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Abstract
In this paper, we study the generalized multiple-set split feasibility problem including
the common fixed-point problem for a finite family of generalized demimetric
mappings and the monotone inclusion problem in 2-uniformly convex and uniformly
smooth Banach spaces. We propose an inertial Halpern-type iterative algorithm for
obtaining a solution of the problem and derive a strong convergence theorem for the
algorithm. Then, we apply our convergence results to the convex minimization
problem, the variational inequality problem, the multiple-set split feasibility problem
and the split common null-point problem in Banach spaces.
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1 Introduction
Let E be a real Banach space with a dual space E∗. We consider the monotone inclusion
problem, which involves a single-valued monotone operator A : E → E∗ and a multival-
ued monotone operator B : E → 2E∗ . The problem aims to find a solution x∗ ∈ E such that
0 ∈ (A + B)x∗. The set of solutions to this problem is denoted by (A + B)–10. This problem
has practical applications in various fields such as image recovery, signal processing, and
machine learning. It also encompasses several mathematical problems as special cases,
including variational inequalities, split feasibility problems, minimization problems, and
Nash equilibrium problems in noncooperative games, see, for instance, [1–4] and the ref-
erences therein. The forward–backward splitting algorithm, introduced in [1, 2], is a well-
known method for approximating solutions to the monotone inclusion problem. In this
method, defined in a Hilbert space H, we start with an initial iterate x1 ∈ H and update
subsequent iterates as follows:

xn+1 = (I + λB)–1(I – λA)xn,
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where n ≥ 1 and λ is a step-size parameter. Over the past few decades, the convergence
properties and modified versions of the forward–backward splitting algorithm have been
extensively studied in the literature. In [5] (see also [6]), Takahashi et al. introduced and
analyzed a Halpern-type modification of the forward–backward splitting algorithm in
real Hilbert spaces. They established the strong convergence of the sequence generated
by their algorithm to a solution of the monotone inclusion problem. In 2019, Kimura
and Nakajo [7] proposed a modified forward–backward splitting method and proved a
strong convergence theorem for solutions of the monotone inclusion problem in a real
2-uniformly convex and uniformly smooth Banach space. Their convergence result is as
follows:

Theorem 1.1 Let C be a nonempty, closed, and convex subset of a real 2-uniformly convex
and uniformly smooth Banach space E. Let A : C → E∗ be an α-inverse strongly monotone
and B : E → 2E∗ be a maximal monotone. Suppose that � = (A + B)–10 �= ∅. Let {xn} be a
sequence generated by x0 ∈ C, u ∈ E and by:

xn+1 = �CJB
λn J–1

E
(
γnJEu + (1 – γn)JExn – λnAxn

)
, n ≥ 0,

where �C is the generalized projection of E onto C, JB
λn is the resolvent of B, JE is the nor-

malized duality mapping of E, {λn} ⊂ (0,∞) and {γn} ⊂ (0, 1) such that limn→∞ γn = 0
and

∑∞
n=1 γn = ∞. Then, if 0 < infn∈N λn ≤ supn∈N λn < 2αc, (where c is the constant in

Lemma 2.2), the sequence {xn} converges strongly to ��u.

The inertial technique has gained significant interest among researchers due to its favor-
able convergence characteristics and the ability to improve algorithm performance. It was
first considered in [8] for solving smooth, convex minimization problems. The key idea be-
hind these methods is to utilize two previous iterates to update the next iterate, resulting in
accelerated convergence. In [9], Lorenz and Pock proposed an inertial forward–backward
splitting algorithm in real Hilbert spaces, formulated as follows:

⎧
⎪⎪⎨

⎪⎪⎩

x0, x1 ∈H,

yn = xn + θn(xn – xn–1),

xn+1 = (I + λnB)–1(yn – λnAyn), ∀n ∈N,

(1)

where θn ∈ [0, 1) is an extrapolation factor, λn is a step-size parameter, and H represents
the Hilbert space. They proved that the sequence xn generated by this algorithm converges
weakly to a zero of A + B.

In addition to the monotone inclusion problem, we consider the fixed-point problem
for a nonlinear mapping U : E → E. A point x ∈ E such that Ux = x is called a fixed point
of U . The set of fixed points of the nonlinear mapping U is denoted by Fix(U).

Let E and F be Banach spaces and T : E → F be a bounded linear operator. Let {Ci}p
i=1 be

a family of nonempty, closed, and convex subsets in E and {Qj}r
j=1 be a family of nonempty,

closed, and convex subsets in F . The multiple-set split feasibility problem (MSSFP) is for-
mulated as finding a point x� with the property:

x� ∈
p⋂

i=1

Ci and Tx� ∈
r⋂

j=1

Qj.
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The multiple-set split feasibility problem with p = r = 1 is known as the split feasibility
problem (SFP). The MSSFP was first introduced by Censor et al. [10] in the framework of
Hilbert spaces for modeling inverse problems that arise from phase retrievals and medical
image reconstruction. Such models were successfully developed, for instance, in radiation-
therapy treatment planning, sensor networks, resolution enhancement, and so on [11, 12].
Initiated by SFP, several split-type problems have been investigated and studied. For ex-
ample, the split common fixed-point problem [13], the split monotone variational inclu-
sions problem [14], and the split common null-point problem [15]. Algorithms for solving
these problems have received great attention, (see, e.g., [16–31] and some of the references
therein).

In 2018, Kawasaki and Takahashi [32], introduced a new general class of mappings,
called generalized demimetric mappings as follows:

Definition 1.2 Let E be a smooth, strictly convex, and reflexive Banach space. Let ζ be
a real number with ζ �= 0. A mapping U : E → E with Fix(U) �= ∅ is called generalized
demimetric, if

ζ
〈
x – x�, JE(x – Ux)

〉 ≥ ‖x – Ux‖2,

for all x ∈ E and x� ∈ Fix(U). This mapping U is called ζ -generalized demimetric.

Such a class of mappings is fundamental because it includes many types of nonlinear
mappings arising in applied mathematics and optimization, see [32–34] for details.

In this paper, we study the following generalized multiple-set split feasibility problem:
let E be a 2-uniformly convex and uniformly smooth Banach space and let F be a smooth,
strictly convex, and reflexive Banach space. Let for i = 1, 2, . . . , m, Ui : F → F be a finite
family of generalized demimetric mappings, Ai : E → E∗ be an inverse strongly monotone
and Bi : E → 2E∗ be maximal monotone mappings. Let for each i = 1, 2, . . . , m, Ti : E → F
be a bounded linear operator such that Ti �= 0. Consider the following problem:

Find x∗ ∈
m⋂

i=1

(Ai + Bi)–10 such that Tix∗ ∈ Fix(Ui), i = 1, 2, . . . , m. (2)

By combining the concepts and techniques from the inertial algorithm, forward–backward
splitting algorithm, and the Halpern method, we introduce a new and efficient iterative
method for solving the generalized multiple-set split feasibility problem. We establish
strong convergence theorems for the proposed method under standard and mild con-
ditions. The iterative scheme does not require prior knowledge of the operator norm.
Finally, we apply our convergence results to the convex minimization problem, variational
inequality problem, multiple-set split feasibility problem, and split common null-point
problem in Banach spaces. The main results presented in this paper improve and gener-
alize the previous results obtained by Kimura and Nakajo [7], Takahashi et al. [17] and
others.

2 Preliminaries
Let E be a real Banach space with norm ‖.‖ and let E∗ be the dual space of E. We denote
the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. Let S(E) = {x ∈ E : ‖x‖ = 1} denote the unit sphere
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of E. A Banach space E is said to be strictly convex if ‖ x+y
2 ‖ < 1 for all x, y ∈ S(E) with x �= y.

