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Abstract
In this manuscript, we use the concept of multidimensional fixed point in a
generalized space, namely, C-distance space with some nonlinear contraction
conditions, such as Jaggi- and Dass-Gupta-type contractions. We provide results with
a Jaggi-type hybrid contraction for the mentioned space. Moreover, we use control
functions to get the desired results. After each theorem, we compare our results with
previous ones to show that they are generalized. We provide examples to support our
results. An application is also performed to solve the system of integral equations.
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1 Introduction
The revolution in Fixed Point Theory begins with the result given by Banach [2] in which
a self-mapping T on a non-empty set, satisfying a contractive condition, was considered.
It is used to solve various problems in numerous branches of mathematical analysis. In
most fixed point theorems, the contractive condition involves the linear combination of
distances, such as σ (ξ ,η), σ (ξ , Tη), σ (Tξ ,η), σ (ξ , Tξ ), σ (η, Tη) and σ (Tξ , Tη). One of the
fundamental nonlinear contractive conditions was proposed by Jaggi [9] and Dass-Gupta
[8], who used rational-type conditions in their fixed point results in which product, divi-
sion, and power of distances were considered. Some nonlinear contractions were defined
using control functions. In [1], fixed point results for rational contractions were obtained
in a partially ordered metric space for self-mapping.

In 2010, Samet and Vetro [15] examined the concept of fixed point of �-order as an
extension of the coupled fixed point. One year later, Berinde and Borcut [3] proved triple
fixed point results for mixed monotone mappings. In 2012, Karapinar and Berinde [10]
studied quadruple fixed points of nonlinear contractive conditions in partially ordered
metric spaces. In [4], the nonlinear contraction was used for defining another contraction
called bilateral contraction, and fixed point results were established for these contractions.
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In 2016, Choban [5] generalized metric spaces to distance spaces, Berinde and Choban
[6, 7] further studied distance spaces satisfying certain contraction conditions for the mul-
tidimensional fixed point. In [13, 14], a generalized C-distance space was discussed with
examples, and multiple fixed point results were provided with an application to integral
equations. Later in [12], another generalized space was defined, called an E(s)-distance
space, and coincidence point results were provided in the mentioned space with rational-
type contractive conditions.

In this paper, we aim to use nonlinear contractions, namely, Jaggi-type, Dass Gupta-
type, and Dass-Gupta-type hybrid contractions, in C-distance space and find the multiple
fixed point of nonself-mapping � : X � →X .

2 Preliminaries
Definition 1 Consider X , a non-empty set, and a function σ : X × X → R, then σ is
called a distance on X if for all ξ ,η, ζ ∈X ,

(1) σ (ξ ,η) ≥ 0,
(2) If σ (ξ ,η) + σ (η, ξ ) = 0 then ξ = η.
(3) If ξ = η then σ (ξ ,η) = 0.

Definition 2 Consider a sequence {ξκ : κ ∈N} in a distance space (X ,σ ) and ξ ∈X . Then,
{ξκ : κ ∈N} is:

• convergent to ξ if and only if limκ→∞ σ (ξ , ξκ ) = 0;
• Cauchy if lim�,κ→∞ σ (ξκ , ξ�) = 0.

A distance space (X ,σ ) is called complete if every Cauchy sequence in X converges to
some ξ in X .

Definition 3 Consider a distance space (X ,σ ). If every Cauchy sequence that converges
has a unique limit point, then σ is called C-distance X .

Fix � ∈ N and � = (�1, . . . ,��) to be mappings such that each {�ı́ : {1, 2, . . . ,�} →
{1, 2, . . . ,�} : 1 ≤ ı́ ≤ �}.

Let (X ,σ ) be a distance space and � : X � → X be a mapping. The composition of �

and � is another mapping �� : X � →X �, defined by

��(ξ1, . . . , ξ�) = (η1, . . . ,η�)

and

ηı́ = �(ξ�ı́ (1), . . . , ξ�ı́ (�)),

for any (ξ1, . . . , ξ�) ∈ X � and any ı́ ∈ {1, 2, . . . ,�}. A point τ = (τ1, . . . , τ�) ∈ X � is called a
�-multiple fixed point of the � if τ = ��(τ ), i.e.,

τı́ = �(τ�ı́ (1), . . . , τ�ı́ (�)) for any ı́ ∈ {1, 2, . . . ,�}.

For τ ∈ X �, τ (1) = ��(τ ) and τ (κ + 1) = ��(τ (κ)). A sequence (τ (κ))κ∈N is Picard at τ

with respect to ��.
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Let σ be a distance on X . Define a function σ� : X � ×X � →R as

σ�(ξ ,η) = sup
{
σ (ξı́ ,ηı́ : ı́ ≤ �)

}
,

then (X �,σ�) is also a distance space.

Proposition 1 Consider (X ,σ ) is a C-distance space. Then:
1. σ (ξ ,η) = 0 if and only if ξ = η.
2. If, for τ ∈ X �, the Picard sequence {τ (κ) : κ ∈ N} is convergent Cauchy sequence and

limκ→∞ τκ = b = (b1, . . . , b�), then b is a multiple fixed point of �, i.e.,

bı́ = �(b�ı́ (1) . . . , b�ı́ (�)) for every ı́ ∈ {1, 2, . . . ,�}.

