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Abstract
Cyclic mappings describe fixed paths for which each point is sequentially transmitted
from one set to another. Cyclic mappings satisfying certain cyclic contraction
conditions have been used to obtain the best proximity points, which constitute a
suitable framework for the mirror reflection model. Alternative contraction mappings
introduced by Chen (Symmetry 11:750, 2019) built a new model containing several
mirrors in which the light reflected from a mirror does not go to the next mirror
sequentially, and its path may diverge to any other mirror. The aim of this paper is to
present a new variant of alternative contraction called alternative p-contraction and
study its properties. The best proximity point result for such contractions under the
alternative UC property is proved. An example to support the result proved herein is
provided.
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1 Introduction and preliminaries
The Banach contraction principle (BCP) [8] plays a significant role in metric fixed point
theory and has been extended and generalized in several directions. For example, Kirk
et al. [21] presented an interesting generalization of the Banach contraction principle by
introducing cyclic mappings.

Definition 1.1 [21] Let (W,d) be a metric space, Gi be nonempty subsets of W, where
i = 1, 2, . . . , m. A mapping � :

⋃m
i=1 Gi → ⋃m

i=1 Gi is a cyclic mapping if �(Gi) ⊂ Gi+1 for
i = 1, 2, . . . , m and Gm+1 = G1.

Theorem 1.2 [21] Let (W,d) be a complete metric space, G, J be two closed subsets of W,
and � : G∪ J→ G∪ J be a cyclic mapping, that is, �(G) ⊂ J and �(J) ⊂G. If there exists
k ∈ (0, 1) such that d(�x,�y) ≤ kd(x,y) for all x ∈ G and y ∈ J, then � has a fixed point in
G∩ J.

Cyclic mappings in the above theorem are a dynamic system which describes the tra-
jectories between two state spaces along which each state moves from one state space
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to another iteratively. Fixed point theorems for such mappings give necessary condi-
tions for existence of an equilibrium state that is common to both state spaces (see
[15, 18, 19, 23, 24, 29, 31] and the references given there).

By considering non-self mappings, another interesting extension of BCP was obtained
in [9].

Let ∅ 	= G,J be two sets in (W,d) and � : G → J. If G ∩ J = ∅, then � becomes a fixed
point free mapping. Then it is desired to find a point x∗ in G which is closest to �x∗ in J,
that is,

x
∗ = arg mind(x,�x).

Since d(x,�x) ≥ d(G,J) := inf{d(a,b) : a ∈G,b ∈ J} holds for all x ∈G, it follows that d(G,J)
is the lower bound of the set {d(x,�x) : x ∈ A}. A point x∗ in A such that d(x∗,�x∗) = d(G,J) is
called a best proximity point of � and is an optimal solution to the following optimization
problem:

min
x∈G

d(x,�x).

For more results in this direction, we refer to [2, 4, 5, 14, 20, 27, 28].
In case G = J = W, the best proximity point becomes a fixed point of � and hence the

best proximity point results can be viewed as a potential generalization of fixed point re-
sults.

Combining the ideas of both cyclic mappings and best proximity point, Eldred and
Veeramani [12] introduced the notion of cyclic contraction mapping for two subsets of
W and then obtained a best proximity theorem.

Definition 1.3 [12] Let A and B be nonempty subsets of a metric space (W,d). A mapping
� : G∪J →G∪J is called a cyclic contraction if �(G) ⊂ J and �(J) ⊂G and the following
condition holds:

d(�x,�y) ≤ αd(x,y) + (1 – α)d(G,J)

for all x ∈G and y ∈ J, where α ∈ (0, 1) and d(G,J) = inf{d(a,b) : a ∈G,b ∈ J}.

Theorem 1.4 [12] Let G and J be nonempty closed subsets of a metric space (W,d) and
� : G∪ J →G∪ J be a cyclic contraction. If either G or J is boundedly compact, then there
exists x ∈G∪ J with d(x,�x) = d(G,J).

Various cyclic contractions were defined for n subsets using a sequential pattern, as out-
lined by Kirk et al. [21] and Eldred and Veeramani [12], employing the 2-sets methodology.
Examples of such contractions can be found in [1, 16, 17, 22, 25, 30] and the relevant lit-
erature.

In contrast, Chen [11] introduced the concepts of alternative maps and alternative con-
tractions, which extend beyond the scope of cyclic mapping and do not necessitate a se-
quential pattern. Furthermore, drawing inspiration from the UC property stated in [29]
and Fan’s best proximity point theorem mentioned in [13], the alternative UC condition
was introduced and the nonsequential best proximity point theorem was derived.
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Definition 1.5 [29] Let G and J be nonempty subsets of a metric space (W,d). Then
(G,J) is said to satisfy the UC property if for every two sequences {xn} and {x′n} in G

and each {yn} in J such that limn→∞ d(xn,yn) = d(G,J) and limn→∞ d(x′n,yn) = d(G,J), then
limn→∞ d(xn, x′n) = 0.

It is obvious that if d(G,J) = 0, then (G,J) satisfies the UC property.
In light of the UC condition proposed in reference [29], Chen [11] introduced a novel

approach by extending this concept to a finite collection of nonempty subsets within a
metric space, thus offering an alternative UC condition.