The Banach space E is said to be smooth provided

lim
t→0

‖x + ty‖ – ‖x‖
t

,

exists for each x, y ∈ S(E). The modulus of convexity of E is defined by

δE(ε) = inf

{
1 –

‖x + y‖
2

: x, y ∈ S(E),‖x – y‖ ≥ ε

}
.

The space E is called uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2], and 2-uniformly con-
vex if there is a c > 0 so that δE(ε) ≥ cε2 for any ε ∈ (0, 2]. We know that a uniformly convex
Banach space is strictly convex and reflexive. The modulus of smoothness of E is defined
by

ρE(τ ) = sup

{‖x + τy‖ + ‖x – τy‖
2

– 1 : x, y ∈ S(E)
}

, ∀τ > 0.

The space E is called uniformly smooth if limτ→0
ρE(τ )

τ
= 0, and 2-uniformly smooth if

there exists a C > 0 so that ρE(τ ) ≤ Cτ 2 for any τ > 0. It is observed that every 2-uniformly
convex (2-uniformly smooth) space is a uniformly convex (uniformly smooth) space. It is
known that E is 2-uniformly convex (2-uniformly smooth) if and only if its dual E∗ is 2-
uniformly smooth (2-uniformly convex). It is known that all Hilbert spaces and Lebesgue
spaces Lp for 1 < p ≤ 2 are uniformly smooth and 2-uniformly convex. See [35, 36] for
more details.

The normalized duality mapping of E into 2E∗ is defined by

JEx =
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖2 =

∥
∥x∗∥∥2}

for all x ∈ E. The normalized duality mapping JE has the following properties (see, e.g.,
[36]):

• if E is a smooth, strictly convex, and reflexive Banach space, then JE is a single-valued
bijection and in this case, the inverse mapping J–1

E coincides with the duality mapping JE∗ ;
• if E is uniformly smooth, then JE is uniformly norm-to-norm continuous on each

bounded subset of E.
The following lemma was proved by Xu [37].

Lemma 2.1 Let E be a 2-uniformly smooth Banach space. Then, there exists a constant
γ > 0 such that for every x, y ∈ E there holds the following inequality:

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, JE(x)

〉
+ γ ‖y‖2.

Lemma 2.2 ([37]) Let E be a smooth Banach space. Then, E is 2-uniformly convex if and
only if there exists a constant c > 0 such that for each x, y ∈ E, ‖x + y‖2 ≥ ‖x‖2 + 2〈y, JE(x)〉 +
c‖y‖2 holds.
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Lemma 2.3 ([38]) If E is a 2-uniformly convex Banach space, then there exists a constant
d > 0 such that for all x, y ∈ E,

‖x – y‖ ≤ 2
d2

∥∥JE(x) – JE(y)
∥∥.

Let E be a smooth Banach space. The function φ : E × E →R is defined by

φ(x, y) = ‖x‖2 – 2〈x, JEy〉 + ‖y‖2, x, y ∈ E.

Observe that, in Hilbert spaces, φ(x, y) reduces to ‖x – y‖2. It is obvious from the definition
of function φ that

(‖y‖ – ‖x‖)2 ≤ φ(x, y) ≤ (‖y‖ + ‖x‖)2 ∀x, y ∈ E. (3)

We also know that if E is strictly convex and smooth, then, for x, y ∈ E, φ(x, y) = 0 if and
only if x = y; see [39, 40]. We will use the following mapping V : E × E� → R studied in
[39]

V
(
x, x∗) = ‖x‖2 – 2

〈
x, x∗〉 +

∥∥x∗∥∥2,

for all x ∈ E and x∗ ∈ E∗. Obviously, V (x, x∗) = φ(x, J–1
E (x∗)) for all x ∈ E and x∗ ∈ E∗.

Lemma 2.4 [39] Let E be a reflexive, strictly convex, and smooth Banach space with E∗ as
its dual. Then,

V
(
x, x∗) + 2

〈
J–1
E

(
x∗) – x, y∗〉 ≤ V

(
x, x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.5 ([41]) Let E be a uniformly convex and smooth real Banach space, and let {xn}
and {yn} be two sequences of E. If either {xn} or {yn} is bounded and limn→∞ φ(xn, yn) = 0
then limn→∞ ‖xn – yn‖ = 0.

Let C be a nonempty, closed, and convex subset of a strictly convex, reflexive, and
smooth Banach space E and let x ∈ E. Then, there exists a unique element x ∈ C such
that

φ(x, x) = inf
y∈C

φ(y, x).

We denote x by �Cx and call �C the generalized projection of E onto C; see [39, 41].
We have the following well-known result [39, 41] for the generalized projection.

Lemma 2.6 Let C be a nonempty, convex subset of a smooth Banach space E, x ∈ E and
x ∈ C. Then, φ(x, x) = infy∈C φ(y, x) if and only if 〈x – y, JEx – JEx〉 ≥ 0 for every y ∈ C, or
equivalently φ(y, x) + φ(x, x) ≤ φ(y, x) for all y ∈ C.



Eslamian Journal of Inequalities and Applications          (2024) 2024:7 Page 6 of 24

Definition 2.7 Let E be a Banach space and T : E → E be a nonlinear mapping with
Fix(T) �= ∅. Then, I – T is said to be demiclosed at zero if {xn} is a sequence in E con-
verges weakly to x and (I – T)xn converges strongly to zero, then (I – T)x = 0.

Lemma 2.8 ([32]) Let E be a smooth, strictly convex, and reflexive Banach space and let ζ

be a real number with ζ �= 0. Let T : E → E be a ζ -generalized demimetric mapping. Then,
the fixed point set Fix(T) of T is closed and convex.

Definition 2.9 An operator A : E → E∗ is called an inverse, strongly monotone operator,
if there exist α > 0 such that

〈x – y, Ax – Ay〉 ≥ α‖Ax – Ay‖2, ∀x, y ∈ E.

In this case, we say that A is an α-inverse strongly monotone.

Let B be a mapping of E into 2E∗ . The effective domain of B is denoted by D(B), that
is, D(B) = {x ∈ E : Bx �= ∅}. A multivalued mapping B on E is said to be monotone if 〈x –
y, u – v〉 ≥ 0 for all x, y ∈ D(B), u ∈ Bx and v ∈ By. A monotone mapping B on E is said to be
maximal if its graph is not properly contained in the graph of any other monotone mapping
on E. The set of null points of B is denoted by B–10 = {x ∈ E : 0 ∈ Bx}. Let E be a reflexive,
strictly convex, and smooth real Banach space and let B : E → 2E∗ be a maximal monotone
operator. Then, for any λ > 0 and u ∈ E, there exists a unique element uλ ∈ D(B) such that
JE(u) ∈ JE(uλ) + λB(uλ). We define JB

λ by JB
λ u = uλ for every u ∈ E and λ > 0 and such JB

λ is
called the resolvent of B. Alternatively, JB

λ = (JE + λB)–1JE . Let E be a uniformly convex and
smooth Banach space and B be a maximal monotone operator. Then, B–10 = Fix(JB

λ ) for
all λ > 0. See [36, 42] for more details.

The lemma that follows is stated and proven in [[7], Lemma 3.1].

Lemma 2.10 Let E be a 2-uniformly convex and uniformly smooth real Banach space. Let
A : E → E∗ be an α-inverse strongly monotone and B : E → 2E∗ be a maximal monotone.
Let Tλ(x) = JB

λ J–1
E (JEx – λAx) for all λ > 0 and x ∈ E. Then, the following hold:

(i) Fix(Tλ) = (A + B)–10 and (A + B)–10 is closed and convex;
(ii) φ(x∗, Tλ(x)) ≤ φ(x∗, x) – (c – λβ)‖x – Tλ(x)‖2 – λ(2α – 1

β
)‖Ax – Ax∗‖2 for every β > 0

and x∗ ∈ (A + B)–10, where c is the constant in Lemma 2.2.