3 Main results
Definition 4 A mapping �� on a C-distance space (X �,σ�) is called a Jaggi-type con-
traction if there is a ϕ : [0,∞) → [1,∞), which is continuous, increasing, and ϕ(0) = 1,
such that

σ�
(
��(ξ ),��(η)

) ≤ β max

{
σ�(ξ ,η),

ϕ(σ�(ξ ,��(ξ )))σ�(η,��(η))
ϕ(σ�(ξ ,η))

}
, (1)

for all ξ ,η ∈X �, and β ∈ (0, 1).

Theorem 1 Let � : X � → X be a mapping. If a mapping �� on a complete C-distance
space (X �,σ�) is a Jaggi-type contraction, then � possesses at least a multiple fixed point.

Proof Suppose that σ�(τ (κ), τ (κ + 1)) > 0. If this inequality does not hold, then we get a
fixed point, which terminates the proof. Now,

σ�
(
τ (κ), τ (κ + 1)

)
= σ�

(
��

(
τ (κ – 1)

)
,��

(
τ (κ)

))

≤ β max

{
σ�

(
τ (κ – 1), τ (κ)

)
,

ϕ(σ�(τ (κ–1),��(τ (κ–1))))σ�(τ (κ),��(τ (κ)))
ϕ(σ�(τ (κ–1),τ (κ)))

}

≤ β max
{
σ�

(
τ (κ – 1), τ (κ)

)
,σ�

(
τ (κ), τ (κ + 1)

)}
,

if max{σ�(τ (κ – 1), τ (κ)),σ�(τ (κ), τ (κ + 1))} = σ�(τ (κ), τ (κ + 1)), then

σ�
(
τ (κ), τ (κ + 1)

) ≤ βσ�
(
τ (κ), τ (κ + 1)

)
,

which is not possible. Thus,

σ�
(
τ (κ), τ (κ + 1)

) ≤ βσ�
(
τ (κ – 1), τ (κ)

)

...

≤ βκσ�
(
τ (1), τ (2)

)
.
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We can also write it as

lim
κ→∞σ�

(
τ (κ), τ (κ + 1)

)
= 0. (2)

Similarly, we can show that

lim
κ→∞σ�

(
τ (κ + 1), τ (κ)

)
= 0. (3)

We need to show that the sequence (τ (κ))κ∈N is Cauchy. For all � > κ , consider

σ�
(
τ (κ), τ (�)

)
= σ�

(
��

(
τ (κ – 1)

)
,��

(
τ (� – 1)

))

≤ β max

{
σ�

(
τ (κ – 1), τ (� – 1)

)
,

ϕ(σ�(τ (κ–1),��(τ (κ–1))))σ�(τ (�–1),��(τ (�–1)))
ϕ(σ�(τ (κ–1),τ (�–1)))

}

≤ β max

{
σ�

(
τ (κ – 1), τ (� – 1)

)
,

ϕ(σ�(τ (κ–1),τ (κ)))σ�(τ (�–1),τ (�))
ϕ(σ�(τ (κ–1),τ (�–1)))

}

,

if max

{
σ�(τ (κ–1),τ (�–1)),

ϕ(σ�(τ (κ–1),τ (κ)))σ�(τ (�–1),τ (�))
ϕ(σ�(τ (κ–1),τ (�–1)))

}
= ϕ(σ�(τ (κ–1),τ (κ)))σ�(τ (�–1),τ (�))

ϕ(σ�(τ (κ–1),τ (�–1))) then

σ�
(
τ (κ), τ (�)

)
= β

ϕ(σ�(τ (κ – 1), τ (κ)))σ�(τ (� – 1), τ (�))
ϕ(σ�(τ (κ – 1), τ (� – 1)))

,

taking limit �,κ → ∞ over the above expression, it follows

lim
�,κ→∞

σ�
(
τ (κ), τ (�)

) ≤ lim
�,κ→∞

βϕ(σ�(τ (κ – 1), τ (κ)))σ�(τ (� – 1), τ (�))
ϕ(σ�(τ (κ – 1), τ (� – 1)))

≤ βϕ(limκ→∞ σ�(τ (κ – 1), τ (κ)))σ�(lim�→∞ τ (� – 1), τ (�))
ϕ(lim�,κ→∞ σ�(τ (κ – 1), τ (� – 1)))

,

since ϕ is continuous

≤ βϕ(0) × 0
ϕ(lim�,κ→∞ σ�(τ (κ – 1), τ (� – 1)))

= 0.

As, if lim�,κ→∞ σ�(τ (κ – 1), τ (�– 1)) = 0, then ϕ(lim�,κ→∞ σ�(τ (κ – 1), τ (�– 1))) = 1, then
for this case, (τ (κ))κ∈N is Cauchy. Now, the other possibility is

max

{
σ�

(
τ (κ – 1), τ (� – 1)

)
,

ϕ(σ�(τ (κ–1),τ (κ)))σ�(τ (�–1),τ (�))
ϕ(σ�(τ (κ–1),τ (�–1)))

}

= σ�
(
τ (κ – 1), τ (� – 1)

)
.

In this case,

σ�
(
τ (κ), τ (�)

) ≤ βσ�
(
τ (κ – 1), τ (� – 1)

)

≤ β2σ�
(
τ (κ – 2), τ (� – 2)

)

...

≤ βκ–1σ�
(
τ (κ), τ (� – κ + 1)

)
,
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applying limit �,κ → ∞, we obtain

lim
�,κ→∞

σ�
(
τ (κ), τ (�)

)
= 0.

