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1 Introduction
Special probability distributions play a fundamental role in probability theory, statis-
tics, optimization, and different research fields of science, including physics, chemistry,
bioscience, economy, and management science. Although they have been studied for a
long time, our understanding of them is far from complete. This paper is motivated by
Chvatal’s conjecture for the binomial distribution and Tomaszewaki’s conjecture for the
Rademacher sequence, both of which were completely solved very recently.

Let B(n, p) denote a binomial random variable with parameters # and p. Janson [5] in-

troduced the following conjecture suggested by Vask Chvétal.

Conjecture 1 (Chvatal) For any fixed n > 2, as m ranges over {0,...,n}, the probability

Gm := P{B(n, ") < m} is the smallest when m is the integer closest to %”

Chvital’s conjecture has interesting applications in machine learning. Janson [5] proved
Chvital’'s conjecture for sufficiently large n. Barabesi et al. [1] and Sun [12] showed that
Chvatal’s conjecture is true for any n > 2.

The second motivation of this paper is the following problem, attributed to Boguslav

Tomaszewski.
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Conjecture 2 (Tomaszewski) Let X = Y " a;X;, where Y . a? =1 and {X;,i > 1} is a
sequence of independent {-1, 1}-valued symmetric random variables. Then P{|X| < 1} >
1/2.

Tomaszewski’s conjecture has many applications in probability theory, geometric analy-
sis, and computer science. Recently, Keller and Klein [6] completely solved Tomaszewski’s
conjecture. We refer the reader to Keller and Klein [6] for the details and to Dvorak and
Klein [3] and Hu et al. [4] for some related problems.

In this paper, we will focus on the Gamma distribution. It is well known that the Gamma
distribution, including the exponential distribution and the x 2-distribution as two impor-
tant special cases, is one of the most basic probability distributions (cf. [7, Chap. 16]). It
is frequently applied to describe the time between independent events that occur at a
constant average rate. The Gamma distribution has many significant applications. For ex-
ample, it has been used to model the size of insurance claims, rainfall, failure times of
repairable systems, load levels for telecommunication services, and the distribution of as-
set prices.

Motivated by Chvatal’s conjecture, Li et al. [9] initiated the study of the infimum value
problem for special probability distributions. Let {Y;,A > 0} be a family of random vari-

ables with the same distribution F but different parameters A. Define
r(\) = P{Y; <E[Y;]}.

Li et al. [9] discussed the infimum value of the function r and gave a complete answer if F
is the Poisson distribution or the geometric distribution. Further, Li et al. [8] considered
the infimum value problem for the Weibull and Pareto distributions.

In the first part of this paper, we will consider the following more general infimum value
problem for the Gamma distribution. Let «, 8,k > 0 and let X, g be a Gamma random

variable with shape parameter o and scale parameter . Define

g, B) = P{Xa_,g EKE[XW;]}. (1.1)
For fixed «, what is the infimum value of the function g, («, 8)? In Sect. 2, we will give a
complete answer to this question. Interestingly, we discover an unnoticed phase transition

phenomenon (cf. Figs. 1-4 and Remark 2.2) and obtain the following result.

Theorem 1.1 Let«, B be arbitrary positive real numbers and let X, g be a Gamma random

variable with shape parameter o and scale parameter 8. Then
1
P{Xa,ﬂ SE[Xa,ﬂ]} > 5 (1.2)
and

glﬁfP{Xa,ﬂ <EXupl} =

N =

In the second part of this paper, we will prove a more interesting and deeper result.
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Theorem 1.2 Let «, B be arbitrary positive real numbers, let X, g be a Gamma random
variable with shape parameter o and scale parameter B8, and let Z be a standard normal

random variable. Then

P{|Xap — E[Xap]| </ Var(Xap)} > P{1Z] <1} ~ 0.6827 (1.3)

and

inf P{[Xo,p — E[Xup]| </ Var(Xap)} = P{IZ] < 1}.

We would like to point out that if 0 < ¥ # 1, then the following more general inequality

might not hold for all Gamma random variables:

P{|Xup — ElXop]| < 6/ VarXo5)} > P{1Z] <k }.

For example, we have

0.3834005 = P{|X1,; — E[X1,1]| < 0.5\/Var(X11)}
>0.3829249 = P{|Z| < 0.5}

>0.3819693 = P{|X5,1 — E[X,]| < 0.5y/Var(X,1)}
and

0.9502129 = P{|X1; — E[X1,1]| < 2y/Var(X;,1)}
<0.9544997 = P{|Z| < 2}

<0.9585112 = P{ X101 — E[X10,1]| < 2y/Var(Xi0,1)}.