Definition 1.6 [11] Let (W,d) be a metric space,Gi, i = 1, 2, . . . , m, be nonempty subsets of
W and, for every n ∈N, y1

n,yν
n ∈Gr and y2

n,y3
n, . . . ,yν–1

n ∈ ⋃
j 	=r Gj for some positive integer

ν ≥ 2. We say that the family {Gi}m
i=1 satisfies the alternative UC condition if the following

holds: if

lim
n→∞d

(
y

1
n,y2

n
)

= lim
n→∞ d

(
y

2
n,y3

n
)

= · · · = lim
n→∞ d

(
y

ν–1
n ,yν

n
)

= d(G,J)

for some G,J ∈ {Gi}m
i=1,

then limn→∞ d(y1
n,yν

n) = 0.

To give an example, we need the following elementary result.

Lemma 1.7 Let us consider a, b ∈ R and two sequences of real numbers {xn}n, {yn}n such
that xn ≤ a, yn ≥ b for all n ∈N and limn→∞ d(yn – xn) = b – a. Then

lim
n→∞ xn = a and lim

n→∞ yn = b.

Proof

0 ≤ (a – xn) + (yn – b) = (yn – xn) – (b – a) −→ 0.

Since a – xn ≥ 0 and yn – b ≥ 0, we deduce that limn→∞ xn = a and limn→∞ yn = b. �

Example 1.8 Let W = R be endowed with the Euclidean metric σ and G1 = [0, 1], G2 =
[–2, –1], G3 = {0}, G4 = [1, 2]. Then {Gi}4

i=1 satisfies the alternative UC condition.

Proof Let us consider the following sequences: {y1
n}, {y5

n} ⊂ G1, {y2
n} ⊂ G2, {y3

n} ⊂ G3,
{y4

n} ⊂G4, and suppose that

lim
n→∞

∣
∣y2

n – y
1
n
∣
∣ = lim

n→∞
∣
∣y3

n – y
2
n
∣
∣ = lim

n

∣
∣y4

n – y
3
n
∣
∣ = lim

n→∞
∣
∣y5

n – y
4
n
∣
∣ = d(G3,G4) = 1.

Thus, by Lemma 1.7, one obtains successively

y
1
n → 0, y

2
n → –1, y

3
n = 0, y

4
n → 1, y

5
n → 0.

Therefore limn→∞ |y1
n – y5

n| = 0. �
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Definition 1.9 [11] Let (W,d) be a metric space, Gi, i = 1, 2, . . . , m, be nonempty subsets
of W. A map � :

⋃m
i=1 Gi → ⋃m

i=1 Gi is called an alternative map if �(Gi) ⊆ ⋃
j 	=i Gj for

i = 1, 2, . . . , m. A mapping � :
⋃m

i=1 Gi → ⋃m
i=1 Gi is called an alternative contraction (AC)

if � is an alternative map and there exists a constant α ∈ [0, 1) such that for any x ∈ Gj,
y ∈Gk for some j, k ∈ {1, . . . , m}, the following condition holds:

d(�x,�y) ≤ αd(x,y) + (1 – α)d(Gj,Gk). (1)

As cited in [11], the classical result of the best proximity point can be described using
a model of two mirrors reflecting each other, where a cyclic contraction is employed to
specify the path that the light takes from one mirror to the other. Suzuki et al. [29] demon-
strated that with cyclic contraction and the UC condition, the best proximity points are
the brightest points obtained through repeated reflection between the two mirrors and
infinite bouncing. Conversely, the alternative map transforms the two-mirror model into
one that involves multiple mirrors, where the light, after being reflected from a mirror, may
not necessarily return and its path may diverge in any given direction. Chen [11] proved
that under the conditions of the proposed alternative contraction and the UC condition,
the best proximity points of the alternative map will manifest as shining points in the
multi-mirror reflection model.

Theorem 1.10 [11, Theorem 7] Let (W,d) be a complete metric space and {Gi}m
i=1 be a

family of nonempty and closed subsets of W. Assume that � :
⋃m

i=1 Gi → ⋃m
i=1 Gi is an AC

with UC condition. Then there exists a best proximity point of �.

On the other side, Popescu [26] introduced a new type of contraction mapping that
generalized BCP, as follows.

Definition 1.11 [26] Let (W,d) be a metric space. A mapping � : W → W is said to be a
p-contraction if there exists a real number k ∈ [0, 1) such that

d(x,y) ≤ k
[
d(x,y) +

∣
∣d(x,�x) – d(y,�y)

∣
∣
]

(2)

for all x,y ∈W.

Note that if we set k = 1 in (2) and the inequality is strict for all x 	= y ∈ W, then the
mapping � is said to be a p-contractive mapping introduced in [3].

Theorem 1.12 [26, Theorem 2.2] If (W,d) is a complete metric space and � is a p-
contraction on W, then � has a unique fixed point x∗ and the sequence {�nx} converges
to x∗ for every x ∈W.

Recently, Aslantas et al. [6] introduced a new concept called cyclic p-contraction pair
and demonstrated its application in obtaining best proximity point results. They unified
the concepts of p-contraction and cyclic contraction to achieve this. The authors also es-
tablished conditions that ensure the existence and uniqueness of a common solution for a
system of second order boundary value problems. These conditions are based on the fixed
point consequence of their main results. For further information, please refer to [6].
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The objective of this paper is to present the concept of alternative p-contraction by
merging the ideas of p-contraction and alternative contraction. Additionally, this paper
aims to provide a comprehensive presentation of best proximity point results based on
the work of Chen [11]. The outcomes of this paper expand, unify, and generalize various
fixed point and best proximity point theorems found in current academic literature.

2 Alternative p-contractions and its properties
Inspired by [11], in this section we introduce the alternative p-contraction and study its
properties. Throughout this section (W,d) will be a metric space and {Gi}m

i=1 is a family of
nonempty subsets of it, where m ≥ 2.