The following lemmas are very helpful for the convergence analysis of the algorithm.

Lemma 2.11 ([43]) Let {γn} be a sequence in (0,1) and {δn} be a sequence in R satisfying
(i)

∑∞
n=1 γn = ∞;

(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=1 |γnδn| < ∞.
If {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 – γn)an + γnδn,

for each n ≥ 0, then limn→∞ an = 0.
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Lemma 2.12 ([44]) Let {sn} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {sni} of {sn} such that sni ≤ sni+1 for all i ≥ 0. For
every n ∈ N, (sufficiently large) define an integer sequence {τ (n)} as

τ (n) = max{k ≤ n : sk < sk+1}.

Then, τ (n) → ∞ as n → ∞ and

max{sτ (n), sn} ≤ sτ (n)+1.

3 Main results
We first prove the following lemma.

Lemma 3.1 Let E be a Banach space and F be a smooth, strictly convex, and reflexive
Banach space. Let JF be the duality mappings on F . Let A : E → F be a bounded linear
operator such that A �= 0 and let A∗ be the adjoint operator of A. Let ζ �= 0 and U : F → F
be a ζ -generalized demimetric mapping. If A–1(Fix(U)) �= ∅, then

Ax – UAx = 0 ⇔ A∗JF (Ax – UAx) = 0, ∀x ∈ E.

Proof It is clear that for each x ∈ E, Ax – UAx = 0 implies that A∗JF (Ax – UAx) = 0. To see
the converse, let x ∈ E such that A∗JF (Ax – UAx) = 0. Taking x∗ ∈ A–1(Fix(U)) we have

0 = ζ
〈
x – x∗, A∗JF (Ax – UAx)

〉
= ζ

〈
Ax – Ax∗, JF (Ax – UAx)

〉 ≥ ‖Ax – UAx‖2,

which implies that Ax – UAx = 0. �

Now, in this position, we give our algorithm and its convergence analysis for the gener-
alized multiple-set split feasibility problem in Banach spaces.

Theorem 3.2 Let E be a 2-uniformly convex and uniformly smooth Banach space and let
F be a smooth, strictly convex, and reflexive Banach space. Let JE and JF be the duality
mappings on E and F , respectively. Let for i = 1, 2, . . . , m, ζi �= 0 and Ui : F → F be a finite
family of ζi-generalized demimetric mappings such that Ui – I is demiclosed at 0. Let for
each i = 1, 2, . . . , m, Ai : E → E∗ be an ηi-inverse strongly monotone and Bi : E → 2E∗ be
a maximal monotone. Let for each i = 1, 2, . . . , m, Ti : E → F be a bounded linear operator
such that Ti �= 0 and let Ti

∗ : F∗ → E∗ be the adjoint of Ti. Suppose that � = {x∗ ∈ ⋂m
i=1(Ai +

Bi)–10 : Tix∗ ∈ Fix(Ui), i = 1, 2, . . . , m} �= ∅. Let {xn} be a sequence generated by v, x0, x1 ∈ E
and by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = J–1
E (JE(xn) + θn(JE(xn–1) – JE(xn))),

zn,i = J–1
E (JEwn – rn,iliT∗

i JF (Tiwn – UiTiwn)),

yn,i = JBi
λn,i

J–1
E (JEzn,i – λn,iAizn,i), i = 1, 2, . . . , m,

xn+1 = J–1
E (αnJEv +

∑m
i=1 γn,iJEyn,i), ∀n ≥ 0,
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where li = ζi
|ζi| , 0 ≤ θn ≤ θn and θ∗ ∈ (0, 1) such that

θn =

⎧
⎨

⎩
min{ εn

‖JE(xn)–JE(xn–1)‖ , θ∗}, xn �= xn–1

θ∗, otherwise.
(4)

Suppose the stepsizes are chosen in such a way that for small enough ε > 0,

rn,i ∈
(

ε,
2li
ζi

‖Tiwn – UiTiwn‖2

γ ‖T∗
i JF (Tiwn – UiTiwn)‖2 – ε

)
, if n ∈ � = {k : Tiwk – UiTiwk �= 0},

otherwise rn,i = ri is any nonnegative real number (where γ is the constant in Lemma 2.1).
Suppose that the following conditions are satisfied:

(i) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < infn∈N λn,i ≤ supn∈N λn,i < 2ηic, (c is the constant in Lemma 2.2);
(iii) γn,i ∈ (0, 1), αn +

∑m
i=1 γn,i = 1 and lim infn→∞ γn,i > 0;

(iv) εn > 0 and limn→∞ εn
αn

= 0.
Then, {xn} converges strongly to ��v, where �� is the generalized projection of E onto �.

Proof From Lemma 3.1, we have that the stepsizes rn,i are well defined. We show that
{xn} is bounded. Indeed, let x� ∈ �, since for each i = 1, 2, . . . , m, Ui is a ζi-generalized
demimetric mapping and by Lemma 2.1 we have

φ
(
x�, zn,i

)
= φ

(
x�, J–1

E
(
JEwn – rn,iliT∗

i JF (Tiwn – UiTiwn)
))

=
∥
∥x�

∥
∥2 – 2

〈
x�, JEwn – rn,iliT∗

i JF (Tiwn – UiTiwn)
〉

+
∥
∥JEwn – lirn,iT∗

i JF (Tiwn – UiTiwn)
∥
∥2

≤ ∥∥x�
∥∥2 – 2

〈
x�, JEwn

〉
+ 2lirn,i

〈
x�, T∗

i JF (Tiwn – UiTiwn)
〉

+ ‖wn‖2 – 2lirn,i
〈
wn, T∗

i JF (Tiwn – UiTiwn)
〉

+ γ (rn,i)2∥∥T∗
i JF (Tiwn – UiTiwn)

∥
∥2

= φ
(
x�, wn

)
+ 2lirn,i

〈
Tix�, JF (Tiwn – UiTiwn)

〉

– 2lirn,i
〈
Tiwn, JF (Tiwn – UiTiwn)

〉

+ γ (rn,i)2∥∥T∗
i JF (Tiwn – UiTiwn)

∥∥2

= φ
(
x�, wn

)
– 2lirn,i

〈
Tiwn – Tix�, JF (Tiwn – UiTiwn)

〉

+ γ (rn,i)2∥∥T∗
i JF (Tiwn – UiTiwn)

∥
∥2

≤ φ
(
x�, wn

)
– 2rn,i

li

ζi
‖Tiwn – UiTiwn‖2

+ γ (rn,i)2∥∥T∗
i JF (Tiwn – UiTiwn)

∥
∥2

= φ
(
x�, wn

)

+ rn,i

(
γ (rn,i)

∥
∥T∗

i JF (Tiwn – UiTiwn)
∥
∥2 –

2li

ζi
‖Tiwn – UiTiwn‖2

)
. (5)
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For n ∈ �, from the condition of rn,i we have

γ
∥∥T∗

i JF (Tiwn – UiTiwn)
∥∥2(ε + rn,i) ≤ 2li

ζi
‖Tiwn – UiTiwn‖2,

hence

γ ε
∥∥T∗

i JF (Tiwn – UiTiwn)
∥∥2 ≤ 2li

ζi
‖Tiwn – UiTiwn‖2 – γ rn,i

∥∥T∗
i JF (Tiwn – UiTiwn)

∥∥2.

This implies that

γ rn,iε
∥
∥T∗

i JF (Tiwn – UiTiwn)
∥
∥2 ≤ rn,i

(
2li

ζi
‖Tiwn – UiTiwn‖2

– γ rn,i
∥∥T∗

i JF (Tiwn – UiTiwn)
∥∥2

)
.