Similarly, we have

lim
�,κ→∞

σ�
(
τ (�), τ (κ)

)
= 0.

Thus, (τ (κ))κ∈N is Cauchy, so it will converge to some κ ∈X �, ı́.e.,

lim
κ→∞σ�

(
κ , τ (κ)

)
= lim

κ→∞σ�
(
τ (κ),κ

)
= 0.

Since κ is the limit of convergent Cauchy sequence in a C-distance space, so it is fixed
point of �� and will, consequently, be a multiple fixed point of �. �

Remark 1
(1) The above theorem is the generalization of the Jaggi contraction defined in [9]. By

defining ϕ as identity function and substituting h = 1, we can get the particular cases.
(2) The space being utilized here is the C-distance space that is much more generalized

than the metric space used in [9].
(3) In [9], fixed point results were established. However, the above result is the

multidimensional fixed point result.

Example 1 Let X = { 1
κ

: κ ∈ N} ∪ {0}. Define for all κ , l ∈N

σ (0, 0) = 0, σ

(
0,

1
κ

)
=

1
2κ

, σ

(
1
κ

, 0
)

=
1
κ

, σ (ξκ , ξl) = |ξκ – ξl|,

then (X ,σ ) is a C-distance space. Now,

X ×X =
{

(ξ ,η) : ξ ,η ∈X
}

,

and

σ 2(ξ ,η) = sup
ı́≤2

{
σ (ξı́ ,ηı́)

}
,

then (X 2,σ 2) is a C-distance space.
A function ϕ : [0,∞) → [1,∞), defined as

ϕ(ξ ) = ξ + 1, for all ξ ∈ [0,∞),

which is continuous, increasing, and ϕ(0) = 1. Now, define � : X 2 →X such that

�(ξ1, ξ2) =
ξ1

4
for all (ξ1, ξ2) ∈X 2,
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and a mapping � : X →X 2 such that

�(ξ ) =
(
�1(ξ ),�2(ξ )

)
,

where �ı́ : {1, 2} → {1, 2} are defined as

(
�1(1) �1(2)
�2(1) �2(2)

)

=

(
1 2
2 1

)

.

The mapping �� : X 2 →X 2 is defined as:

��(ξ1, ξ2) =
(
�(ξ�1(1), ξ�2(2)),�(ξ�2(1), ξ�2(2))

)
=

(
ξ1

4
,
ξ2

4

)
.

Consider

σ
(
�(ξ1, ξ2),�(η1,η2)

)
= σ

(
ξ1

4
,
η1

4

)
.

Consider the right-hand side of inequality (1) with � = 2

β max

{
σ 2(ξ ,η),

ϕ(σ 2(ξ ,��(ξ )))σ 2(η,��(η))
ϕ(σ 2(ξ ,η))

}

= β max

{
sup

{
σ (ξ1,η1),σ (ξ2,η2)

}
,

(sup{σ (ξ1, ξ1
4 ),σ (ξ2, ξ1

4 )}+1)(sup{σ (η1, η1
4 ),σ (η2, η1

4 )})
sup{σ (ξ1,η1),σ (ξ2,η2)}+1

}

,

where β ∈ [0, 1). Now, we need to satisfy the inequality

σ

(
ξ1

4
,
η1

4

)
≤ β max

{
sup

{
σ (ξ1,η1),σ (ξ2,η2)

}
,

(sup{σ (ξ1, ξ1
4 ),σ (ξ2, ξ1

4 )}+1)(sup{σ (η1, η1
4 ),σ (η2, η1

4 )})
sup{σ (ξ1,η1),σ (ξ2,η2)}+1

}

. (∗)

If ξ = (0, 0) and η = ( 1
κ1

, 1
κ2

), then (∗) becomes

σ

(
0,

1
4κ1

)
=

1
8κ1

≤ β max

⎧
⎪⎪⎨

⎪⎪⎩

sup

{
σ

(
0, 1

κ1

)
,σ

(
0, 1

κ2

)}
,

(sup{σ (0,0),σ (0,0)}+1)(sup{σ ( 1
κ1

, 1
4κ1

),σ ( 1
κ2

, 1
4κ1

)})
sup{σ (0, 1

κ1
),σ (0, 1

κ2
)}+1

⎫
⎪⎪⎬

⎪⎪⎭

≤ β max

{
sup

{
1

2κ1
,

1
2κ2

}
,

sup{ 3
4κ1

, 4κ1–κ2
4κ1κ2

}
sup{ 1

2κ1
, 1

2κ2
} + 1

}
,

then the above inequality satisfies for β = 1
4 . All conditions of the above theorem are sat-

isfied. Hence, � has at least a multiple fixed point.
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Corollary 1 Consider a mapping � : X � → X . If �� : X � → X � on a complete C-
distance space (X �,σ�) satisfying

σ�
(
��(ξ ),��(η)

) ≤ βσ�(ξ ,η), for all ξ ,η ∈X ,β ∈ [0, 1),

then � possesses at least a multidimensional fixed point.

Definition 5 Consider a mapping �� on a C-distance space (X �,σ�), called a Dass-
Gupta-type contraction. If there is a ϕ : [0,∞) → [0,∞), which is continuous, increasing,
and ϕ(0) = 0, such that

σ�
(
��(ξ ),��(η)

) ≤ β max

{
σ�(ξ ,η),

ϕ(1 + σ�(ξ ,��(ξ )))σ�(η,��(η))
ϕ(1 + σ�(ξ ,η))

}
, (4)

for all ξ ,η ∈X �, and β ∈ (0, 1).