Definition 2.1 A map � :
⋃m

i=1 Gi → ⋃m
i=1 Gi is called an alternative p-contraction if � is

an alternative map and there exists a right-continuous mapping α : [0,∞) → [0, 1) with
α(0) = 0 such that, for every j, k ∈ {1, . . . , m} and x ∈ Gj, y ∈ Gk , the following condition
holds:

d(�x,�y) ≤ α
(
d(x,y)

)(
d(x,y) +

∣
∣d(x,�x) – d(y,�y)

∣
∣
)

+
[
1 – α

(
d(x,y)

)]
d(Gj,Gk). (3)

Lemma 2.2 If � :
⋃m

i=1 Gi → ⋃m
i=1 Gi is an alternative p-contraction, then for each x ∈

⋃m
i=1 Gi, the sequence {d(�n+1x,�nx)} is decreasing.

Proof As � is an alternative p-contraction, for every x ∈ ⋃m
i=1 Gi and n ∈ N, one can find

i(n) ∈ {1, . . . , m} such that �nx ∈Gi(n).
By hypothesis, there exists a mapping α : [0,∞) → [0, 1) such that

d
(
�n+1

x,�n
x
)

= d
(
��n

x,��n–1
x
)

(4)

≤ α
(
d
(
�n

x,�n–1
x
))(

d
(
�n

x,�n–1
x
)

+
∣
∣d

(
�n

x,�n+1
x
)

– d
(
�n–1

x,�n
x
)∣
∣
)

+
[
1 – α

(
d
(
�n

x,�n–1
x
))]

d(Gi(n–1),Gi(n)).

We divide the proof into two cases as follows:
Case 1. If d(�nx,�n+1x) ≥ d(�n–1x,�nx), then (4) becomes

d
(
�n+1

x,�n
x
)

= d
(
��n

x,��n–1
x
)

≤ α
(
d
(
�n

x,�n–1
x
))(

d
(
�n

x,�n–1
x
)

+ d
(
�n

x,�n+1
x
)

– d
(
�n–1

x,�n
x
))

+
[
1 – α

(
d
(
�n

x,�n–1
x
))]

d(Gi(n–1),Gi(n))

≤ α
(
d
(
�n

x,�n–1
x
))
d
(
�n

x,�n+1
x
)

+
[
1 – α

(
d
(
�n

x,�n–1
x
))]

d
(
�n

x,�n–1
x
)
,

which implies that d(�n+1x,�nx) ≤ d(�nx,�n–1x).
Case 2. If d(�nx,�n+1x) < d(�n–1x,�nx), then (4) becomes

d
(
�n+1

x,�n
x
)

= d
(
��n

x,��n–1
x
)

≤ α
(
d
(
�n

x,�n–1
x
))(

d
(
�n

x,�n–1
x
)

– d
(
�n

x,�n+1
x
)

+ d
(
�n–1

x,�n
x
))

+
[
1 – α

(
d
(
�n

x,�n–1
x
))]

d(Gi(n–1),Gi(n))
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≤ 2α
(
d
(
�n

x,�n–1
x
))
d
(
�n

x,�n–1
x
)

– α
(
d
(
�n

x,�n–1
x
))
d
(
�n+1

x,�n
x
)

+
[
1 – α

(
d
(
�n

x,�n–1
x
))]

d
(
�n

x,�n–1
x
)

=
(
1 + α

(
d
(
�n

x,�n–1
x
)))

d
(
�n

x,�n–1
x
)

– α
(
d
(
�n

x,�n–1
x
))
d
(
�n+1

x,�n
x
)
,

which also implies that d(�n+1x,�nx) ≤ d(�nx,�n–1x).
Hence {d(�n+1x,�nx)} is a decreasing sequence. �

Proposition 2.3 Let � :
⋃m

i=1 Gi → ⋃m
i=1 Gi be an alternative p-contraction. Then, for each

x ∈ ⋃m
i=1 Gi, the sequence {d(�n+1x,�nx)}n is convergent.

Proof The sentence follows by Lemma 2.2 taking into account that {d(�n+1x,�nx)}n is a
sequence of nonnegative numbers. �

Proposition 2.4 Let � :
⋃m

i=1 Gi → ⋃m
i=1 Gi be an alternative p-contraction. Then, for ev-

ery x ∈ ⋃m
i=1 Gi, we have

lim
n→∞d

(
�n+1

x,�n
x
) ∈ {

d(Gα ,Gβ )
}

1≤α 	=β≤m.

Proof Assume that �nx ∈ Gi(n), �n+1x ∈ Gi(n+1) for some i(n), i(n + 1) ∈ {1, 2, . . . , m}. Since
� is an alternative map, it follows that �n+1x ∈ ⋃

j 	=i(n) Gj, and so we can suppose that i(n) 	=
i(n + 1).

Consider the right-continuous map α : [0,∞) → (0, 1) such that (3) is satisfied for
(�n+1x,�nx). One has

d
(
�n+2

x,�n+1
x
)

= d
(
��n+1

x,��n
x
)

(5)

≤ α
(
d
(
�n+1

x,�n
x
))(

d
(
�n+1

x,�n
x
)

+
∣
∣d

(
�n+1

x,�n+2
x
)

– d
(
�n

x,�n+1
x
)∣
∣
)

+
[
1 – α

(
d
(
�n+1

x,�n
x
))]

d(Gi(n+1),Gi(n))

= 2α
(
d
(
�n+1

x,�n
x
))
d
(
�n+1

x,�n
x
)

– α
(
d
(
�n+1

x,�n
x
))
d
(
�n+1

x,�n+2
x
)

+
[
1 – α

(
d
(
�n+1

x,�n
x
))]

d(Gi(n+1),Gi(n)).