(6)

Utilizing Lemma 2.10 we have

φ
(
x∗, yn,i

) ≤ φ
(
x∗, zn,i

)
– (c – λn,iβ)‖yn,i – zn,i‖2 – λn,i

(
2ηi –

1
β

)∥∥Aizn,i – Aix∗∥∥2 (7)

for each β > 0 and n ∈ N. Since 0 < infn∈N λn,i ≤ supn∈N λn,i < 2cηi, for each i ∈ {1, 2, . . . , m}
there exists βi > 0 such that infn∈N(c –λn,iβi) > 0 and infn∈N λn,i(2ηi – 1

βi
) > 0. From inequal-

ities (5), (6), and (7), we obtain

φ
(
x∗, yn,i

) ≤ φ
(
x∗, wn

)
. (8)

From the definition of wn, we obtain

φ
(
x∗, wn

)
= φ(x∗, J–1

E
(
JE(xn) + θn

(
JE(xn–1) – JE(xn)

))
(9)

≤ (1 – θn)φ
(
x∗, xn

)
+ θnφ

(
x∗, xn–1

)
.

From inequalities (8) and (9) we obtain

φ
(
x�, xn+1

)
= φ

(

x�, J–1
E

(

αnJEv +
m∑

i=1

γn,iJEyn,i

))

=
∥
∥x�

∥
∥2 – 2

〈

x�,

(

αnJEv +
m∑

i=1

γn,iJEyn,i

)〉

+

∥
∥∥∥
∥
αnJEv +

m∑

i=1

γn,iJEyn,i

∥
∥∥∥
∥

2

≤ ∥
∥x�

∥
∥2 – 2αn

〈
x�, JEv

〉
– 2

m∑

i=1

γn,i
〈
x�, JEyn,i

〉

+ αn‖v‖2 +
m∑

i=1

γn,i‖yn,i‖2
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= αnφ
(
x�, v

)
+

m∑

i=1

γn,iφ
(
x�, yn,i

)

≤ αnφ
(
x�, v

)
+ (1 – αn)φ

(
x�, wn

)

≤ max
{
φ
(
x∗, v

)
, max

{
φ
(
x∗, xn

)
,φ

(
x∗, xn–1

)}}

≤ · · · ≤ max
{
φ
(
x∗, v

)
, max

{
φ
(
x∗, x1

)
,φ

(
x∗, x0

)}}
.

Therefore, φ(x∗, xn) is bounded and by inequality (3), the sequence {xn} is also bounded.
Consequently, {wn}, {yn,i}, {zn,i}, and {Tiwn} are all bounded. We have θn‖JE(xn) –
JE(xn–1)‖ ≤ εn for all n, which together with limn→∞ εn

αn
= 0 implies that

lim
n→∞

θn

αn

∥∥JE(xn) – JE(xn–1)
∥∥ = 0. (10)

Utilizing Lemma 2.3 we obtain that

lim
n→∞

θn

αn
‖xn – xn–1‖ = 0. (11)

Since the sequence {xn} is bounded, there exists a constant M > 0 such that

φ
(
x∗, xn–1

)
– φ

(
x∗, xn

)
= ‖xn–1‖2 – 2

〈
x∗, JE(xn–1)

〉
+

∥
∥x∗∥∥2

–
(‖xn‖2 – 2

〈
x∗, JE(xn)

〉
+

∥
∥x∗∥∥2)

=
(‖xn–1‖2 – ‖xn‖2) + 2

〈
x∗, JE(xn) – JE(xn–1)

〉

≤ M‖xn–1 – xn‖ + 2
∥∥JE(xn) – JE(xn–1)

∥∥∥∥x∗∥∥.

Hence, from (11) and (10) we obtain

lim
n→∞

θn

αn

(∣∣φ
(
x∗, xn–1

)
– φ

(
x∗, xn

)∣∣) = 0. (12)

From inequalities (5), (6), (7), and (8) we obtain

φ
(
x�, xn+1

) ≤ αnφ
(
x�, v

)
+

m∑

i=1

γn,iφ
(
x�, yn,i

)

≤ αnφ
(
x�, v

)
+

m∑

i=1

γn,iφ
(
x�, zn,i

)

–
m∑

i=1

γn,i(c – λn,iβi)‖yn,i – zn,i‖2 –
m∑

i=1

γn,iλn,i

(
2ηi –

1
βi

)∥
∥Aizn,i – Aix∗∥∥2

≤ αnφ
(
x�, v

)
+ (1 – αn)φ

(
x�, wn

)
–

m∑

i=1

γn,iγ rn,iε
∥
∥T∗

i JF (Tiwn – UiTiwn)
∥
∥2

–
m∑

i=1

γn,i(c – λn,iβi)‖yn,i – zn,i‖2 –
m∑

i=1

γn,iλn,i

(
2ηi –

1
βi

)∥∥Aizn,i – Aix∗∥∥2

≤ αnφ
(
x�, v

)
+ (1 – αn)

[
(1 – θn)φ

(
x∗, xn

)
+ θnφ

(
x∗, xn–1

)]
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–
m∑

i=1

γn,iγ rn,iε
∥∥T∗

i JF (Tiwn – UiTiwn)
∥∥2

–
m∑

i=1

γn,i(c – λn,iβi)‖yn,i – zn,i‖2

–
m∑

i=1

γn,iλn,i

(
2ηi –

1
βi

)∥∥Aizn,i – Aix∗∥∥2

≤ φ
(
x∗, xn

)
+ αn

[
[
φ
(
x∗, v

)
– φ

(
x∗, xn

)]

+ (1 – αn)
θn

αn

[
φ
(
x∗, xn–1

)
– φ

(
x∗, xn

)]]

–
m∑

i=1

γn,iγ rn,iε
∥∥T∗

i JF (Tiwn – UiTiwn)
∥∥2

–
m∑

i=1

γn,i(c – λn,iβi)‖yn,i – zn,i‖2

–
m∑

i=1

γn,iλn,i

(
2ηi –

1
βi

)∥∥Aizn,i – Aix∗∥∥2.

This implies that

m∑

i=1

γn,i(c – λn,iβi)‖yn,i – zn,i‖2 +
m∑

i=1

γn,iλn,i

(
2ηi –

1
βi

)∥∥Aizn,i – Aix∗∥∥2

+
m∑

i=1

γn,iγ rn,iε
∥
∥T∗

i JF (Tiwn – UiTiwn)
∥
∥2

≤ φ
(
x∗, xn

)
– φ

(
x∗, xn+1

)
+ αn(K1 + K2), (13)

where K1 = supn∈N{|φ(x∗, v) – φ(x∗, xn)|} and K2 = supn∈N{| θn
αn

[φ(x∗, xn–1) – φ(x∗, xn)]|}.
Utilizing Lemma 2.4, we have

φ
(
x∗, xn+1

)
= V

(

x∗,αnJEv +
m∑

i=1

γn,iJEyn,i

)

≤ V

(

x∗,αnJEv +
m∑

i=1

γn,iJEyn,i – αn
(
JEv – JEx∗)

)

– 2

〈

J–1
E

(

αnJEv +
m∑

i=1

γn,iJEyn,i

)

– x∗, –αn
(
JEv – JEx∗)

〉

≤ V

(

x∗,αnJEx∗ +
m∑

i=1

γn,iJEyn,i

)

+ 2αn
〈
xn+1 – x∗, JEv – JEx∗〉

= φ

(

x∗, J–1
E

(

αnJEx∗ +
m∑

i=1

γn,iJEyn,i

))

+ 2αn
〈
xn+1 – x∗, JEv – JEx∗〉
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≤
m∑

i=1

γn,iφ
(
x∗, yn,i

)
+ 2αn

〈
xn+1 – x∗, JEv – JEx∗〉

≤
m∑

i=1

γn,iφ
(
x∗, zn,i

)
+ 2αn

〈
xn+1 – x∗, JEv – JEx∗〉

≤ (1 – αn)φ
(
x∗, wn

)
+ 2αn

〈
xn+1 – x∗, JEv – JEx∗〉.

