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Abstract
Fractional calculus is a crucial foundation in mathematics and applied sciences,
serving as an extremely valuable tool. Besides, the new hybrid fractional operator,
which combines proportional and Caputo operators, offers better applications in
numerous fields of mathematics and computer sciences. Due to its wide range of
applications, we focus on the proportional Caputo-hybrid operator in this research
article. Firstly, we begin by establishing a novel identity for this operator. Then, based
on the newfound identity, we establish some integral inequalities that are relevant to
the left-hand side of Hermite–Hadamard-type inequalities for the proportional
Caputo-hybrid operator. Furthermore, we show how the results improve upon and
refine many previous findings in the setting of integral inequalities. Later, we present
specific examples together with their related graphs to offer a better understanding
of the newly obtained inequalities. Our results not only extend previous studies but
also provide valuable viewpoints and methods for tackling a wide range of
mathematical and scientific problems.
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1 Introduction
In mathematics, convex analysis holds great importance as it can be applied to numerous
areas such as control theory, optimization theory, energy systems, physics, engineering
applications, economics, and finance. Also, there is a strong relationship between convex
analysis and integral inequalities, and these two concepts complement each other closely
in terms of the properties they provide. One of the most famous inequalities in convex
theory is the Hermite–Hadamard inequality, which was independently investigated by
Charles Hermite and Jacques Hadamard [16, 19]. This inequality can be expressed as fol-
lows:

ψ

(
ζ + ϑ

2

)
≤ 1

ϑ – ζ

∫ ϑ

ζ

ψ(κ) dκ ≤ ψ(ζ ) + ψ(ϑ)
2

, (1)
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where ψ : I → R is a convex function on the interval I of real numbers and ζ ,ϑ ∈ I with
ζ < ϑ . If ψ is concave, then both inequalities in the statement hold in the reverse direction.

The Hermite–Hadamard inequality gives both upper and lower bounds for the average
value of a convex function over a compact interval. This inequality finds many applica-
tions in various fields, including integral calculus, probability theory, statistics, optimiza-
tion, and number theory. Additionally, it is a useful tool for solving physical and engi-
neering problems that require determining function averages. The Hermite–Hadamard
inequality is extensively researched and utilized in different areas of mathematics. As new
problems arise, their applications continue to expand, making them a valuable tool for
solving a broad range of mathematical problems. Also, the Hermite–Hadamard inequal-
ity is characterized by the trapezoidal and midpoint inequalities on its right and left parts.
These categories of inequality have been the focus of researchers’ work. Trapezoid-type
inequalities for the case of convex functions were first established by Dragomir and Agar-
wal in [15], whereas midpoint-type inequalities for the case of convex functions were first
proved by Kırmacı in [25]. Since the appearance of these inequalities, there has been a lot
of activity in this area [2, 8, 21].

Fractional calculus has a significant historical foundation. The beginnings of fractional
calculus can be traced back to the correspondence between Leibniz and L’Hopital. Frac-
tional calculus allows us to describe the behavior of complex systems more accurately,
especially those that exhibit noninteger order dynamics. It extends the concepts of tra-
ditional calculus to include fractional orders. It has gained more importance and has
found applications in various fields of science and engineering. Chu et al. [12] explored a
deterministic-stochastic malnutrition model involving nonlinear perturbation via piece-
wise fractional operators techniques. Also, Chu et al. [11] put forward a numerical ap-
proach for solving an assortment of fractional-order chaotic systems. In the recent times,
fractional calculus is a developing branch of mathematics that plays a significant role in
capturing the dynamics of intricate systems across diverse fields of science and engineer-
ing (see [28, 30, 31, 33]) because of the new fractional integral and derivative such as
Caputo–Fabrizio [10], Atangana–Baleanu [5], tempered [34], etc.

The following is the definition of Riemann–Liouville integral operators, which are one
of the fundamental fractional integral operators [24]:

Definition 1 For ψ ∈ L1[ζ ,ϑ], the Riemann–Liouville integrals of order � > 0 are given
by

J�

ζ+ψ(κ) =
1

�(�)

∫
κ

ζ

(κ – s)�–1ψ(s) ds, κ > ζ ,

and

J�

ϑ–ψ(κ) =
1

�(�)

∫ ϑ

κ

(s – κ)�–1ψ(s) ds, κ < ϑ .