Note that the Gamma distribution is unimodal (cf. [10, Example 23.3]). The Vysochan-
skii—Petunin inequality for unimodal distributions (cf. [2, Theorem 1.12] and [15]) tells us
that

4 1 4

P{|Xap — E[Xap]| < i/ Var(Xep)} >1- max{ﬁ -3 o0 } (1.4)

The estimate (1.4) is non-trivial if ¥ > 1; however, it yields a lower bound of 0 for the
probabilities P{| Xy, — E[Xop]| < /Var(Xep)}, o, B > 0.

The remainder of this paper is organized as follows. In Sect. 2, we investigate the infi-
mum value problem for the function g, (o, 8) and give the proof of Theorem 1.1. In Sects. 3
and 4, we discuss the variation comparison between the Gamma distribution and the nor-
mal distribution and give the proof of Theorem 1.2. In Sect. 5, we make concluding re-
marks. The software Mathematica has been used in Sect. 4. Some Mathematica calcula-

tions are given in the Appendix.
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2 The infimum value problem for the function g, (¢, 8)
Let o, 8 > 0 and let X, g be a Gamma random variable with probability density function

xct—l e—x/ﬂ

F(T)ﬂo‘, x> 0.

Jap(®) =

For « > 0, we consider the infimum value of the probability function g, («, B) defined

by (1.1).
We have
kap xa—le—xlﬂ Ko ya—le—y
K N = 7d = d =8k ,1.
sen= [ g e [ T @ -ste

Then we may assume without loss of generality that 8 = 1 and focus on the infimum value

of the following function:

Ka ,o—1 ,—

y
(@) = g, 1) = fo —

dy, a>0.

By Euler’s reflection formula

I'(l-a)(a)= $ ae(0,1),

we get

liminf %, () = liminf ay*te?d
minti, () = lim /0 ¥le dy

> liminf| ae™“ a1
>t e [ ']

= hglﬁ)nf(/ca)

= lim inf e* ")
al0

-1 (2.1)
It follows that for any « > 0, sup,.q 7 (@) = 1.

2.1 Casek <1
In this subsection, we assume that « < 1. We will show that 4, (& + 1) < s, () for any & > 0.

In fact, we have
h(o+1)<h(x) & T(a+ 1)[hK(oz +1) —hK(a)] <0

k(a+1) Ko
& / yeldy—a / Y leVdy<0
0 0

K(a+1)

& [kla+ 1)]ae‘K(“+1) + oe/ Y leVdy<0

ko
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(a+1)
& ozf y""le"(‘“l)’y dy < [K(a + 1)]“
Ko

K

&S o [K((X +1) - w]a_lew dw < [K(a + 1)]a

& - ewd[/c(ot +1) - w]a < [K(a + 1)]‘”

/
/
& /[K(a+1)—w]aewdw<(i<a)”‘e'(
0
& / <1+K_W> " dw<1
0 Ko
& / <1+i> e?dz<1
0 KX

1 w\ @
& / K(l + —> e Vdw<1. (2.2)
0 o

Note that (1 + %)" is strictly increasing with respect to x# > 0 and the limit equals e. Then

we have

Thus,

1 a 1 1
f K(l + K) e "dw< / e’ ke"dw< / e -e"dw=1. (2.3)
0 o 0 0

Hence, by (2.2) and (2.3), we obtain that {4, (¢ + n)},en is a strictly decreasing se-
quence.
Let Yy, Y7, Y, ... beindependent random variables such that Yy ~ Gamma(e, 1) and Y; ~

Gamma(l, 1), i > 1. Then, for « € (0, 1), by the strong law of large numbers, we get

lim (o +n)= lim P{Yo+ Y1+ +Y, <kE[Yo+ Y1 +---+Y,]}
n— o0 n— o0

Y. Yi+---+Y,
=limP{ o 2 nflc}
n—-oo |a+n o+n
:0,

and for « = 1, by the central limit theorem, we get

lim /2, (o + n) = lim P{Y0+Y1+~~~+Y,,§E[Y0+Y1+~~+Yn]}
n—00 n—00

nli)rgloP{(Yo—a)+(Y1—1)+---+(Yn—1)50}

lim P Y()—O[+(Y1—1)+~~~+(Y,,,—1)S

S { NG Nz 0}

1
5
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Therefore,
, 0, «€(0,1),
inf i1, () =
a>0 %’ k=1,

which implies that inequality (1.2) holds. The proof of Theorem 1.1 is complete.