On taking an upper limit on the both sides of (5) and c = limn→∞ d(�n+1x,�nx), we obtain

c ≤ α(c) · c +
(
1 – α(c)

)
lim sup

n→∞
d(Gi(n+1),Gi(n)) ⇔ c ≤ lim sup

n→∞
d(Gi(n+1),Gi(n)). (6)

For every n ∈N, since �nx ∈Gi(n), �n+1x ∈ Gi(n+1), we have d(Gi(n+1),Gi(n)) ≤ d(�n+1x,�nx)
and

lim sup
n→∞

d(Gi(n+1),Gi(n)) ≤ lim sup
n→∞

d
(
�n+1

x,�n
x
)

= c. (7)

By (5) and (7), one obtains

c = lim
n→∞ supd(Gi(n+1),Gi(n)). (8)

Since the family {Gi}m
i=1 has at most m(m–1)

2 elements, it follows that lim supn→∞ d(Gi(n+1),
Gi(n)) = d(Gα ,Gβ ) for some 1 ≤ α 	= β ≤ m. Consequently, c = d(Gα ,Gβ ). �
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Proposition 2.5 Assume that Gi, i = 1, 2, . . . , m, are subsets of W and � :
⋃m

i=1 Gi →
⋃m

i=1 Gi is an alternative p-contraction. If there exists l ∈ N such that limk→∞ �nk +rx = pr(x),
r = 0, 1, 2, . . . , l, for some x ∈ W and some subsequence {nk} ⊂ N, then the following condi-
tions are equivalent:

(i) d(p0(x), p1(x)) ≤ limn→∞ d(�nx,�n+1x);
(ii) d(p0(x), p1(x)) = limn→∞ d(�nx,�n+1x);

(iii) d(pl(x), pl+1(x)) ≤ · · · ≤ d(p2(x), p1(x)) ≤ d(p1(x), p0(x)) ≤ limn→∞ d(�nx,�n+1x);
(iv) d(pl(x), pl+1(x)) = · · · = d(p2(x), p1(x)) = d(p1(x), p0(x)) = limn→∞ d(�nx,�n+1x).

Proof It is straightforward to show that (ii) ⇒ (i), (iv) ⇒ (iii), (iv) ⇒ (ii) and (iii) ⇒ (i).
We now prove that (i) ⇒ (iv). Since, by Lemma 2.2, {d(�nx,�n+1x)}n is a decreasing se-

quence, it follows that

d
(
�n

x,�n+1
x
) ≤ d

(
�nk +l

x,�nk +l–1
x
) ≤ · · · ≤ d

(
�nk +2

x,�nk +1
x
)

(9)

≤ d
(
�nk +1

x,�nk x
)
, ∀n ≥ nk .

Since pr(x) = limk→∞ �nk +rx, r = 0, 1, 2, . . . , l, passing the limit in (9), we get

lim
n→∞d

(
�n

x,�n+1
x
) ≤ d

(
pl(x), pl–1(x)

) ≤ · · · ≤ d
(
p2(x), p1(x)

) ≤ d
(
p1(x), p0(x)

)
. (10)

Hence, combining (10) and condition (i), we obtain

d
(
pl(x), pl–1(x)

)
= · · · = d

(
p2(x), p1(x)

)
= d

(
p1(x), p0(x)

)
= lim

n→∞d
(
�n

x,�n+1
x
)
. �

Proposition 2.6 Suppose that the setsGi, i = 1, . . . , m, are closed and satisfy the alternative
UC condition, and � :

⋃m
i=1 Gi → ⋃m

i=1 Gi is an alternative p-contraction. If there exist
x ∈ W and a subsequence {nk} ⊂ N such that pr(x) = limk→∞ �nk +rx, r = 0, 1, 2, . . . , m, with
d(p0(x), p1(x)) ≤ limn→∞ d(�nx,�n+1x), then one can find s, t ∈ {0, 1, . . . , m}, t ≥ s + 2, such
that ps(x) = pt(x).

Proof Let x ∈W as in hypothesis. By Proposition 2.5, we have

d
(
pm(x), pm–1(x)

)
= · · · = d

(
p2(x), p1(x)

)
= d

(
p1(x), p0(x)

)
= lim

n→∞d
(
�n

x,�n+1
x
)
.

Since p0(x), p1(x), . . . , pm(x) ∈ ⋃m
i=1 Gi, the cardinal number of {pi(x)}m

i=0 is m + 1 and the car-
dinal number of {Gi}m

i=1 is m, by the pigeonhole principle, there exist two distinct numbers
s, t ∈ {0, 1, 2, . . . , m} such that ps(x), pt(x) ∈Gj for some j. Without loss of generality, we as-
sume that s < t. Since � is an alternative map and ps(x) ∈ Gj, it follows that ps+1(x) ∈ Gk ,
k 	= j. Hence, to have pt(x) ∈ Gj, it is necessary that t ≥ s + 2.

On the other hand,

d
(
pt(x), pt–1(x)

)
= · · · = d

(
ps+1(x), ps(x)

)
= lim

n→∞d
(
�n

x,�n+1
x
)
. (11)

By Proposition 2.4, we have limn→∞ d(�nx,�n+1x) = d(Gα ,Gβ ) for some Gα ,Gβ ∈ {Gi}m
i=1.