Theorem 2 Consider a mapping � : X � →X . If �� : X � →X � on a complete C-distance
space (X �,σ�), which is a Dass-Gupta-type contraction, then � possesses at least a multi-
dimensional fixed point.

Proof Suppose that σ�(τ (κ), τ (κ + 1)) > 0. If this inequality does not hold, then we get a
fixed point, which terminates the proof. Now,

σ�
(
τ (κ), τ (κ + 1)

)
= σ�

(
��

(
τ (κ – 1)

)
,��

(
τ (κ)

))

≤ β max

{
σ�

(
τ (κ – 1), τ (κ)

)
,

ϕ(1+σ�(τ (κ–1),��(τ (κ–1))))σ�(τ (κ),��(τ (κ)))
ϕ(1+σ�(τ (κ–1),τ (κ)))

}

≤ β max
{
σ�

(
τ (κ – 1), τ (κ)

)
,σ�

(
τ (κ), τ (κ + 1)

)}
,

if max{σ�(τ (κ – 1), τ (κ)),σ�(τ (κ), τ (κ + 1))} = σ�(τ (κ), τ (κ + 1)), then

σ�
(
τ (κ), τ (κ + 1)

) ≤ βσ�
(
τ (κ), τ (κ + 1)

)
,

which is impossible. Thus,

σ�
(
τ (κ), τ (κ + 1)

) ≤ βσ�
(
τ (κ – 1), τ (κ)

)

...

≤ βκ–1σ�
(
τ (1), τ (2)

)
.

We can also write it as

lim
κ→∞σ�

(
τ (κ), τ (κ + 1)

)
= 0. (5)

Similarly, we can show that

lim
κ→∞σ�

(
τ (κ + 1), τ (κ)

)
= 0. (6)
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We need to show that the sequence (τ (κ))κ∈N is a Cauchy sequence. For all � > κ , consider

σ�
(
τ (κ), τ (�)

)
= σ�

(
��

(
τ (κ – 1)

)
,��

(
τ (� – 1)

))

≤ β max

{
σ�

(
τ (κ – 1), τ (� – 1)

)
,

ϕ(1+σ�(τ (κ–1),��(τ (κ–1))))σ�(τ (�–1),��(τ (�–1)))
ϕ(1+σ�(τ (κ–1),τ (�–1)))

}

≤ β max

{
σ�

(
τ (κ – 1), τ (� – 1)

)
,

ϕ(1+σ�(τ (κ–1),τ (κ)))σ�(τ (�–1),τ (�))
ϕ(1+σ�(τ (κ–1),τ (�–1)))

}

,

if max

{
σ�(τ (κ–1),τ (�–1)),

ϕ(1+σ�(τ (κ–1),τ (κ)))σ�(τ (�–1),τ (�))
ϕ(1+σ�(τ (κ–1),τ (�–1)))

}
= ϕ(1+σ�(τ (κ–1),τ (κ)))σ�(τ (�–1),τ (�))

ϕ(1+σ�(τ (κ–1),τ (�–1))) then

σ�
(
τ (κ), τ (�)

)
= β

ϕ(1 + σ�(τ (κ – 1), τ (κ)))σ�(τ (� – 1), τ (�))
ϕ(1 + σ�(τ (κ – 1), τ (� – 1)))

,

taking limit �,κ → ∞ over the above expression, we get the following

lim
�,κ→∞

σ�
(
τ (κ), τ (�)

) ≤ lim
�,κ→∞

βϕ(1 + σ�(τ (κ – 1), τ (κ)))σ�(τ (� – 1), τ (�))
ϕ(1 + σ�(τ (κ – 1), τ (� – 1)))

≤ βϕ(1 + limκ→∞ σ�(τ (κ – 1), τ (κ)))σ�(lim�→∞ τ (� – 1), τ (�))
ϕ(1 + lim�,κ→∞ σ�(τ (κ – 1), τ (� – 1)))

,

since ϕ is continuous

≤ βϕ(1) × 0
ϕ(1 + lim�,κ→∞ σ�(τ (κ – 1), τ (� – 1)))

= 0.

As, if lim�,κ→∞ σ�(τ (κ – 1), τ (� – 1)) = 0, then ϕ(1 + lim�,κ→∞ σ�(τ (κ – 1), τ (� – 1))) 	= 0.
So, for this case, (τ (κ))κ∈N is Cauchy. Now, the other possibility is

max

{
σ�

(
τ (κ – 1), τ (� – 1)

)
,

ϕ(1+σ�(τ (κ–1),τ (κ)))σ�(τ (�–1),τ (�))
ϕ(1+σ�(τ (κ–1),τ (�–1)))

}

= σ�
(
τ (κ – 1), τ (� – 1)

)
.

In this case,

σ�
(
τ (κ), τ (�)

) ≤ βσ�
(
τ (κ – 1), τ (� – 1)

)

≤ β2σ�
(
τ (κ – 2), τ (� – 2)

)

...

≤ βκ–1σ�
(
τ (κ), τ (� – κ + 1)

)
,

applying limit �,κ → +∞, we obtain

lim
�,κ→∞

σ�
(
τ (κ), τ (�)

)
= 0.