Remark 2.1 1t is interesting to compare (1.2) with the well-known fact that the Gamma
distribution is skewed to the right and its skewness is given by

S

1 (Mans) |-
Var(Xy,p) NCE
2.2 Caserk >1

In this subsection, we assume that « > 1. This case is especially interesting. By (1.2), for
any « > 0, we have

(@) = P{Xen = KEDXal) > PXr = BT} > 3. 2.4)

Let Y7, Ys,... beindependent Gamma(l, 1) random variables. By the central limit theorem,
we get

liminf /1, (o) > iminfP{Y; + - + Yigp1 <k [a]}

oa—> 00 o—>00
. M-D+- 41 _k-Dn-1
= lim P <
n—>00 vn+1 vn+1
- 1. (2.5)

Hence, by (2.1), (2.4), and (2.5), we obtain
in/, (o) ! Vi >1
mink(e)> 2, Ve 1.
Further, by virtue of Mathematica, we obtain the following numerical results:

h(33.4871) = 0.545885,  « = 1.01,
h(3.47146) = 0.64021,  « =1.1,
1(1.78959) = 0.691283, k=12,
min /i (@) = | h, (0.757559) = 0.774739, « =15,
1,(0.396184) = 0.841243, K =2,
1,(0.205464) = 0.899108, « =3,
11,(0.13917) = 0.925864, K = 4.

Graphs of the function %, («) for different values of k are shown in Figs. 1-4.

Remark 2.2 The above analysis shows that there is an interesting phase transition phe-
nomenon in the infimum value problem for the Gamma distribution. The critical point is
k =1 and the behaviors for the three cases ¥ < 1, x = 1, and « > 1 are totally different.

Page 6 of 23
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Figure 4 Function hy (@) fork =4

3 Variation comparison between the Gamma distribution and the normal
distribution
The empirical rule tells us that in an approximately normal distribution, about 68% of
the values fall within one standard deviation of the mean, about 95% of the values fall
within two standard deviations of the mean, and almost all values fall within three standard
deviations of the mean. A question worth thinking about is what we can say about other
distributions. Theorem 1.2 compares the variation between the Gamma distribution and
the normal distribution. In this section, we will prove Theorem 1.2.
Let «, 8 > 0. Define

s(a, B) := P{|Xa,p — E[Xap]| </ Var(Xe,p)}.

We have

Xap

-

s, = P{1Xu - o = Vap] - Pf < Ja} =5t

Then we may assume without loss of generality that 8 = 1 and focus on the following

function:

1
o+ 2 —le—y

t(a) :=s(a, 1) = / dy, «o>0.

max[O,a—a% } r (O[)

This section is devoted to proving the following result.
Theorem 3.1 Forany o >0,
Ho + 1) < ta). (3.1)

Note that by the central limit theorem, lim,_, « t(r) = P{|Z] < 1}, where Z is a standard
normal random variable. Once (3.1) is proved, we conclude that

s(a, B) =s(a, 1) = t(a) > P{|Z] <1} ~ 0.6827, Vo,B>0.

Thus, inequality (1.3) holds and hence the proof of Theorem 1.2 is complete.
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Proof of Theorem 3.1 First, we consider the case 0 < @ < 1. We have

to+1) < t(a)

& T(a+ 1)[t(a +1) - t(ot)] <0

1 1
a+1l+(o+1)2 ata2
a -y o
< / . Ve dy—a/ 9y
a+l-(+1)2 0

1

a+l+(@+1)2
o [
a+l-(a+1)2

1
a+l+(e+1)2

le7Vdy<0

a+l (a+l)% "
< y*e? dy< / yeldy+ (o +a?) e
0

a+u2
1
a+l+(a+1)2 1 1
_ e 4 o2
&= / yeldy<(a+a?)e ™
01+a2

1

+a+1)2 Ol% w o
& / 1+ o) eMdw<1
o+o2

—_

1
1+(e+1)2 -2
aw _
(1+ 1)e Ydw<1

=
o+o2
1 1
o 3a+ale+1)2+(1-a)a? 1.1
4 1 ( ) 1( ) 'e_l_(a+1)2+aj<0
oa+o2 a+o2
! 1 1
& eltlerDie? (34 (6 +1)2 + (1-a)a 2
1+(a+1)%—o¢% 1 1 -1
&S e —[1+(a+1)2—a2]<2+a z,
Set
1 1
w:=(a+1)2 —a2.
Then
1 2w
O<w<l and o 2= .
1-w?
Hence,

—% _ l+(a+1)%—a% _ % _ %
2+« {e [1+(a+1) o ]}

_3+3w-3w -w’

_ L lw
1-w?
3+3w-3w?—-w? Qw25
> X
1-w? —~ n 5!