Therefore,

φ
(
x∗, xn+1

) ≤ (1 – αn)φ
(
x∗, wn

)
+ 2αn

〈
xn+1 – x∗, JEv – JEx∗〉

≤ (1 – αn)
[
(1 – θn)φ

(
x∗, xn

)
+ θnφ

(
x∗, xn–1

)]

+ 2αn
〈
xn+1 – x∗, JEv – JEx∗〉

≤ (1 – αn)φ
(
x∗, xn

)
+ αnχn, (14)

where

χn = (1 – αn)
θn

αn

[
φ
(
x∗, xn–1

)
– φ

(
x∗, xn

)]
+ 2

〈
xn+1 – x∗, JEv – JEx∗〉.

From Lemma 2.10 and Lemma 2.8, we have that � is closed and convex. Therefore, the
generalized projection �� from E onto � is well defined. Suppose x∗ = ��v. The next
task is to prove that the sequence {xn} converges to the point x∗. In order to prove this, we
consider two possible cases.

Case 1. Suppose that there exists n0 ∈ N such that {φ(x∗, xn)}∞n=n0 is nonincreasing. By
the boundedness of {φ(x∗, xn)}, we have {φ(x∗, xn)} is convergent. Furthermore, we have
φ(x∗, xn) – φ(x∗, xn+1) → 0 as n → ∞. Therefore, from (13), for each i ∈ {1, 2, . . . , m} we
obtain

lim
n→∞γn,iγ rn,iε

∥∥T∗
i JF (Tiwn – UiTiwn)

∥∥2 = 0.

This implies that

lim
n→∞

∥∥T∗
i JF (Tiwn – UiTiwn)

∥∥ = 0. (15)

From Lemma 3.1 we obtain

lim
n→∞‖Tiwn – UiTiwn‖ = 0. (16)

In a similar way we obtain that

lim
n→∞

m∑

i=1

γn,i(c – λn,iβi)‖yn,i – zn,i‖2 +
m∑

i=1

γn,iλn,i

(
2ηi –

1
βi

)∥
∥Aizn,i – Aix∗∥∥2 = 0. (17)

By our assumption we obtain

lim
n→∞‖yn,i – zn,i‖ = lim

n→∞
∥∥Aizn,i – Aix∗∥∥ = 0, (i = 1, 2, . . . , m). (18)
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Since JE is uniformly continuous on bounded subsets of E, we obtain

lim
n→∞‖JEyn,i – JEzn,i‖ = 0, (i = 1, 2, . . . , m). (19)

Also, we have

∥∥JE(wn) – JE(xn)
∥∥ = θn

∥∥JE(xn–1) – JE(xn)
∥∥ = αn

θn

αn

∥∥JE(xn–1) – JE(xn)
∥∥ → 0.

Furthermore, for i = 1, 2, . . . , m, we obtain that

∥∥JE(zn,i) – JE(wn)
∥∥ ≤ rn,i

∥∥T∗
i JF (Tiwn – UiTiwn)

∥∥

≤ rn,i
∥∥T∗

i
∥∥‖Tiwn – UiTiwn)‖ → 0.

Therefore, we obtain

∥∥JE(yn,i) – JE(xn)
∥∥ ≤ ∥∥JE(yn,i) – JE(zn,i)

∥∥ +
∥∥JE(zn,i) – JE(wn)

∥∥

+
∥∥JE(wn) – JE(xn)

∥∥ → 0.

This implies that

∥
∥JE(xn+1) – JE(xn)

∥
∥ ≤ αn‖JEv – JExn‖ +

m∑

i=1

γn,i
∥
∥JE(yn,i) – JE(xn)

∥
∥ → 0.

By uniform continuity of J–1
E on bounded subset of E∗, we conclude that

lim
n→∞‖xn+1 – xn‖ = 0. (20)

Since {xn} is bounded and E is a reflexive Banach space, there exits a subsequence {xnk }
of {xn} such that xnk ⇀ z. Since ‖yn,i – xn‖ → 0, we have ynk ,i ⇀ z, (i = 1, 2, . . . , m). Thus,
we obtain z ∈ ⋂m

i=1(Ai + Bi)–10 (see, e.g., [7] for this proof ). Since ‖wn – xn‖ → 0, we have
wnk ⇀ z. From the continuity of Ti, we have that Tiwnk ⇀ Tiz. Now, from (16) and the
demiclosedness of I – Ui, we obtain Tiz ∈ Fix(Ui). This implies that z ∈ �. Next, we show
that lim supn→∞〈xn+1 – x∗, JEv – JEx∗〉 ≤ 0. We can choose a subsequence {xnk } of {xn} such
that

lim sup
n→∞

〈
xn – x∗, JEv – JEx∗〉 = lim

k→∞
〈
xnk – x∗, JEv – JEx∗〉.

Since x∗ = ��v, applying Lemma 2.6 we obtain

lim
k→∞

〈
xnk – x∗, JEv – JEx∗〉 =

〈
z – x∗, JEv – JEx∗〉 ≤ 0.

This, together with limn→∞ ‖xn+1 – xn‖ = 0, implies that

lim sup
n→∞

〈
xn+1 – x∗, JEv – JEx∗〉 = lim sup

n→∞
〈
xn – x∗, JEv – JEx∗〉 ≤ 0.
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Applying inequality (14) and Lemma 2.11, we deduce that limn→∞ φ(x∗, xn) = 0. Now, from
Lemma 2.5 we obtain, limn→∞ ‖xn – x∗‖ = 0.

Case 2: Put �n = φ(x∗, xn) for all n ∈N. Suppose there exists a subsequence {�nj} of {�n}
such that �nj ≤ �nj+1 for all j ∈ N. Define a mapping τ : N → N by τ (n) = max{k ≤ n : �k <
�k+1} for all n ≥ n0 (for some n0 large enough). Thus, by Lemma 2.12 we have τ (n) → ∞
and 0 ≤ �τ (n) ≤ �τ (n)+1 for all n ≥ n0. Following the proof line in Case 1, we can show that

lim
n→∞

∥∥Tiwτ (n) – Ui(Tiwτ (n))
∥∥ = lim

n→∞‖yτ (n),i – zτ (n),i‖ = 0, (i = 1, 2, . . . , m) (21)

and

lim
n→∞‖xτ (n)+1 – xτ (n)‖ = 0. (22)

Further, we can show that

lim sup
n→∞

〈
xτ (n) – x∗, JEv – JEx∗〉 ≤ 0. (23)

It follows from (14) that

φ
(
x∗, xτ (n)+1

) ≤ (1 – ατ (n))φ
(
x∗, xτ (n)

)
+ ατ (n)χτ (n). (24)

Since φ(x∗, xτ (n)) < φ(x∗, xτ (n)+1), we have

ατ (n)φ
(
x∗, xτ (n)

) ≤ ατ (n)χτ (n).

Since ατ (n) > 0 and lim supn→∞ χτ (n) ≤ 0, we deduce that

lim
n→∞φ

(
x∗, xτ (n)

)
= 0.

Using this and inequality (24), we conclude that limn→∞ φ(x∗, xτ (n)+1) = 0. Now, from
Lemma 2.12, we have that limn→∞ φ(x∗, xn) = 0. Hence, limn→∞ ‖x∗ – xn‖ = 0. This com-
pletes the proof. �

We know that every Hilbert space H, is a 2-uniformly convex and uniformly smooth
Banach space and the normalized duality mapping is JH = I . Also, we have the following
relation in Hilbert space H:

‖x + y‖2 = ‖x‖2 + 2〈y, x〉 + ‖y‖2, ∀x, y ∈H.