Similarly, we can show that

lim
�,κ→∞

σ�
(
τ (�), τ (κ)

)
= 0.
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Thus, (τ (κ))κ∈N is Cauchy. It is given that space is complete, so (τ (κ))κ∈N converges to
some κ ∈X �, ı́.e.,

lim
κ→∞σ�

(
κ , τ (κ)

)
= lim

κ→∞σ�
(
τ (κ),κ

)
= 0.

In the C-distance space, the limit is the fixed point of �� and, consequently, will be the
multiple fixed point of �. Hence, κ is a fixed point of �� and a multiple fixed point of �. �

Example 2 Define a function ϕ : [0,∞) → [0,∞) as

ϕ(ξ ) =
ξ

2
for all ξ ∈ [0,∞),

then ϕ is continuous, nondecreasing, and ϕ(0) = 0. Example 1, with defined function ϕ,
satisfies all axioms of Theorem 2. Hence, � has at least a multidimensional fixed point.

Definition 6 A mapping �� on (X �,σ�) is called a Dass-Gupta-type hybrid contraction
if there is ψ ,ϕ, θ : [0,∞) → [0,∞) such that

ψ
(
σ�

(
��(ξ ),��(η)

)) ≤ θ
(
M(ξ ,η)

)
, (7)

where

M(ξ ,η) =

⎧
⎪⎪⎨

⎪⎪⎩

[
α( ϕ(1+σ�(ξ ,��(ξ )))σ�(η,��(η))

ϕ(1+σ�(ξ ,η)) )s

+β(σ�(ξ ,η))s

] 1
s

, fo� s > 0, ξ ,η ∈X , ξ 	= η,

(σ�(ξ ,��(ξ )))α(σ�(η,��(η)))β fo� s = 0, ξ ,η ∈X \F ı́x(X )

⎞

⎟⎟
⎠ ,

where F ı́x(X ) = {ζ ∈X : ζ = ��(ζ )}, for all ξ ,η ∈X �, s ≥ 0 and α + β = 1, where ψ , ϕ and
θ are continuous, increasing, and ψ(0) = ϕ(0) = θ (0) = 0,

for ξ > 0, ψ(ξ ) > θ (ξ ). (a)

Theorem 3 Let � : X � → X be a mapping. If �� : X � → X � on a complete C-distance
space (X �,σ�) is a Dass-Gupta-type hybrid contraction, then � possesses at least a multi-
dimensional fixed point.

Proof For τ ∈X �, τ (1) = ��(τ ) and τ (κ + 1) = ��(τ (κ)) is a Picard sequence. We assume
that

σ�
(
τ (κ), τ (κ + 1)

)
> 0 for all κ ∈N.

On the contrary, if the above inequality does not hold, then we get a fixed point, and it
terminates the proof. To prove the claim of our result, we shall discuss two cases s > 0 and
s = 0 separately.

Case 1: When s > 0, consider

ψ
(
σ�

(
τ (κ), τ (κ + 1)

))
= ψ

(
σ�

(
��

(
τ (κ – 1)

)
,��

(
τ (κ)

)))

≤ θ
(
M

(
τ (κ – 1), τ (κ)

))
.
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Where

M
(
τ (κ – 1), τ (κ)

)
=

[
α( ϕ(1+σ�(τ (κ–1),��(τ (κ–1))))σ�(τ (κ),��(τ (κ)))

ϕ(1+σ�(τ (κ–1),τ (κ))) )s

+β(σ�(τ (κ – 1), τ (κ)))s

] 1
s

=

[
α( ϕ(1+σ�(τ (κ–1),τ (κ)))σ�(τ (κ),τ (κ+1))

ϕ(1+σ�(τ (κ–1),τ (κ))) )s

+β(σ�(τ (κ – 1), τ (κ)))s

] 1
s

=
[
α
(
σ�

(
τ (κ), τ (κ + 1)

))s + β
(
σ�

(
τ (κ – 1), τ (κ)

))s] 1
s

using this value in the above inequality, we have

ψ
(
σ�

(
τ (κ), τ (κ + 1)

)) ≤ θ
([

α
(
σ�

(
τ (κ), τ (κ + 1)

))s + β
(
σ�

(
τ (κ – 1), τ (κ)

))s] 1
s
)
.

Suppose that σ�(τ (κ), τ (κ + 1)) > σ�(τ (κ – 1), τ (κ)), then from the above inequality, we
have

ψ
(
σ�

(
τ (κ), τ (κ + 1)

))
< θ

([
α
(
σ�

(
τ (κ), τ (κ + 1)

))s + β
(
σ�

(
τ (κ), τ (κ + 1)

))s] 1
s
)

< θ
([

(α + β)
(
σ�

(
τ (κ), τ (κ + 1)

))s] 1
s
)

< θ
(
σ�

(
τ (κ), τ (κ + 1)

))
, (8)

using (a), we have

ψ
(
σ�

(
τ (κ), τ (κ + 1)

))
< ψ

(
σ�

(
τ (κ), τ (κ + 1)

))
,

which is a contradiction. So, σ�(τ (κ), τ (κ + 1)) ≤ σ�(τ (κ – 1), τ (κ)), which is a decreasing
sequence. Thus, we have

lim
κ→∞σ�

(
τ (κ), τ (κ + 1)

)
= � ≥ 0.

If � > 0, applying limit κ → +∞ to (8), it follows ψ(�) < θ (�), which contradicts (τ ); thus,
� = 0 and

lim
κ→∞σ�

(
τ (κ), τ (κ + 1)

)
= 0.