3+40w 153w? + 160w? + 145w* + 40w° +5w
120(1 — w?)

1
ata2 1 1
— — [
0‘eydy—f yeldy< (o +a2)ie ™’
0

Page 9 of 23
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Define

I:=3 +40w — 153w? + 160w> + 145w* + 40uw° + 5u°.

Set

Then we have
(1+ q2)61 =240 + 4164% + 1524 + 84° + 924° + 58¢"° + 34> > 0,

which together with (3.2) and (3.3) implies that (3.1) holds for the case 0 < @ < 1.

Next we consider the case @ > 1. We have

ta+1) < t(x)

& TMNa+ 1)[t(oc +1) - t(a)] <0

1

a+1+(a+1)% a+a2
& / L yeldy— a/ Ly le?dy <0
o

+1—(a+1)2 a—a?

Nol—

1

a+l+(a+1)2 ata2 N % 1 a

& / L y“e"’dy—/ L el dy<(a+a?) e — (a—a2) e
a+l-(a+1)2 )

a+1+(a+1)% 1
o~y o _g-g2
& / yeldy—(a+az)’e
«

1
+o 2

1
a+l—(a+1)2 1o %
< / yeldy— (o —a2)’e
o

1
—a2

I % 1+(a+1)%—a% y o
& (x+a2)e ™ [/ (1+—1> e‘ydy—l]
0 o+o2
11
e % 1-(a+1)2 +a 2 y o ~
<(a—a2)’e |:/ <1+ 1)eydy—li|.
0 o -2

The remainder of this section is devoted to proving the following inequality:

1+(o¢+1)% —ot% y o
/ (1 + - ) e”dy
0 oa+o2

1—(a+1)%+a% y o
<1< / (1 + - ) e?Vdy, Va>l1, (3.4)
0 oa—-o2

which implies (3.1). It is a bit surprising that inequality (3.4) is very delicate, which seems

to be unknown in the literature. O

Page 10 of 23
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3.1 Proof of the “< 1” part of inequality (3.4)
Note that

d -
sl () <]
dy oa+a?

a-1 o
a1(1+ 4 1> e‘y—<1+ o4 l)e‘y
a+o2 oa+o2 a+o2

a1
_ —(2 +1y) <1+ J ) e
o

o+ o2 +o

- Q

ST

<0.

Then we have

1
1+(a+1)2 —a o
/ <1+ J 1) e?dy
0 a+a?
1 o 1 o
</ <1+ J 1) e’ydy+[(a+1) ]<1+ 1) el
0 a+a? a+o2

Hence, to prove the “< 1” part of inequality (3.4), it suffices to show that

1 o 1 o
[(a+1)%—a%](1+ 1) e’1</ [1—<1+ J 1) ey]dy.
a+a? 0 o+l

Nl

ol
N

-

and

2 a—1 _1 -2
= a1<1+ y1> e’ — (e 1)(1+ y1> e’
o+l o+l (a+a2)? o+l

o
—<1+ J 1) e’
a+o2

1 a-2

—v(2 2

= y(2a l+y)<1+ Y 1) e”
(o +x2)?

<0.

Page 11 of 23
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Then, for fixed &, 1 — (1 + —£+)%¢™ is an increasing and concave function of y on [0,1].
o+ 2
Hence, we have

1 o
0 o+o2
2 1/2 ¢ 1 1 «
>—[1—(1+—1) e’l/2:|+—[1—<1+ 1) e’l].
4 o+o2 4 a+o2

Thus, to complete the proof of the “< 1” part of inequality (3.4), it suffices to show that

[(a+1)% —a%]<1+ 1 1)ae1

2 1/2 \* 1 1 «
<—[1—<1+ 1)e1/2:|+—[1—<1+ l)el],
4 o+o2 4 a+o2

which is equivalent to

1
oa+o2

o 12 o
{1+4[(a+1)%_a%]}<1+ )e‘1+2(1+ d )e-”2<3, Va>1. (3.5)

The proof of (3.5) will be given in Sect. 4.

3.2 Proof of the “> 1” part of inequality (3.4)
Note that

2
1-4[(@+1)? -a3]=0 & (x:(%),

15

2)* separately.