Therefore, in Lemma 2.2 and Lemma 2.1 the constant c = γ = 1. Theorem 3.2 now yields
the following result regarding an algorithm for solving the generalized multiple-set split
feasibility problem in Hilbert spaces.

Theorem 3.3 Let E and F be Hilbert spaces. Let for i = 1, 2, . . . , m, ζi �= 0 and Ui : F → F
be a finite family of ζi-generalized demimetric mappings such that Ui – I is demiclosed at
0. Let for i = 1, 2, . . . , m, Ai : E → E be an ηi-inverse strongly monotone and Bi : E → 2E be
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a maximal monotone. Let for each i = 1, 2, . . . , m, Ti : E → F be a bounded linear operator
such that Ti �= 0 and let Ti

∗ : F → E be the adjoint operator of Ti. Suppose that � = {x∗ ∈
⋂m

i=1(Ai + Bi)–10 : Tix∗ ∈ Fix(Ui), i = 1, 2, . . . , m} �= ∅. Let {xn} be a sequence generated by
v, x0, x1 ∈ E and by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = xn + θn(xn–1 – xn),

zn,i = wn – rn,iliT∗
i (Tiwn – UiTiwn),

yn,i = JBi
λn,i

(zn,i – λn,iAizn,i), i = 1, 2, . . . , m,

xn+1 = αnv +
∑m

i=1 γn,iyn,i, ∀n ≥ 0,

where li = ζi
|ζi| , 0 ≤ θn ≤ θn and θ∗ ∈ (0, 1) such that

θn =

⎧
⎨

⎩
min{ εn

‖xn–xn–1‖ , θ∗}, xn �= xn–1

θ∗, otherwise.

Suppose the stepsizes are chosen in such a way that for small enough ε > 0,

rn,i ∈
(

ε,
2li
ζi

‖Tixn – UiTixn‖2

‖T∗
i (Tixn – UiTixn)‖2 – ε

)
, if n ∈ � = {k : Tixk – UiTixk �= 0},

otherwise rn,i = ri is any nonnegative real number. Suppose that the following conditions are
satisfied:

(i) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < infn∈N λn,i ≤ supn∈N λn,i < 2ηi;
(iii) γn,i ∈ (0, 1), αn +

∑m
i=1 γn,i = 1 and lim infn→∞ γn,i > 0;

(iv) εn > 0 and limn→∞ εn
αn

= 0.
Then, {xn} converges strongly to P�v.

4 Applications
In this section we present some applications of our main result.

4.1 Common solutions to variational inequality problems
Let C be a nonempty, closed, and convex subset of a Banach space E and A : E → E∗ be an
operator. The variational inequality problem (VIP) is formulated as follows:

Find an element x� ∈ C such that
〈
y – x�, A

(
x�

)〉 ≥ 0, ∀y ∈ C. (25)

The set of solutions of this problem is denoted by VI(C, A). It is well known that the VIP
is a fundamental problem in optimization theory and nonlinear analysis (see [45]).

Let f : E → (–∞, +∞] be a proper, lower semicontinuous, and convex function. Then,
it is known that the subdifferential ∂f of f defined by

∂f (x) =
{

x∗ ∈ E∗ : f (y) ≥ f (x) +
〈
y – x, x∗〉,∀y ∈ E

}
,

for x ∈ E is a maximal monotone operator; see [46].
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Let iC : E → (–∞, +∞] be the indicator function of C. We know that iC is proper lower
semicontinuous and convex, and hence its subdifferential ∂iC is a maximal monotone op-
erator. Let B = ∂iC . Then, it is easy to see that JB

λ x = �Cx for every λ > 0 and x ∈ E. Further,
we also obtain (A + B)–1(0) = VI(C, A).

Now, as an application of our main result, we obtain the following theorem for finding
a common element of the set of common solutions of a system of a variational inequality
problem and the set of common fixed points of a finite family of generalized demimetric
mappings in 2-uniformly convex and uniformly smooth Banach spaces.

Theorem 4.1 Let E be a 2-uniformly convex and uniformly smooth Banach space. Let
{Ci}m

i=1 be a finite family of nonempty, closed, and convex subsets of E. Let for i = 1, 2, . . . , m,
ζi �= 0 and Ui : E → E be a finite family of ζi-generalized demimetric mappings such that
Ui – I is demiclosed at 0. Let for i = 1, 2, . . . , m, Ai : E → E∗ be an ηi-inverse strongly mono-
tone. Suppose that � = {x∗ ∈ ⋂m

i=1(VI(Ci, Ai) ∩ Fix(Ui))} �= ∅. Let {xn} be a sequence gener-
ated by v, x0, x1 ∈ E and by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = J–1
E (JE(xn) + θn(JE(xn–1) – JE(xn))),

zn,i = J–1
E (JEwn – rn,iliJE(wn – Uiwn)),

yn,i = �Ci J–1
E (JEzn,i – λn,iAizn,i), i = 1, 2, . . . , m,

xn+1 = J–1
E (αnJEv +

∑m
i=1 γn,iJEyn,i), ∀n ≥ 0,

where li = ζi
|ζi| , 0 ≤ θn ≤ θn and θ∗ ∈ (0, 1) such that

θn =

⎧
⎨

⎩
min{ εn

‖JE(xn)–JE(xn–1)‖ , θ∗}, xn �= xn–1

θ∗, otherwise.

Suppose that the following conditions are satisfied:
(i) αn ∈ (0, 1), limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(ii) 0 < infn∈N λn,i ≤ supn∈N λn,i < 2ηic, (c is the constant in Lemma 2.2);
(iii) γn,i ∈ (0, 1), αn +

∑m
i=1 γn,i = 1 and lim infn→∞ γn,i > 0;

(iv) rn,i ∈ (ε, 2li
γ ζi

– ε) for some ε > 0, (γ is the constant in Lemma 2.1);
(v) εn > 0 and limn→∞ εn

αn
= 0.

Then, {xn} converges strongly to ��v.

Proof Setting F = E, Ti = I , and Bi = ∂iCi , we obtain the desired result from Theo-
rem 3.2. �

Remark 4.2 Setting Ui = I in Theorem 4.1, our result generalizes the result of [47] from
the problem of finding common solutions to unrelated variational inequalities in a Hilbert
space to a 2-uniformly smooth and uniformly convex Banach space.

Remark 4.3 We extend the main results of Kimura and Nakajo [7] from the problem of
finding a solution of the variational inequality problem to the problem of finding a com-
mon element of the set of common solutions of a system of a variational inequality problem
and a common fixed-point problem.
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4.2 Convex minimization problem
For a convex differentiable function � : E → R and a proper convex lower semicontinuous
function � : E → (–∞, +∞], the convex minimization problem is to find a point x� ∈ E
such that

�
(
x�

)
+ �

(
x�

)
= min

x∈E

{
�(x) + �(x)

}
. (26)

If ∇� and ∂� represent the gradient of � and subdifferential of � , respectively, then
Fermat’s rule ensures the equivalence of problem (26) to the problem of finding a point
x� ∈ E such that

0 ∈ ∇�
(
x�

)
+ ∂�

(
x�

)
.

Many optimization problems from image processing, statistical regression, and machine
learning (see, e.g., [48, 49]) can be adapted into the form of (26). In this setting, we assume
that � is Gâteaux-differentiable with derivative ∇� that is an inverse strongly monotone.

Now, as an application of our main result we obtain the following theorem.