Similarly,

lim
κ→+∞σ�

(
τ (κ + 1), τ (κ)

)
= 0.

Our next step is to show that (τ (κ))κ∈N is a Cauchy sequence. For all � > κ , we have

ψ
(
σ�

(
τ (κ), τ (�)

))
= σ�

(
��

(
τ (κ – 1)

)
,��

(
τ (� – 1)

)) ≤ θ
(
M

(
τ (κ – 1), τ (� – 1)

))
,
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where

M
(
τ (κ – 1), τ (� – 1)

)
=

[
α( ϕ(1+σ�(τ (κ–1),��(τ (κ–1))))σ�(τ (�–1),��(τ (�–1)))

ϕ(1+σ�(τ (κ–1),τ (�–1))) )s

+β(σ�(τ (κ – 1), τ (� – 1)))s

] 1
s

=

[
α( ϕ(1+σ�(τ (κ–1),τ (κ)))σ�(τ (�–1),τ (�))

ϕ(1+σ�(τ (κ–1),τ (�–1))) )s

+β(σ�(τ (κ – 1), τ (� – 1)))s

] 1
s

,

taking limit �,κ → ∞, we get

lim
�,κ→∞

ψ
(
σ�

(
τ (κ), τ (�)

)) ≤ lim
�,κ→∞

θ
(
β

1
s σ�

(
τ (κ – 1), τ (� – 1)

))

≤ lim
�,κ→∞

θ
(

lim
�,κ→∞

β
2
s σ�

(
τ (κ – 2), τ (� – 2)

))

...

≤ θ
(

lim
�,κ→∞

β
κ–1

s σ�
(
τ (κ – 1), τ (� – κ + 1)

))

≤ θ (0) = 0,

consequently

lim
�,κ→∞

σ�
(
τ (κ), τ (�)

)
= 0.

Similarly, it can be shown that

lim
�,κ→∞

σ�
(
τ (�), τ (κ)

)
= 0.

Hence, (τ (κ))κ∈N is Cauchy. Similar reasoning from the proof of the above theorem can be
used to show that � has a multiple fixed point.

Case 2: When s = 0, consider

ψ
(
σ�

(
τ (κ), τ (κ + 1)

))
= ψ

(
σ�

(
��

(
τ (κ – 1)

)
,��

(
τ (κ)

))) ≤ θ
(
M

(
τ (κ – 1), τ (κ)

))
.

Where

M
(
τ (κ – 1), τ (κ)

)
=

(
σ�

(
τ (κ – 1),��

(
τ (κ – 1)

)))α(
σ�

(
τ (κ),��

(
τ (κ)

)))β

=
(
σ�

(
τ (κ – 1), τ (κ)

))α(
σ�

(
τ (κ), τ (κ + 1)

))β ,

so

ψ
(
σ�

(
τ (κ), τ (κ + 1)

)) ≤ θ
((

σ�
(
τ (κ – 1), τ (κ)

))α(
σ�

(
τ (κ), τ (κ + 1)

))β)

< ψ
((

σ�
(
τ (κ – 1), τ (κ)

))α(
σ�

(
τ (κ), τ (κ + 1)

))β)
,

using the properties of ψ , we have

σ�
(
τ (κ), τ (κ + 1)

)
<

(
σ�

(
τ (κ – 1), τ (κ)

))α(
σ�

(
τ (κ), τ (κ + 1)

))β ,
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using simple calculation, the above inequality turns into

(
σ�

(
τ (κ), τ (κ + 1)

))1–β <
(
σ�

(
τ (κ – 1), τ (κ)

))α ,

since α + β = 1, we have

σ�
(
τ (κ), τ (κ + 1)

)
< σ�

(
τ (κ – 1), τ (κ)

)
.

Using the same method as in Case 1, we can find a multiple fixed point of �. �

Remark 2
(1) We can clearly see that Theorem 1 in [11] is the particular case of the above

theorem. We can get that by substituting h = 1 and ϕ(1 + x) = x.
(2) In the above theorem, the space used is the C-distance space, which is the

generalization of the space used in [11].
(3) In [11], fixed point result was established. However, the above result is the

multidimensional fixed point result.

Example 3 Let X = { 1
κ

: κ ∈ N} ∪ {0}. Define for all κ , l ∈N

σ (0, 0) = 0, σ

(
0,

1
κ

)
=

1
2κ

, σ

(
1
κ

, 0
)

=
1
κ

, σ (ξκ , ξl) = |ξκ – ξl|,

then (X ,σ ) is a C-distance space. Now,

X ×X =
{

(ξ ,η) : ξ ,η ∈X
}

,

and

σ 2(ξ ,η) = sup
ı́≤2

{
σ (ξı́ ,ηı́)

}
,

then (X 2,σ 2) is a C-distance space.
Define ϕ,ψ , θ : [0,∞) → [0,∞), as

ϕ(ξ ) =
ξ

2
and ψ(ξ ) = θ (ξ ) = ξ , for all ξ ∈ [0,∞),

which are continuous, increasing, and ψ(0) = ϕ(0) = θ (0) = 0. Now, define � : X 2 → X
such that

�(ξ1, ξ2) =
ξ1

5
for all (ξ1, ξ2) ∈X 2,

and a mapping � : X →X 2 such that

�(ξ ) =
(
�1(ξ ),�2(ξ )

)
,



Rashid et al. Journal of Inequalities and Applications         (2024) 2024:13 Page 13 of 17

where �ı́ : {1, 2} → {1, 2} are defined as
(

�1(1) �1(2)
�2(1) �2(2)

)

=

(
1 2
2 1

)

.