So, by (11) and the alternative UC condition, we have ps(x) = pt(x). �
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Proposition 2.7 Assume thatGi, i = 1, 2, . . . , m, are closed and � :
⋃m

i=1 Gi → ⋃m
i=1 Gi is an

alternative p-contraction. If, for some x ∈ ⋃m
i=1 Gi and some subsequence {nk}k of N, there

exists limk→∞ �nk x, then

lim
k→∞

�nk +1
x = �

(
lim

k→∞
�nk x

)
.

Proof Let x ∈ ⋃m
i=1 Gi and {nk} ⊂ N be such that ω := limk→∞ �nk x exists. We have

{�nk x}∞k=1 ⊂ {Gi}m
i=1. Since

⋃m
i=1 Gi is closed, it follows that limk→∞ �nk x ∈ Gr for some

r ∈ {1, . . . , m}. By the pigeonhole principle, we can choose a subsequence {nkl} of {nk} and
s ∈ {1, . . . , m} such that �

nkl x ∈Gs for all l ∈N. Also, liml→∞ �
nkl x exists and

lim
l→∞

�
nkl x = lim

k→∞
�nk x = ω. (12)

It follows that

d(Gr ,Gs) ≤ d
(
ω,�nkl x

)
, ∀l ∈N. (13)

Taking into account the properties of the function α in Definition 2.1 and by (3), (13), and
(12), we obtain

lim
l→∞

d
(
�ω,�nkl +1

x
)

≤ lim
l→∞

α
(
d
(
ω,�nkl x

))(
d
(
ω,�nkl x

)
+

∣
∣d(ω,�ω) – d

(
�

nkl x,�nkl +1
x
)∣
∣
)

+ lim
l→∞

[
1 – α

(
d
(
ω,�nkl x

))]
d(Gr ,Gs)

≤ lim
l→∞

α
(
d
(
ω,�nkl x

))(
d
(
ω,�nkl x

)
+

∣
∣d(ω,�ω) – d

(
�

nkl x,�nkl +1
x
)∣
∣
)

+ lim
l→∞

[
1 – α

(
d
(
ω,�nkl x

))]
d
(
ω,�nkl x

)

≤ lim
l→∞

α
(
d
(
ω,�nkl x

))∣
∣d(ω,�ω) – c

∣
∣ + lim

l→∞
[
1 – α

(
d
(
ω,�nkl x

))]
lim

l→∞
d
(
ω,�nkl x

)

≤ lim
l→∞

d
(
ω,�nkl x

)

= 0,

where we denoted c = liml→∞ d(�nkl x,�nkl +1
x) according to Proposition 2.3.

The conclusion now follows from (12). The proof is complete. �

Proposition 2.8 Assume that Gi, i = 1, 2, . . . , m, are closed and � :
⋃m

i=1 Gi → ⋃m
i=1 Gi is

an alternative p-contraction. If, for every x ∈ ⋃m
i=1 Gi, one can find a subsequence {nk} of

N such that there exists p0(x) = limk→∞ �nk x, then there exist pr(x) = limk→∞ �nk +rx for r =
1, 2, . . . , m and pr(x) = �rp0(x).

Proof From Proposition 2.7 it follows that, for every r = 1, 2, . . . , m,

pr(x) = lim
k→∞

�nk +r
x

= lim
k→∞

�
(
�nk +r–1

x
)
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= �
(

lim
k→∞

(
�nk +r–1

x
))

= �pr–1(x).

By induction, we infer that pr(x) = �rp0(x). �

3 Best proximity point for alternative p-contractions
Chen [11] defined the best proximity point of an alternative map as follows. We assume
that we are in the context of Sect. 2.

Definition 3.1 [11] An element x∗ ∈ W is called a best proximity point of an alternative
map � if there exist a positive integer l ≥ 2, and r0, r1, . . . , rl–1 ∈ {1, . . . , m} such that �jx∗ ∈
Grj , j = 0, 1, . . . , l – 1, (where �0x∗ = x∗) satisfying the following three conditions:

1. x∗ = �lx∗;
2. d(�jx∗,�j+1x∗) = d(Grj ,Grj+1 ), j = 0, 1, 2, . . . , l – 1;
3. d(Gr0 ,Gr1 ) = d(Gr1 ,Gr2 ) = · · · = d(Grl–1 ,Gr0 ).

We now present some best proximity point results for alternative p-contractions.

Theorem 3.2 Let (W,d) be a metric space and {Gi}m
i=1 be a family of nonempty closed

subsets of W satisfying alternative UC condition. Suppose that � :
⋃m

i=1 Gi → ⋃m
i=1 Gi is an

alternative p-contraction. If there exist x ∈ ⋃m
i=1 Gi and a subsequence {nk} of N such that

limk→∞ �nk x = p0(x), then there exist some best proximity points of �.

Proof Note that the existence of pj(x) = limk→∞ �nk +j, j = 1, . . . , m, follows from Proposi-
tion 2.7.

From the given assumptions and Propositions 2.3, 2.7, 2.8, we get

d
(
p0(x),�p0(x)

)
= lim

k→∞
d
(
�nk x,�nk +1

x
)

= lim
n→∞d

(
�n

x,�n+1
x
)

and

pj(x) = �jp0(x), j = 1, 2, . . . , m.

Again, by Proposition 2.6, we have

ps(x) = pt(x) for some s, t ∈ {1, . . . , m}, s + 2 ≤ t. (14)

Moreover, by Proposition 2.5, we obtain

d
(
ps(x), ps+1(x)

)
= d

(
ps+1(x), ps+2(x)

)
= · · · = d

(
pt–1(x), pt(x)

)
= lim

n→∞d
(
�n

x,�n+1
x
)
.