We consider the threecases 1 <o <2,2<a < (%5)2, and a > (

Case 1: 1 < a < 2. By Taylor’s formula, we have

1—(a+l)%+a y %
/ <l+ 1) e?dy-1
0 oO—-—o2
1 (a+1)3 4o
—(o+ +a o
>/ (1+ y1>e‘ydy—1
0 oa—-o2

o 3a+(a—1)a%—a(oz+1)%

ST

1 1
—[1-(x+1)2 +a 2]

1 €
o—o2

ST

oa—-o
[-(@+1)2 +a)

ae— —(a+ +o l l 1 1

S et 3 (4 Dt (a+1)3]

+o

= —{el_(‘“n%*o‘% + [(a + 1)% —a%] —3+a_%}.

Nl

Set

w:= (a+1)% —al.
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Then
1 1
£ = - <w< .
22 +32 1+22
and
_% 2w
a2 = .
1-w?
We have
I=(a+1)2 +a? Yol 3= el 2w
el 2+ +[(a+1)7_a7]_3+a*7=e’W+w—3+ 5
—w

and

2w\ 2(1 +w?
(el‘w+w—3+1—) =41+ ( )

) (1—w2)?
2
>l 72(1+§ )
(1-¢2)?

= 1.746594.

Then

[T

1 1
el*(a+1)2+a2 " [(O{ n 1)% —Ot%] —S3+a

28

>el ™ +E-3+ e

=0.003095392.

Thus, the “> 1”7 part of inequality (3.4) holds for 1 <o < 2.
Case2:2<a< (1875)2. By Taylor’s formula, we have

1—(a+1)%+a% y o
/ <1+ 1) eVdy-1
0 o—-o2

1 1
1-(a+1)2 +a 2 — 12
>/ [1+ cd T+ ol )ly ]eydy—l
0 a—-—a? 2a-oa2)?

~ 207 +1  aa? —oz(oa+1)% +4oz—4[oz(oz+1)]% +8a? —2(a+1)% +2

a2 -1 a%—l

1 1
. e—[l—(oHl) 2 +a2]

1 1
e—[l—(cx+l) 2+a2]

1
o2l

DI
[T

1
. {(204% +1)el D2 [aa% —al@+1)? +4a —4fo(a +1)]

+8at —2(a+1)2 +2])
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Tial 4 Y o od
e I-(@+)2+a2] 1 Z l-(@+1)2 +a2]"
——1 (20

1 I
2 n.
o2 n=0

ol
ol

1
—[aa% —oa(a+1) +401—4[o:(oz+1)]2 +8a? —2(x +1)

+2]}.

4 11,
]:=(2a%+1) L-(a+D)?+a2]

!
120 n.

1
- [aa% —a(a+ 1)% +4oz—4[a(oc + 1)]2 +8a? —2(a + 1)% +2].

Set

Then
1 1 1-w? 1 1+w?
S<w< ——, Q? = , (@+1)2 = ‘
22 432 2w
Hence,
Lrw—uw? o (1-w)"  wh—8ud+18w? 11
joLrme o,
w n! 4w
n=0
~ —1+w+9w?+ 38w —31w* + Iw® — P
- 24w
1 1y2 1,3 14\3(1 1\5 , (1\5(1
N -1+ 3 +09)(3)+((3)° +BD(F)°() + (8)(3)” +(3)°(3)
24w
B 0.1723633
24w
> 0.

Thus, the “> 1”7 part of inequality (3.4) holds for 2 < & < (1,75)2‘

Case 3: o > (%)Z.Note thatforO0<y<1-(x+ 1)% +a%,we have

I
Q
e
R
D=
VN
—
+
Q
|
<
R
D=
N——
Q
KN
o
<
|
VN
—
+
Q
|
<
R
D=
N——
=}
o
<

1
S Q
| D=
Q |
ni—| 2
N
—
+
>3
|
<
Sy
[N
N———"
53
L
[0
<
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Then

1-(a+1)
/
1 y ¢ 1 1 1 « 1
>/ <1+ 1) e‘ydy—[(a+1)2—a2](1+ 1) e .
0 a—-o? a—-az

Hence, to prove the “> 1”7 part of inequality (3.4), it suffices to show that

D=

+o

DO|—
N
—
+
<)
|
o)
Il
N——"
?
®
<
&

o 1 o
[(a+1)%—a%](1+ 1 1) e‘1</ |:(1+ J 1) e‘y—1:|dy.
a—-o2 0 a—-o2

For y € [0, 1], we have

I
Q
e
R
D=
VN VN
—
Q
|
<
R
D=
N——
Q
KN
o
<
|
VN
—_
+
Q
|
<
R
D=
N——
Q
o
<

and

1
o—o2
(207 — -2
= y(aly)(1+ yl) e”
(@ —a2)? o—o?