Theorem 4.4 Let E be a 2-uniformly convex and uniformly smooth Banach space. Let
ζ �= 0 and U : E → E be a ζ -generalized demimetric mapping such that U – I is demiclosed
at 0. Let � : E → R be a convex differentiable function such that its gradient ∇� is an η-
inverse strongly monotone and let � : E → (–∞, +∞] be a proper function with convexity
and lower semicontinuity. Suppose that � = {x ∈ Fix(U) : x = argminz∈E �(z) + �(z)} �= ∅.
Let {xn} be a sequence generated by v, x0, x1 ∈ E and by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = J–1
E (JE(xn) + θn(JE(xn–1) – JE(xn))),

zn = J–1
E (JEwn – rnlJE(wn – Uwn)),

yn = argminz∈E{�(z) + 1
2λn

‖z‖2 – 1
λn

〈y, JEzn – λn∇�(zn)〉},
xn+1 = J–1

E (αnJEv + γnJEyn), ∀n ≥ 0,

where l = ζ

|ζ | , 0 ≤ θn ≤ θn and θ∗ ∈ (0, 1) such that

θn =

⎧
⎨

⎩
min{ εn

‖JE(xn)–JE(xn–1)‖ , θ∗}, xn �= xn–1

θ∗, otherwise.

Suppose that the following conditions are satisfied:
(i) αn ∈ (0, 1), limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(ii) 0 < infn∈N λn ≤ supn∈N λn < 2ηc, (c is the constant in Lemma 2.2);
(iii) γn ∈ (0, 1), αn + γn = 1 and lim infn→∞ γn > 0;
(iv) rn ∈ (ε, 2l

γ ζ
– ε) for some ε > 0, (γ is the constant in Lemma 2.1);

(v) εn > 0 and limn→∞ εn
αn

= 0.
Then, {xn} converges strongly to ��v.
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Proof We know that the subdifferential mapping ∂� of a proper, convex, and lower semi-
continuous function � is a maximal monotone. Also, we have (see [50]):

J∂�
λn un = argmin

z∈E

{
�(z) +

1
2λn

‖z‖2 –
1
λn

〈y, JEun〉
}

.

Now, setting F = E, m = 1, Ti = I and A = ∇�, we obtain the desired result from Theo-
rem 3.2. �

4.3 The multiple-set split feasibility problem
Let C be a nonempty, closed, and convex subset of a strictly convex and reflexive Banach
space E. Then, we know that for any x ∈ E, there exists a unique element z ∈ C such that
‖x – z‖ ≤ ‖x – y‖ for all y ∈ C. Putting z = PCx, we call PC the metric projection of E onto
C. Let E be a uniformly convex and smooth Banach space and let C be a nonempty, closed,
and convex subset of E. Then, PC is 1-generalized demimetric and I – PC is demiclosed at
zero (see [33] for details).

As another application of our main result, we obtain the following strong convergence
theorem for the multiple-set split feasibility problem.

Theorem 4.5 Let E be a 2-uniformly convex and uniformly smooth Banach space and let
F be a uniformly convex and smooth Banach space. Let {Ci}m

i=1 and {Qi}m
i=1 be two finite

families of nonempty, closed, and convex subsets of E and F , respectively. Let for each i =
1, 2, . . . , m, Ti : E → F be a bounded linear operator such that Ti �= 0. Suppose that � = {x∗ ∈
⋂m

i=1 Ci : Tix∗ ∈ Qi, i = 1, 2, . . . , m} �= ∅. Let {xn} be a sequence generated by v, x0, x1 ∈ E and
by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = J–1
E (JE(xn) + θn(JE(xn–1) – JE(xn))),

zn,i = J–1
E (JEwn – rn,iT∗

i JF (Tiwn – PQi Tiwn)),

yn,i = �Ci zn,i, i = 1, 2, . . . , m

xn+1 = J–1
E (αnJEv +

∑m
i=1 γn,iJEyn,i), ∀n ≥ 0,

where 0 ≤ θn ≤ θn and θ∗ ∈ (0, 1) such that

θn =

⎧
⎨

⎩
min{ εn

‖JE(xn)–JE(xn–1)‖ , θ∗}, xn �= xn–1

θ∗, otherwise.

Suppose the stepsizes are chosen in such a way that for small enough ε > 0,

rn,i ∈
(

ε,
2‖Tiwn – PQi Tiwn‖2

γ ‖T∗
i JF (Tiwn – PQi Tiwn)‖2 – ε

)
, if n ∈ � = {k : Tiwk – PQi Tiwk �= 0},

otherwise rn,i = ri is any nonnegative real number (where γ is the constant in Lemma 2.1).
Suppose that the following conditions are satisfied:

(i) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) γn,i ∈ (0, 1), αn +

∑m
i=1 γn,i = 1 and lim infn→∞ γn,i > 0;

(iii) εn > 0 and limn→∞ εn
αn

= 0.
Then, {xn} converges strongly to ��v.
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4.4 Split common null-point problem
Let E be a uniformly convex and smooth Banach space and let G : E → 2E∗ be a maximal
monotone operator. For each x ∈ E and μ > 0, we define the metric resolvent of G for μ > 0
by

QG
μ(x) =

(
I + μJE

–1G
)–1(x), ∀x ∈ E. (27)

It is observed that 0 ∈ JE(QG
μ(x) – x) + μGQG

μ(x) and G–10 = Fix(QG
μ), (see [51]). It is known

that QG
μ is 1-generalized demimetric. Also, we know that I – QG

μ is demiclosed at zero (see
[33] for details).

We obtain the following strong convergence result for split common null-point problem.

Theorem 4.6 Let E be a 2-uniformly convex and uniformly smooth Banach space and
let F be a uniformly convex and smooth Banach space. Let for i = 1, 2, . . . , m, Bi : E → 2E∗

and Gi : F → 2F∗ be maximal monotone operators. Let for i = 1, 2, . . . , m, JBi
ri , be resolvent

operators of Bi for ri > 0 and QGi
μi , be metric resolvent operators of Gi for μi > 0. Let for

each i = 1, 2, . . . , m, Ti : E → F be a bounded linear operator such that Ti �= 0. Suppose that
� = {x∗ ∈ ⋂m

i=1 Bi
–10 : Tix∗ ∈ Gi

–10, i = 1, 2, . . . , m} �= ∅. Let {xn} be a sequence generated by
v, x0, x1 ∈ E and by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = J–1
E (JE(xn) + θn(JE(xn–1) – JE(xn))),

zn,i = J–1
E (JEwn – rn,iT∗

i JF (Tiwn – QGi
μi Tiwn)),

yn,i = JBi
λn,i

zn,i, i = 1, 2, . . . , m,

xn+1 = J–1
E (αnJEv +

∑m
i=1 γn,iJEyn,i), ∀n ≥ 0,

where 0 ≤ θn ≤ θn and θ∗ ∈ (0, 1) such that

θn =

⎧
⎨

⎩
min{ εn

‖JE(xn)–JE(xn–1)‖ , θ∗}, xn �= xn–1

θ∗, otherwise.

Suppose the stepsizes are chosen in such a way that for small enough ε > 0,

rn,i ∈
(

ε,
2‖Tiwn – QGi

μi Tiwn‖2

γ ‖T∗
i JF (Tiwn – QGi

μi Tiwn)‖2
– ε

)
, if n ∈ � =

{
k : Tiwk – QGi

μi
Tiwk �= 0

}
,

otherwise rn,i = ri is any nonnegative real number (where γ is the constant in Lemma 2.1).
Suppose that the following conditions are satisfied:

(i) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < infn∈N λn,i;
(iii) γn,i ∈ (0, 1), αn +

∑m
i=1 γn,i = 1 and lim infn→∞ γn,i > 0;

(iv) εn > 0 and limn→∞ εn
αn

= 0.
Then, {xn} converges strongly to ��v.