If we set p(x) = ps(x), l = t – s and qj(x) = ps+j(x), j = 1, 2, . . . , l, then l ≥ 2 and one has

qj(x) = ps+j(x) = �jps(x) = �jp(x). (15)
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By (14) and (15), we conclude that

p(x) = ps(x) = pt(x) = �lp(x). (16)

Also, from Proposition 2.4, we have limn→∞ d(�nx,�n+1x) = d(Gα ,Gβ ) for some 1 ≤ α 	=
β ≤ m, which together with Proposition 2.5 implies

d
(
p(x), q1(x)

)
= d

(
q1(x), q2(x)

)
= · · · = d

(
ql–1(x), ql(x)

)
= d(Gα ,Gβ ). (17)

Then, by (15) and (17), one obtains

d
(
p(x),�p(x)

)
= d

(
�p(x),�2p(x)

)
= · · · = d

(
�l–1p(x),�lp(x)

)
= d(Gα ,Gβ ). (18)

Let �jp(x) ∈ Grj for some Grj ∈ {Gi}m
i=1, j ∈ {0, 1, . . . , l}. Note that �lp(x) = p(x) ∈ Gr0 ,

�l+1p(x) ∈ Gr1 , so one can write rl := r0, rl+1 := r1. We have

d
(
�j+2p(x),�j+1p(x)

)

≤ α
(
d
(
�j+1p(x),�jp(x)

))[
d
(
�j+1p(x),�jp(x)

)

+
∣
∣d

(
�j+1p(x),�j+2p(x)

)
– d

(
�jp(x),�j+1p(x)

)∣
∣
]

+
[
1 – α

(
d
(
�j+1p(x),�jp(x)

))]
d(Grj+1 ,Grj )

⇒ d(Gα ,Gβ ) ≤ α
(
d
(
�j+1p(x),�jp(x)

))
d(Gα ,Gβ )

+
[
1 – α

(
d
(
�j+1p(x),�jp(x)

))]
d(Grj+1 ,Grj )

⇒ [
1 – α

(
d
(
�j+1p(x),�jp(x)

))]
d(Gα ,Gβ )

≤ [
1 – α

(
d
(
�j+1p(x),�jp(x)

))]
d(Grj+1 ,Grj )

⇒ d(Gα ,Gβ ) ≤ d(Grj+1 ,Grj ).

Again, from (18), we have

d(Grj+1 ,Grj ) ≤ d
(
�j+1p(x),�jp(x)

)
= d(Gα ,Gβ ).

Hence

d(Grj+1 ,Grj ) = d
(
�j+1p(x),�jp(x)

)
(19)

for j = 0, 1, . . . , l. By (16), (18), and (19), we conclude that p(x) is a best proximity point
of �. �

Theorem 3.3 Let (W,d) be a complete metric space. Suppose that the collection {Gi}m
i=1

of nonempty closed subsets of W satisfies the alternative UC condition and � :
⋃m

i=1 Gi →
⋃m

i=1 Gi is an alternative p-contraction. Then there exists a best proximity point of �.

Proof Choose x ∈W. For any subsequence {nk} of N, we have �nk x ∈ ⋃m
i=1 Gi. One can find

a subsequence {nkp}p ⊂ {nk} such that �
nkp x ∈ Gr for all p ∈ N and some r ∈ {1, 2, . . . , m}.
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Moreover, since � is an alternative p-contraction, by Proposition 2.4, we have

lim
p<q→∞d

(
�

nkp x,�nkp +1
x
)

= lim
p<q→∞d

(
�

nkp +1
x,�nkp +2

x
)

= · · ·
= lim

p<q→∞d
(
�

nkq –1
x,�nkq x

)

= lim
n→∞d

(
�n+1

x,�n
x
)

= d(Gα ,Gβ )

for some Gα ,Gβ ∈ {Gi}m
i=1.

By alternative UC condition, we deduce that limp,q→∞ d(�nkp x,�nkq x) = 0, which implies
that {�nkp x}p is a Cauchy sequence. Due to the completeness of W, there exists z ∈W such
that limp→∞ �

nkp x = z. Therefore, the existence of the fixed point of � follows using similar
arguments as in the proof of Theorem 3.2. �

Corollary 3.4 Let (W,d) be a compact metric space. Suppose that the collection {Gi}m
i=1

of nonempty closed subsets of W satisfies the alternative UC condition and � :
⋃m

i=1 Gi →
⋃m

i=1 Gi is an alternative p-contraction. Then there exists a best proximity point of �.

Proof Since every compact metric space is complete, the conclusion follows from Theo-
rem 3.3. �

Example 3.5 Let W = R endowed with the Euclidean metric d(x,y) = |x–y| and a family of
subsets {Gi}4

i=1 given by G1 = {2, 3, . . . , n, . . .}, G2 = {–2, –3, . . . , –n, . . .}, G3 = {0}, G4 = {1}.
Define � :

⋃4
i=1 Gi → ⋃4

i=1 Gi by

�x =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–x, x ∈G1,

[ –x+1
2 ], x ∈G2,

1, x ∈G3,

0, x ∈G4

and α : [0,∞) → [0, 1) by α(t) = t
1+t , where [ ] means the integer part. Then:

a) � has no fixed points, hence it is not a p-contraction on the complete metric space
(Z \ {–1},d);

b) � is an alternative p-contraction;
c) the family {Gi}4

i=1 satisfies the alternative UC condition;
d) � has a best proximity point.

Proof a) By definition it is clear that � has no fixed points, hence, according to Theo-
rem 1.12, it is not p-contraction.

b) It is also obvious that �(Gi) ⊂ ⋃
j 	=i Gj for all i = 1, . . . , 4, so � is an alternative map.