The mapping �� : X 2 →X 2 is defined as

��(ξ1, ξ2) =
(
�(ξ�1(1), ξ�2(2)),�(ξ�2(1), ξ�2(2))

)
=

(
ξ1

5
,
ξ2

5

)
.

Consider

σ
(
�(ξ1, ξ2),�(η1,η2)

)
= σ

(
ξ1

5
,
η1

5

)
.

Then, all the conditions of the above theorem are satisfied with � = 2, α = β = 1
5 and s = 1.

Hence, there exists a multiple fixed point of �.

Example 4 Let X = {f1, f2}, where f1,f2 are functions from [1,∞) to [1,∞) and are defined
as

f1(x) = x, for all x ∈ [1,∞),

f2(x) = 2x, for all x ∈ [1,∞).

Define

σ (f1, f2) = f2(x) – f1(x),

clearly (X ,σ ) is a C-distance space.
Define X ×X = {(f1, f1), (f1, f2), (f2, f1), (f2, f2)}.
Now, define σ 2 on X ×X as σ 2(f1, f2) = sup{σ (fi, fj) : i, j ∈ {1, 2}}, (X 2,σ 2), is also a C-

distance space.
Define ϕ,ψ , θ : [0,∞) → [0,∞), as

ϕ(ξ ) =
ξ

2
and ψ(ξ ) = θ (ξ ) = ξ , for all ξ ∈ [0,∞),

which are continuous, increasing, and ψ(0) = ϕ(0) = θ (0) = 0.
Now, define � : X 2 →X such that

�(f1, f2) =
f1(x)

4
for all (ξ1, ξ2) ∈X 2,

and a mapping � : X →X 2 such that

�(ξ ) =
(
�1(ξ ),�2(ξ )

)
,

where �ı́ : {1, 2} → {1, 2} are defined as
(

�1(1) �1(2)
�2(1) �2(2)

)

=

(
1 2
2 1

)

.
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The mapping �� : X 2 →X 2 is defined as

��(f1, f2) =
(
�(f�1(1), f�2(2)),�(f�2(1), f�2(2))

)
=

(
f1(x)

4
,

f2(x)
4

)
.

Now, letting f = (f1, f1), g = (f1, f2), we have

ψ
(
σ 2(��(f),��(g)

))
=

x
8

≤ θ
(
M(f , g)

)
,

for s ≥ 1, and α = β = 1
2 . Since all conditions of Theorem 3 are satisfied, � has a multiple

fixed point.

Corollary 2 A self-mapping �� on a complete C-distance space (X ,σ ) has a fixed point,
i.e., multiple fixed point of � if, for any ξ ,η ∈ X , ξ 	= η, there is ψ ,ϕ, θ : [0,∞) → [0,∞)
such that

ψ
(
σ�

(
��(ξ ),��(η)

)) ≤ λ × θ

⎛

⎝
[
α( ϕ(1+σ�(ξ ,��(ξ )))σ�(η,��(η))

ϕ(1+σ�(ξ ,η)) )s

+β(σ�(ξ ,η))s

] 1
s
⎞

⎠ ,

where α,β ,λ ∈ (0, 1) and α + β = 1, s > 0, where ψ , ϕ and θ are continuous, nonincreasing,
and ψ(0) = ϕ(0) = θ (0) = 0,

for ξ > 0, ψ(ξ ) > θ (ξ ). (a)

Corollary 3 Consider a mapping � : X � → X . If the mapping �� on a complete C-
distance space (X ,σ ) satisfies

σ�
(
��(ξ ),��(η)

) ≤ λ
[
σ�

(
ξ ,��(ξ )

)]α[
σ�

(
η,��(η)

)]1–α ,

for all ξ ,η ∈X \F ı́x(X ), where α,λ ∈ (0, 1), then � has a multiple fixed point.

Proof Putting ψ(ξ ) = ξ , θ (ξ ) = λξ and β = 1 – α in the above theorem, we will get the
desired result. �

4 Application
This section deals with the application of the obtained result proven in Sect. 3 for C-
distance spaces. Here, we are going to investigate the solution of integral equations utiliz-
ing the concept of multiple fixed point.

Let a, b ∈ R with a < b, and let ĺ = [a, b]. Consider X as a set of all real-valued and con-
tinuous functions defined on ĺ, and then σ is a complete C-distance on X , where

σ (α,β) = max
t∈[a,b]

(∣∣α(t) – β(t)
∣∣)2� , ∀α,β ∈M and � ≥ 1,

σ h(ξ ,η) = sup
i≤h

{
σ (ξi,ηi)

}

= sup
i≤h

{
max
t∈[a,b]

∣∣ξi(t) – ηi(t)
∣∣2�

}
.
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Consider the following integral system:

ξ1(κ) = ω +
∫ t

a
L
(
ξ1(μ), ξ2(μ), . . . , ξh(μ)

)
dμ,

ξı̀(κ) = ω +
∫ t

a
L
(
ξı̀(μ), ξı̀+1(μ), . . . , ξh(μ), ξ1(μ), . . . , ξı̀–1(μ)

)
dμ, (9)

for ı̀ = 1, 2, . . . , h, η = (η1,η2, . . . ,ηh) ∈X h, μ ∈ ĺ and a mapping L : Rh →R is such that
(1) L is continuous;
(2) ∀(ξ1, ξ2, . . . , ξh), (η1,η2, . . . ,ηh) ∈R

h,

∣∣L(ξ1, ξ2, . . . , ξh)
∣∣ –

∣∣L(η1,η2, . . . ,ηh)
∣∣ ≤ κ

(
max

1≤ı̀≤h
(|ξı̀ – ηı̀ |

)2�
) 1

2� .