Then, for fixed «, (1 + —£1)%¢™ - 1 is an increasing and concave function of y on [0, 1].

a—a?2
Hence, we have

1 o
/ |:<1 P S ey—li| dy
0 o—-o2
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Thus, to complete the proof of the “> 1” part of inequality (3.4), it suffices to show that

1 o
](1+ 1) et
o—o?
2 1/2 \* 1 1 ¢
<—[(1+ - e‘”z—l] +—|:<1+ 1) e‘l—l],
4 o—-a2 4 o—-oZ

which is equivalent to

Nl

[(a+ 1)% -a

2
) . (3.6)

The proof of (3.6) will be given in Sect. 4.

4 Proofs of inequalities (3.5) and (3.6)
4.1 Proof of (3.5)

Define
1 "
T, = ——, Ny = —.
o+a? 2
We have

D=
Nl

{1+4[(@+1)

-

1 ¢ 1/2 \*
]}(1+ 1) e‘1+2(1+ 1) e 12
oa+o2 a+o2

— {1 + 4[(0{ + 1)% _O{%]}e—lﬂxln(hrnr) + 28—%+aln(l+n+)

1 1 “l+a(t _ﬁ+ﬁ_ﬁ+ﬁ) “ Lo _ﬁ+ﬁ_ﬁ+ﬁ)
<{1+4{(@+1)2 —a2]fe 2T A ) 4 gema T T ), (4.1)
Set
w::(a+1)%—a%.
Then, by the condition « > 1, we get
1 2 2
O<w< -, 1-w*>0, 1+2w—-w">0
and
(1-w?)? aw? 2w?
o=—7, T, = , = .
4w? T @ -wd(1+ 2w —w?) T (1-w?)(1+2w—w?)
Define
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By virtue of Mathematica, we get

F,:=15(1-w?)* (1 +2w-w?)’P,
= 2w(~15 - 135w — 345w” + 190w° + 1735w + 495w — 3615w° — 716w’

+3615w® + 495w’ — 1735w'% + 190w'! + 345w'> — 135w'® + 15w'*).

Set

ot (4.2)
w:i= m .

We have

G, :=16,384(1 + %)™ - §_V+V

= -1,140,603 — 17,129,0464> — 115,786,3484" — 468,301,8404°
-1,267,262,1604° — 2,427,446,688¢"° — 3,393,664,5764'* — 3,517,163,0084"*
-2,715,321,6004'° — 1,554,209,2804' — 649,507,8404%°

—192,286,7204** — 38,154,2404>* — 4,546,5604°° — 245,7604°¢,
which implies that P, is negative. By virtue of Mathematica, we get

H, :=30(1-w?)*(1+2w-w?)’Q,
= w(-30 — 255w — 600w + 410w” + 2900w* + 705w° — 5550w° — 1672w’

+5550w° + 705w — 2900w + 410w'" + 600w'* — 255w" + 30w'?).

Further, by the transformation (4.2), we obtain

+

1, =8192(1+ )
w
= —1,083,048 — 16,069,911¢> — 108,024,5684" — 435,858,0404° — 1,178,745,3604"
- 2,259,543,4084"° — 3,165,284,4164'> — 3,291,555,328¢** — 2,553,515,5204'°
—1,471,031,0404'® — 619,724,8004%° — 185,251,8404%*

- 37,171,200¢** — 4,485,1204%° — 245,7604%,

which implies that Q, is negative. Thus, by (4.1), we get

{1+4[((x+1)%_a%]}<1+ 1 ) el+2(1+ 1/2 ) e 12 _3

1 1
oa+a2 o+o2

<(1+4w)ef +2e% -3

p2 p3 ph 2 3 4
<(1+4w)(1+P++7*+3—:+j)+2<1+Q++&+—++—+>—

:=R,. (4.3)
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Define

L, :=9,720,000(1 - w?)’

and

(2024) 2024:5

2(1 + 2w — WZ)ZOW_3R+

V, := ~18,014,398,509,481,984(1 + ¢°) L.

By virtue of Mathematica, we obtain the expansion of the polynomial V., (gq) (see Sect. 5).
Note that all terms in the expansion are positive. Then R, is negative. Therefore, the proof

is complete by (4.3).

4.2 Proof of (3.6)
Define

‘We have

[1-4[(@+1)7 -]}

= {1-4f@+1)? -«

‘(z T:j
> {1 —4[(a + 1)% _a%]}eqm(n,TJ,T,

Set

w:= (a+1)% —al.