Let us consider x,y ∈ ⋃4
i=1 Gi. If x = y, then (3) is trivially verified.
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Assume that x 	= y.
We distinguish the following cases:
1. If x,y ∈ G1, then d(�x,�y) = |y – x|, d(x,y) + |d(x,�x) – d(y,�y)| = |x – y| + |2x – 2y| =

3|x – y|.
So

α
(
d(x,y)

)(
d(x,y) +

∣
∣d(x,�x) – d(y,�y)

∣
∣
)

=
3|x – y|2

1 + |x – y| .

To prove (3), it is enough to see that

|x – y| ≤ 3|x – y|2
1 + |x – y| ⇔ |x – y| + 1 ≤ 3|x – y| ⇔ |x – y| ≥ 1

2
.

2. Let x,y ∈G2 and, without loss of generality, we can assume that x < y. Then y– x– 1 ≥
0.

2.1. If x is even, y is odd, one has

|�x – �y| ≤ α
(|y – x|)

(

|y – x| +
∣
∣
∣
∣–

3x
2

+
3y – 1

2

∣
∣
∣
∣

)

⇔ –x + y – 1
2

≤ α(y – x)
(

(y – x) +
1
2

(–3x + 3y – 1)
)

⇔ y – x – 1 ≤ 5α(y – x)(y – x) – α(y – x)

0 ≤ (
5(y – x) – (y – x) – 1

)
(y – x) + 1

0 ≤ (
4(y – x – 1) + 3

)
(y – x) + 1,

which is obvious.
2.2. If x is odd and y is even, then (3) is equivalent to

|�x – �y| ≤ α(y – x)
(

(y – x) +
∣
∣
∣
∣
–3x + 1

2
+

3y
2

∣
∣
∣
∣

)

⇔ y – x + 1
2

≤ α(y – x)
(

(y – x) +
1
2
(
3(y – x) + 1

)
)

⇔ 1 ≤ (
5α(y – x) – 1

)
(y – x) + α(y – x)

⇔ 0 ≤ (y – x)(4y – 4x – 1) – 1

⇔ 0 ≤ (y – x)
(
4(y – x – 1) + 3

)
– 1,

which is also obvious.
The other subcases, where both x and y are odd or even, are simple and treated analo-

gously.
3. If x ∈G1, y ∈G2, then one has d(G1,G2) = 4 and the following subcases:
3.1. If y is even, then x – y ≥ 4 and

|�x – �y| = x –
y

2
,
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d(x,y) +
∣
∣d(x,�x) – d(y,�y)

∣
∣ = |x – y| +

∣
∣
∣
∣2x +

3
2
y

∣
∣
∣
∣

= (x – y) +
1
2
|4x + 3y|.

We need to show that

2x – y ≤ α(x – y)
(
2(x – y) + |4x + 3y|) + 8

(
1 – α(x – y)

)
. (20)

3.1.1. 4x+ 3y ≥ 0 ⇔ –3y ≤ 4x ⇔ 6x– 3y ≤ 10x. To prove (20), it is sufficient to show that

10x ≤ 3α(x – y)
(
2(x – y) + 4x + 3y

)
+ 24

(
1 – α(x – y)

)

⇔ 10x ≤ 3(x – y)(6x + y) + 24
x – y + 1

⇔ 10x(x – y) + 10x ≤ (x – y)(18x + 3y) + 24

⇔ 10x ≤ (x – y)(8x + 3y) + 24 = (x – y)(4x + 3y) + 4x(x – y) + 24

⇔ 0 ≤ (x – y)(4x + 3y) + 2x
(
2(x – y) – 5

)
+ 24,

which is obvious as a sum of positive numbers.
3.1.2. 4x + 3y < 0 ⇔ 4x – 2y≤ –5y. We will show as above that

–5y ≤ 2α(x – y)
(
2(x – y) – (4x + 3y)

)
+ 16

(
1 – α(x – y)

)

⇔ –5y ≤ (x – y)(–4x – 10y) + 16
x – y + 1

⇔ –5y(x – y) – 5y ≤ (x – y)(–4x – 10y) + 16

⇔ –5y ≤ (x – y)(–4x – 3y) – 2y(x – y) + 16

⇔ 0 ≤ (x – y)(–4x – 3y) +
(
5 – 2(x – y)

)
y + 16.

3.2. If y is odd, then x – y ≥ 5 and, after some simple computations, (3) is equivalent to

2x – y + 1 ≤ α(x – y)
(
2(x – y) + |4x + 3y – 1|) + 8

(
1 – α(x – y)

)
. (21)

3.2.1. If 4x + 3y – 1 ≥ 0, then 6x – 3y + 3 ≤ 10x + 2 and, to prove (21), it suffices to show
that

10x + 2 ≤ 3α(x – y)
(
2(x – y) + 4x + 3y – 1

)
+ 24

(
1 – α(x – y)

)
.

This is equivalent to

10x ≤ 3(x – y)(6x + y – 1) – 2(x – y) + 24
x – y + 1

⇔ 10x ≤ (x – y)(8x + 3y – 5) + 24

⇔ 0 ≤ (x – y)(4x + 3y – 1) + 4(x – 1)(x – y) – 10x + 24

⇔ 0 ≤ (x – y)(4x + 3y – 1) + 4(x – 1)(x – y – 5) + 10(x – 2) + 24,

which is obvious.
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3.2.2. If 4x + 3y – 1 < 0, then 4x – 2y + 2 < –5y + 3. To establish (21), we will prove that

–5y + 3 ≤ 2α(x – y)
(
2(x – y) – 4x – 3y + 1

)
+ 16

(
1 – α(x – y)

)
.