A mapping �� : X � →X � for all ξ = (ξ1, ξ2, . . . , ξh) ∈X � and ω ∈X � defined by

��(ξ1, ξ2, . . . , ξh)(t)

= ω(t) +

(∫ t
a L(ξ1(μ), ξ2(μ), . . . , ξh(μ)) dμ,

∫ t
a L(ξ2(μ), ξ3(μ), . . . , ξ1(μ)) dμ,

. . . ,
∫ t

a L(ξh(μ), ξ1(μ), . . . , ξh–1(μ)) dμ

)

.

Now, for the solution of system, we take points (η1,η2, . . . ,ηh), (ξ1, ξ2, . . . , ξh) ∈ X h, and
consider

σ h(��(ξ1, ξ2, . . . , ξh)(t),��(η1,η2, . . . ,ηh)(t)
)

= σ h

⎛

⎜⎜
⎝

(
ω(t) +

(∫ t
a L(ξ1(μ), ξ2(μ), . . . , ξh(μ)) dμ,

∫ t
a L(ξ2(μ), ξ3(μ), . . . , ξ1(μ)) dμ,

. . . ,
∫ t

a L(ξh(μ), ξ1(μ), . . . , ξh–1(μ)) dμ

))
,

(
ω(t) +

(∫ t
a L(η1(μ),η2(μ), . . . ,ηh(μ)) dμ,

∫ t
a L(η2(μ),η3(μ), . . . ,η1(μ)) dμ,

. . . ,
∫ t

a L(ηh(μ),η1(μ), . . . ,ηh–1(μ)) dμ

))

⎞

⎟⎟
⎠

= sup
i≤h

⎡

⎢⎢
⎣max

μ∈ĺ

⎧
⎪⎪⎨

⎪⎪⎩

∣∣∣∣
∫ t

a L
(
ξ1(μ), ξ2(μ), . . . , ξh(μ)

)
dμ –

∫ t
a L

(
η1(μ),η2(μ), . . . ,ηh(μ)

)
dμ

∣∣∣∣

2�

,

. . . ,
∣∣∣∣
∫ t

a L
(
ξh(μ), ξ1(μ), . . . , ξh–1(μ)

)
dμ –

∫ t
a L

(
ηh(μ),η1(μ), . . . ,ηh–1(μ)

)
dμ

∣∣∣∣

2�

⎫
⎪⎪⎬

⎪⎪⎭

⎤

⎥⎥
⎦

≤ sup
i≤h

⎡

⎢⎢
⎣max

μ∈ĺ

⎧
⎪⎪⎨

⎪⎪⎩

(∫ t
a k

(
maxi≤h

∣∣ξi(μ) – ηi(μ)
∣∣2�

) 1
2� dμ

)2�

, . . . ,
(∫ t

a k
(

maxi≤h
∣∣ξi(μ) – ηi(μ)

∣∣2�
) 1

2� dμ

)2�

⎫
⎪⎪⎬

⎪⎪⎭

⎤

⎥⎥
⎦

≤ sup
i≤h

[(
max
μ∈ĺ

(∫ t

a
kσ (ξı̀ ,ηı̀)

) 1
2�

dμ

)2� ]

≤ k sup
i≤h

σ (ξı̀ ,ηı̀)(b – a)2�

≤ k(b – a)2�σ h(ξ ,η),

with k(b – a)2� < 1. Thus, all the assumptions of Corollary 1 are satisfied. Hence, the in-
tegral system has a unique solution.
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Corollary 4 Let � : X � → X . If a mapping �� on a complete C-distance space (X h,σ h)
satisfies

∫ σh(��(ξ ),��(η))

0
ds ≤ β max

{∫ σh(ξ ,η)

0
ds,

∫ ϕ(σh(ξ ,��(ξ )))σh(η,��(η))
ϕ(σh(ξ ,η))

0
ds

}
,

for any ξ ,η ∈X h, and β ∈ (0, 1), then � possesses at least a multidimensional fixed point.

Conclusion 1 In this article, we study some nonlinear contractions in the settings of C-
distance space for nonself-mappings. For such mappings, multidimensional fixed point
results were established, extending and generalizing the results in [13]. We checked the
applicability of our results by providing examples. We also applied these results for finding
the solution of the system of integral equations. We can see that most results in [1] are
particular cases of the present article results, as we can obtain these results by substituting
� = 1. We also used the C-distance space here, which is the generalization of metric space
used in most results existing in literature. By defining control functions differently, we can
obtain the results available in [7]. Thus, the results of the present article are generalized
in the sense of their contractive conditions, space, and multiple fixed point, as already
discussed in remarks.

By substituting � = 2, 3, . . . and defining control functions as identity functions, we can
get many new results, such as couple and triple fixed point results for nonlinear contrac-
tions in generalized spaces, that is, C-distance spaces.
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