1 « 1/2 \“
(1+ 1) e1+2<1+—1) e 1?
-2 o —o2

1 _ _1
3 ] }6 l+aIn(l+7-) + 2 5+aIn(l+n-)

Then, by the condition a > (12)?, we have

1 2
O<w< 7 1-w
and
(1-w?)?
o= — T
aw?
Define
72
P_:= —1+a<r_— —
2
We have

4 2 3 4
T) 4 9 1t ), (4.4)
>0, 1-2w—-w?>0
4w? 2uw?
= ]77:

1-w2(1-2w-u?2)’ 1-w2)(1-2w-w?)

3 0 1
==, R
3 4 2 T

F_:=3(1-w?)’(1-2w—w?)'P_

=—2w(-3+21w-

- 130u° — 56w/

33w? — 56w° + 130w* + 94w”

+33uw +210° + 3w10).
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Set
1
Wiz ————— 4.5
4(1+4q% (+5)
We get
F.
G_:=1,048,576(1+4%) " - ==
( 7 ) 2w
= 128,409 + 2,102,668¢> + 14,459,8884" + 56,813,0564°
+142,035,4564° + 236,177,4084"° + 264,626,1764*>
+197,525,504¢™ + 94,175,2324"® + 25,952,2564" + 3,145,7284%°,
which implies that P_ is positive. We have
2\2 2\4
H_:=6(1-w?)"(1-2w-w?)"Q_
= w(6 - 39w + 54w” + 100w — 200w* — 128w + 200w°
+100w” — 54w® — 39w° — 6w'?).
By the transformation (4.5), we get
H_
I :=524288(1+4%)" =
w
= 175,743 + 2,666,962 + 17,644,4964" + 67,116,1604°
+162,604,0324° + 262,406,1444"° + 286,081,0244">
+208,437,2484™* + 97,320,9604'® + 26,345,472 + 3,145,7284,
which implies that Q_ is positive. Thus, by (4.4), we get
1\ 1/2 \*
{1—4[(a+1)%—a%]}(1+ 1) e‘1+2<1+—1> 23
o—-o2 o —o?
> (1 —4w)e’ +2e% -3
P2 P3 2 3
S(I-4w)1+P_+ =+ —]+2 1+Q_+g+& -3
2 3 2 3
=R_. (4.6)

L :=-648(1-w?)’(1-2w-w?) W3R
and

V. := -9,223,372,036,854,775,808(1 + ) 'L _.
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By virtue of Mathematica, we obtain the expansion of the polynomial V_(g) (see Sect. 5).
Note that all terms in the expansion are positive. Then R_ is positive. Therefore, the proof

is complete by (4.6).

5 Concluding remarks

It is worth pointing out that the software Mathematica plays an important role in our
work, which provides us with deep insight into how to handle delicate inequalities. Al-
though it is possible to figure out clever, traditional methods to establish the positiveness
of polynomials V,(g) and V_(g) in Sect. 4, it seems more natural to use the computer to
quickly present expansions so as to solve the problem. Actually, the computer-assisted
proof given for inequality (1.3) also explains why it was not discovered before. We would
like to emphasize that all proofs contained in this paper remain rigorous and easily verifi-
able.

A distribution on R is infinitely divisible if it can be expressed as the distribution of the
sum of an arbitrary number of i.i.d. random variables. We know that the Gamma distri-
bution is infinitely divisible and each Lévy process can be associated with an infinitely
divisible distribution (cf. [10, 11]). Motivated by Theorem 1.2, it is natural to ask if any
infinitely divisible random variable L satisfies the following inequality:

P{|L-E[L]| < V/Var(L)} = P{|Z| < 1}. (5.1)

In the forthcoming papers [13, 14], we prove that inequality (5.1) holds for many famil-
iar infinitely divisible continuous distributions including the Laplace, Gumbel, logistic,
Pareto, infinitely divisible Weibull, log-normal, Student’s ¢, inverse Gaussian, and F distri-
butions.

Inequality (5.1) has the potential to be used in fitting probability distributions to data.
Given a data set, we compute the proportion of values that fall within one sample standard
deviation of the sample mean. If this proportion is bigger than 0.6827, then we consider
using a Gamma distribution or another infinitely divisible distribution that was mentioned
above to fit the data. Otherwise, if the proportion is much smaller than 0.6827, then we
should avoid using those familiar distributions to describe the data.