One has

–5y + 3 ≤ 2(x – y)(–2x – 5y + 1) + 16
x – y + 1

⇔ –5y ≤ (x – y)(–4x – 5y – 1) + 13

⇔ 0 ≥ (x – y)(4x + 3y – 1) + 2(x – y – 5)(y + 1) + 5y – 3,

obvious.
4. If x ∈G1, y ∈G3, one has d(G1,G3) = 2, |�x – �y| = x + 1 and

α
(
d(x,y)

)(
d(x,y) +

∣
∣d(x,�x) – d(y,�y)

∣
∣
)

+
(
1 – α

(
d(x,y)

))
d(G1,G3)

= α
(|x|)(|x| + |2x – 1|) + 2

(
1 – α

(|x|))

=
3x2 – x + 2

1 + x
.

Thus (3) is equivalent to

1 + x ≤ 3x2 – x + 2
1 + x

⇔ 0 ≤ 2x2 – 3x + 1

⇔ 0 ≤ 2(x – 1)
(

x –
1
2

)

.

5. If x ∈G1, y ∈G4, we have d(G1,G4) = 1, d(�x,�y) = x, d(x,y) = x – y = x – 1.
We have

α
(
d(x,y)

)(
d(x,y) +

∣
∣d(x,�x) – d(y,�y)

∣
∣
)

+
(
1 – α

(
d(x,y)

))
d(G1,G4)

=
|x – 1|(|x – 1| + |2x – 1|) + 1

1 + |x – 1|

=
3(x2 – x + 1)

x
.

Thus (3) is equivalent to

0 ≤ 2x2 – 3x + 3,

which holds for all x.
6. If x ∈G2, y ∈G3, we have y = 0 and d(G2,G3) = 2.
6.1. Assume that x is even. Then

α
(
d(x,y)

)(
d(x,y) +

∣
∣d(x,�x) – d(y,�y)

∣
∣
)

+
(
1 – α

(
d(x,y)

))
d(G2,G3)

=
|x|

1 + |x|
(

|x| +
∣
∣
∣
∣–

3x
2

– 1
∣
∣
∣
∣

)

+
2

1 + |x|
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=
–x

1 – x

(

–
5x
2

– 1
)

+
2

1 – x

=
5x2

2 + x + 2
1 – x

.

Thus (3) is equivalent to

(–2 – x)(1 – x) ≤ 5x2 + 2x + 4

⇔ 0 ≤ 4x2 + x + 6,

which holds for all x.
6.2. Assume that x is odd. Then, as before,

|�x – �y| ≤ α(y – x)[(y – x) +
∣
∣
∣
∣

∣
∣
∣
∣
–x + 1

2

∣
∣
∣
∣ – 1

∣
∣
∣
∣ + 2

(
1 – α(y – x)

)

⇔ –
x + 1

2
≤ –α(–x)x –

α(–x)
2

(3x – 1) + 2
(
1 – α(–x)

)

⇔ 0 ≤ 4x2 – x + 5.

7. If x ∈G2, y ∈G4, we have y = 1, d(G2,G4) = 3.
7.1. If x is even, then �x = –x

2 and (3) is equivalent to

–x
2

≤ α(1 – x)
(

(1 – x) +
∣
∣
∣
∣
–3x

2
– 1

∣
∣
∣
∣

)

+ 3
(
1 – α(1 – x)

)

⇔ –x ≤ –5(1 – x)x + 6
2 – x

⇔ 0 ≤ 4x2 – 3x + 6,

which is true for all x.
7.2. If x is odd, an easy computation similar to those above shows that (3) is verified.
8. The cases x,y ∈ G3 and x,y ∈ G4 are trivial.
Therefore, � is an alternative p-contraction.
c) Let us consider y1

n,y5
n ∈ G1 and y2

n,y3
n,y4

n ∈ ⋃
j 	=1 Gj such that

lim
n

∣
∣y1

n – y
2
n
∣
∣ = lim

n

∣
∣y2

n – y
3
n
∣
∣ = lim

n

∣
∣y3

n – y
4
n
∣
∣ = lim

n

∣
∣y4

n – y
5
n
∣
∣ = 2 = d(G2,G3).

It follows that y1
n = 2, y2

n = 0 ∈ G4, y3
n = –2 ∈ G2, y4

n = 0 ∈ G4, y5
n = 2. Therefore limn y

1
n =

limn y
5
n = 2.

d) The assertion follows from Theorem 3.3. �

Remark 3.6 To establish the existence of best proximity points of the mapping � from the
previous example Theorem 1.10 is inapplicable because, for example, taking some x,y ∈
G1, x 	= y, or some x ∈G1, y ∈G3, relation (1) is not satisfied for any α < 1.

4 Conclusion
This paper presents and investigates the concept of alternative p-contraction, which serves
as a unification of the notions of p-contraction and alternative contraction. By exploring
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the alternative UC property, we establish the existence of the best proximity point for
mappings of this nature. Additionally, we assert that the significance of our main find-
ings extends to both compact spaces and complete metric spaces. To further demonstrate
the effectiveness of our proven result, we provide an illustrative example. Furthermore, it
is worth considering whether similar conclusions can be drawn regarding the existence
of (coupled) best proximity points for other types of contractions concerning alternative
mappings [7, 10, 16]. In a related study, Zhelinski et al. [32] introduced a new type of UC
property known as UC∗ property, which is included into the UC property. It may be pos-
sible to extend our best proximity point results to various types of alternative contractions
under the condition of the UC∗ property.
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