4.5 Split common fixed point
Let H be a Hilbert space. The mapping T : H →H is called:



Eslamian Journal of Inequalities and Applications          (2024) 2024:7 Page 20 of 24

• A strict pseudocontraction, if there exists a constant β ∈ [0, 1) such that

‖Tx – Ty‖2 ≤ ‖x – y‖2 + β
∥
∥(x – Tx) – (y – Ty)

∥
∥2, ∀x, y ∈H.

We obtain the following strong convergence result for the split common fixed-point
problem.

Theorem 4.7 Let E and F be Hilbert spaces. Let for each i = 1, 2, . . . , m, Ui : F → F be a
ςi-strict pseudocontraction mapping and let Si : E → E be a κi-strict pseudocontraction
mapping. Let for each i = 1, 2, . . . , m, Ti : E → F be a bounded linear operator such that
Ti �= 0. Suppose that � = {x∗ ∈ ⋂m

i=1 Fix(Si) : Tix∗ ∈ Fix(Ui), i = 1, 2, . . . , m} �= ∅. Let {xn} be
a sequence generated by v, x0, x1 ∈ E and by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = xn + θn(xn–1 – xn),

zn,i = wn – rn,iT∗
i (Tiwn – UiTiwn),

yn,i = (1 – λn,i)zn,i + λn,iSizn,i, i = 1, 2, . . . , m,

xn+1 = αnv +
∑m

i=1 γn,iyn,i, ∀n ≥ 0,

where 0 ≤ θn ≤ θn and θ∗ ∈ (0, 1) such that

θn =

⎧
⎨

⎩
min{ εn

‖xn–xn–1‖ , θ∗}, xn �= xn–1

θ∗, otherwise.
(28)

Suppose the stepsizes are chosen in such a way that for small enough ε > 0,

rn,i ∈
(

ε,
(1 – ςi)‖Tiwn – UiTiwn‖2

‖T∗
i (Tiwn – UiTiwn)‖2 – ε

)
, if n ∈ � = {k : Tiwk – UiTiwk �= 0},

otherwise rn,i = ri is any nonnegative real number. Suppose that the following conditions are
satisfied:

(i) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < infn∈N λn,i ≤ supn∈N λn,i < (1 – κi);
(iii) γn,i ∈ (0, 1), αn +

∑m
i=1 γn,i = 1 and lim infn→∞ γn,i > 0;

(iv) εn > 0 and limn→∞ εn
αn

= 0.
Then, {xn} converges strongly to P�v.

Proof Put Ai = I – Si and Bi = 0, for each i = 1, 2, . . . , m. Then, Ai is 1–κi
2 -inverse strongly

monotone and Fix(Si) = Ai
–1(0). Since for each i ∈ {1, 2, . . . , m}, Si is a ςi-strict pseudocon-

traction, we have Si is a 2
1–ςi

-generalized demimetric mapping and I – Si is demiclosed at
zero. Hence, by Theorem 3.2, we obtain the desired result. �

5 Numerical experiments
Example 5.1 We consider the following multiple-set split feasibility problem: Find an el-
ement x� ∈ � with

� =
3⋂

i=1

(
Ci ∩ T–1

i (Qi)
)
,
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where Ci ⊂R
10 and Qi ⊂R

20 that are defined by

Ci =
{

x ∈R
10 : 〈ai, x〉 ≤ bi

}
, i = 1, 2, 3,

Q1 =
{

x ∈R
20 :

∥∥x – (d1, 0, 0, . . . , 0)
∥∥ ≤ 1

}
,

Q2 =
{

x ∈R
20 :

∥∥x – (0, d2, 0, . . . , 0)
∥∥ ≤ 1

}
,

Q3 =
{

x ∈R
20 :

∥
∥x – (0, 0, d3, . . . , 0)

∥
∥ ≤ 1

}

and Ti : R10 → R
20, are bounded linear operators with the elements of the representing

matrix that are randomly generated in the closed interval [–2, 2]. We examine the conver-
gence of the sequences {xn}, which are defined in Theorem 4.5, where the coordinates of
the points ai, i = 1, 2, 3, are randomly generated in the closed interval [1, 4] and the num-
bers bi, i = 1, 2, 3, are randomly generated in the closed interval [1, 2], and the numbers di,
i = 1, 2, 3, are randomly generated in the closed interval [0, 1]. The coordinates of the point
u and the initial points x0 and x1 are randomly generated in the interval [0, 1]. The stop-
ping criterion is En = ‖xn – xn–1‖ < 10–5. In this case, x∗ = 0, is a solution of this problem.
We know that for i = 1, 2, 3,

PCi x =

⎧
⎨

⎩
x – 〈ai ,x〉–bi

‖ai‖2 ai, if 〈ai, x〉 > bi

x, if 〈ai, x〉 ≤ bi
(29)

and

PQ1 (x) =

⎧
⎨

⎩
(d1, 0, 0, . . . , 0) + x–(d1,0,0,...,0)

‖x–(d1,0,0,...,0)‖ , x /∈ Q1

x, x ∈ Q1.

The numerical results that we have obtained are presented in Table 1.
The behavior of En in Table 1 with θ∗ = 0.7 is depicted in Fig. 1.

Example 5.2 In Theorem 4.7, set E = F = �2(R) := {x = (x1, x2, . . . , xn, . . .), xi ∈ R :
∑∞

i=1 |xi|2 < ∞}, with inner product 〈., .〉 and norm ‖.‖ defined by

〈x, y〉 =
∞∑

i=1

xiyi, ‖x‖ =

( ∞∑

i=1

|xi|2
) 1

2

.

Let S : E → E, U : F → F , and T : E → F be defined by

Sx =
–3
2

x, Ux = –x, Tx = x.

Table 1 Table of numerical results for Theorem 4.5

αn = 0.1
n+10 , βn = 1

(n+10)1.2
and γn,i =

1–αn
3

θ∗ = 0.01 θ∗ = 0.25 θ∗ = 0.5 θ∗ = 0.7

n 1814 1285 703 266
Time (s) 0.3614 0.3276 0.2726 0.1520
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Figure 1 The graph of the error ‖xn – xn–1‖

It is easy to verify that S is a 1
5 -strict pseudocontraction mapping, U is nonexpansive (a

0-strict pseudocontraction mapping) and T is a bounded linear operator. Furthermore,
� = Fix(U) ∩ Fix(S) = {0}. We take θn = 0, rn = 2

3 , λn = 1
2 , v = 0, and αn = 1

n+1 . Then, the
sequence {xn} induced by our algorithm, reduces to

xn+1 =
(

1
n + 1

)(
1

12

)n

x0, ∀n ≥ 0.

Now, for x0 = (1, 1, 1, 0, 0, . . .), we obtain the following numerical results:

x10 = (1.46823257E – 12, 1.46823257E – 12, 1.46823257E – 12, 0, 0, . . .),

x20 = (1.24209778E – 23, 1.24209778E – 23, 1.24209778E – 23, 0, 0, . . .),

x50 = (2.15460430E – 56, 2.15460430E – 56, 2.15460430E – 56, 0, 0, . . .).

6 Conclusions
In this paper, a new iterative scheme with inertial effect is proposed for solving the gener-
alized multiple-set split feasibility problem in a 2-uniformly convex and uniformly smooth
Banach space E and a smooth, strictly convex, and reflexive Banach space F . The strong
convergence of the iterative sequences generated by the presented algorithm is established
without requiring the prior knowledge of operator norm. Finally, we applied our result to
study and approximate the solutions of certain classes of optimization problems. The re-
sults obtained in this paper improved and extended many others known in the field. As
part of our future research, we would like to extend the results in this paper to a more
general space, such as the p-uniformly convex Banach space. Furthermore, we would con-
sider the generalized multiple-set split feasibility problem involving a sum of maximal
monotone and Lipschitz continuous monotone mappings. It would be interesting if the
algorithm proposed in this paper could be applied to some practical optimization prob-
lems.
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