Appendix: Mathematica calculations
The expansion of the polynomial V., (g):

V+=23565171557938261664962395 +
1985238765536369188253388462 g™2 +
76017937191609745093093565184 g“4 +
1815476155917282265018752272232 g6 +
30868042081839055982554050213660 g~8 +
401897536051918258546845673711320 g~10 +
4195397709111549929883773768957292 q"12 +
36238699732610615067411794056699104 g*14 +
265002286089679374723172860122766982 q~16 +
1669237124849349342077586449716389470 g~18 +
9179934813394932229977676436328785920 g~20 +
44555295354320392501114611345123622400 g~22 +
192537160208281140648975165919934835200 g"24 +
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746181252269526741637909507751082171520 g~26
2609372572626683435719917787491018652160 g2
8276209631283583168755734561689661224960 g~ 3
23913569456882144063241575623509484876800 g*
63185851825755484161960668172292699909120 g~
153171842040744452342444666253152790732800 g
341628452529444844018632398179833131991040 g
702775058219816773204544225960017412751360 g
1336281286191807830241756821296507838955520
2352931028757956298911312671496544634142720
3842851078067257537573706091171559356497920
5829597689354288278514821031866786159656960
8224048629268397888867021111129844469596160
10800344227796355322915422778734559920914432
13214925874596962589048294078754839901241344
15075437985869745487585690312752934894436352
16043253396277674458218536937392302561689600
15933483495160554733717977505944446676500480
14772181225346687498328707734409833005187072
12786642631638024827680853914736629691449344
10333607587858511627607426462208954269171712
7796135691442288431829216828566360534548480
5489455045169343972022956242977322445045760
3606053976460179205452292516224406577479680
2208802483012122361676530694278736018145280
1260683716848402925787749700503070572544000
669904634456217504368236284579198848204800 g
331081492020125941589702200450146757509120 g
152001230583526972614803279225239581491200 g
64734238129983061042604032362158017740800 g*
25531661312772564369272230408940525977600 g*
9307900274880934185285303838052660019200 g™8
3129622227458365558314112917099983667200 g9
968033669852811173795309928049750835200 g~ 92
274640462267821497605095290057418342400 g~ 94
71224038857339584104332613373237657600 g~ 96
16816854347488682979216179348688076800 g~ 98
3598246400042953802386878316412928000 g~100
693860503839280523254707460767744000 g~102 +
119794916777653504670468143054848000 g~104 +
18371891299642536871251828277248000 g~106 +
2478647665316721166509051740160000 g~108 +
290656583441325139861690122240000 g~110 +
29171448597603811259616067584000 g~112 +
2455470675466333890778497024000 g*114 +
168582129968383522599075840000 gq”116 +
9065459012974557989437440000 g*118 +
358068461185282678456320000 g~120 +
9236522547766697656320000 q~122 +
116733302341443256320000 g~124.

The expansion of the polynomial V_(g):

n
8 +
0 +
32 +
34 +
36 +
38 +
40 +
gta2
g’ 44
q’46
q™48
g*50
g”52
q”54
q”56
q”58
g’ 60
qt62
qt64
q~66
q~68
q*70
qt72
qt74
q*76
~78 +
80 +
“82 +
84 +
86 +
8 +
0 +
+
+
.
+
n

+ o+ o+ o+ 4+

+ o+ o+ o+ o+

V-=1058023271132626023 + 51541890229923566472 g*2 +

+ o+ + + o+ o+ o+ o+
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1213009372688989850064 g4 + 18352820646596071930240 g6 +
200442482186879766344000 g8 + 1682464063207304317242816 g~10 +

11285809233594557704985856 g~12 +
62123650712872430361438720 g*14 +
286006349074965960756670464 q~16 +
1116988330180696358380290048 g~18 +
3741070988530167056939876352 g~20 +

10836728622922107883411734528 g”22 +
27330768999389436608140804096 g*24 +
60330629581678789398471114752 g~26 +

117040259220868123540341129216
200169684615441568277429485568
302487634652646366318853881856
404485176548048584076188188672
478958931700928292722105647104
502214198209105947113507782656
465950173145939141611449483264
381911302204202972478305206272
275855094787796630236532047872
174972859491619945161380855808

97001064005371803174963249152 g™48 +
46708058892337905269349548032 g~50 +
19376798019028218231165812736 g~52 +

q”28
q”30
g*32
g’34
q”36
q”38
q*40
gt42
gta4
g’ae6

6852048396846611541188935680 g~54 +
2036474622748306983572471808 q”56 +
499070059195604547617685504 q~58 +
98184545971566239935365120 g~60 +

14905936080354118622773248 g~62 + 1639091209276985243074560 g~ 64 +
116172982490204328689664 g~66 + 3984496719921263149056 g~ 68.
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