Respect to Semimartingales. Longman, Harlow (1991)
29. Mao, X.: Exponential Stability of Stochastic Differential Equations. Dekker, New York (1994)
30. Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Horwood, Chichester (2008)
31. Mohammed, S.A.: Existence, boundedness and integrability of global solutions to delay integro-differential equations

of second order. J. Taibah Univ. Sci. 14(1), 235–243 (2020)
32. Mohammed, S.E.A.: Stochastic Functional Differential Equations. Pitman Advanced Publishing Program, Boston (1984)
33. Napoles, J.E.: A note on the boundedness of an integro-differential equation. Quaest. Math. 24(2), 213–216 (2001)
34. Oksendal, B.: Stochastic Differential Equations (An Introduction with Applications). Springer, Heidelberg (2000)
35. Pinelas, S., Tunç, O.: Solution estimates and stability tests for nonlinear delay integro-differential equations. Electron.

J. Differ. Equ. 2022, 68 (2022)
36. Raffoul, Y.N., Ren, D.: Theorems on boundedness of solutions to stochastic delay differential equations. Electron.

J. Differ. Equ. 2016, 194 (2016)
37. Rahman, M.: Integral Equations and Their Applications. WIT Press, Boston (2007)
38. Sakthivel, R., Ren, Y., Kim, H.: Asymptotic stability of second order neutral stochastic differential equations. J. Math.

Phys. 51(5), 1–9 (2010)
39. Santanu, S.R.: Stochastic Integral and Differential Equations in Mathematical Modelling. World Scientific, Hackensack

(2023)



Mahmoud and Tunç Journal of Inequalities and Applications         (2024) 2024:35 Page 14 of 14

40. Thygesen, U.H.: A survey of Lyapunov techniques for stochastic differential equations. IMM Technical Report Nc.
(1997)

41. Tunç, C., Ayhan, T.: Global existence and boundedness of solutions of a certain nonlinear integro-differential equation
of second order with multiple deviating arguments. J. Inequal. Appl. 2016, 46 (2016)

42. Tunç, C., Ayhan, T.: Continuability and boundedness of solutions for a kind of nonlinear delay integro-differential
equations of the third-order. J. Math. Sci. 236(3), 354–366 (2019)

43. Tunç, C., Oktan, Z.: Improved new qualitative results on stochastic delay differential equations of second-order.
Comput. Methods Differ. Equ. 12(1), 67–76 (2024)

44. Tunç, O.: New qualitative results to delay integro-differential equations. Int. J. Nonlinear Anal. Appl. 13(2), 1131–1141
(2022)

45. Tunç, O., Tunç, C.: On the asymptotic stability of solutions of stochastic differential delay equations of second order.
J. Taibah Univ. Sci. 13(1), 875–882 (2019)

46. Wazwaz, A.M.: The existence of noise terms for systems of inhomogeneous differential and integral equations. Appl.
Math. Comput. 146(1), 81–92 (2003)

47. Wazwaz, A.M.: Linear and Nonlinear Integral Equations. Methods and Applications. Springer, Beijing (2011)
48. Zhao, J., Meng, F.: Stability analysis of solutions for a kind of integro-differential equations with a delay. Math. Probl.

Eng. 2018, Art. ID 9519020 (2018)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	On the qualitative behaviors of stochastic delay integro-differential equations of second order
	Abstract
	Mathematics Subject Classiﬁcation
	Keywords

	Introduction
	Stochastic qualitative results
	Example
	Conclusions
	Funding
	Data availability
	Declarations
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