Here, �(�) is the gamma function and J0
ζ+ψ(κ) = J0

ϑ–ψ(κ) = ψ(κ). Obviously, Riemann–
Liouville integrals will be equal to classical integrals for the condition � = 1.

Sarıkaya and Yıldırım [38] presented the different representation of the Hermite–
Hadamard inequality in terms of fractional integrals in the following manner.
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Theorem 1 Let ψ : [ζ ,ϑ] → R be a function with 0 ≤ ζ < ϑ and ψ ∈ L1[ζ ,ϑ]. If ψ is a
convex function on [ζ ,ϑ], then the following inequalities for fractional integrals hold:

ψ

(
ζ + ϑ

2

)
≤ �(� + 1)

2(ϑ – ζ )�
[
J�

( ζ+ϑ
2 )+

ψ(ϑ) + J�

( ζ+ϑ
2 )–

ψ(ζ )
] ≤ ψ(ζ ) + ψ(ϑ)

2

with � > 0.

Later, Sarıkaya et al. [37] and Iqbal et al. [22] introduced several inequalities of fractional
midpoint-type inequalities and the trapezoid-type inequalities for the convex functions,
respectively. For other papers about fractional integral inequalities, see [7, 9, 17, 26] and
the references cited therein.

Another significant definition in fractional analysis is the following [35].

Definition 2 Let � > 0 and � /∈ {1, 2, . . .}, n = [�] + 1, ψ ∈ ACn[ζ ,ϑ], the space of functions
having n – th derivatives is absolutely continuous. The left-sided and right-sided Caputo
fractional derivatives of order � are defined as follows:

CD�

ζ+ψ(κ) =
1

�(n – �)

∫
κ

ζ

(κ – s)n–�–1ψ (n)(s) ds, κ > ζ ,

and

CD�

ϑ–ψ(κ) =
1

�(n – �)

∫ ϑ

κ

(s – κ)n–�–1ψ (n)(s) ds, κ < ϑ .

If � = n ∈ {1, 2, 3, . . .} and the usual derivative ψ (n)(κ) of order n exists, then the Caputo
fractional derivative CD�

ζ+ψ(κ) coincides with ψ (n)(κ), whereas CD�

ϑ–ψ(κ) with exactness
to a constant multiplier (–1)n. For n = 1 and � = 0, we have CD�

ζ+ψ(κ) = CD�

ϑ–ψ(κ) = ψ(κ).

The Caputo derivative is defined as the application of a fractional integral to a standard
derivative of the function, whereas the Riemann–Liouville fractional derivative is obtained
by differentiating the fractional integral of a function with respect to its independent vari-
able of order n. The Caputo fractional derivative necessitates more suitable initial con-
ditions in contrast to the conventional Riemann–Liouville fractional derivative consider-
ing fractional differential equations [14]. Al-Qurashi et al. [1] introduced a novel discrete,
nonequilibrium, memristor-based Hindmarsh–Rose neuron (HRN) with the Caputo frac-
tional difference scheme. Alsharidi et al. [3], utilizing a discrete Caputo fractional deriva-
tive, created the permanent magnet synchronous generator systems fractional-order con-
cept. Besides, the operator of proportional derivative denoted as PD�ψ(κ) is given by the
equation [4]

PD�ψ(s) = K1(�, s)ψ(s) + K0(�, s)ψ ′(s).

In this equation, K1 and K0 are the functions with respect to � ∈ [0, 1] and s ∈ R subject
to certain conditions, and also, the function ψ is differentiable with respect to s ∈ R. It is
connected to the extensive and growing field of conformable derivatives. The use of this
operator is a natural occurrence in the field of control theory. The importance of research
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conducted on both the Caputo derivative and the proportional derivative has increased
significantly in recent years [18, 20, 23, 27, 29, 32, 39].

In [6], Baleanu et al. gave the following definition, where they merge the concepts of
Caputo derivative and proportional derivative in a novel manner, resulting in a hybrid
fractional operator that can be represented as a linear combination of Caputo fractional
derivative and Riemann–Liouville fractional integral.

Definition 3 Let ψ : I ⊂ R
+ → R be a differentiable function on I◦ and ψ , ψ ′ be locally

L1(I). Then the proportional Caputo-hybrid operator may be defined as follows:

CD�

ζ+ψ(s) =
1

�(1 – �)

∫ s

0

[
K1(�, τ )ψ(τ ) + K0(�, τ )ψ ′(τ )

]
(s – τ )–� dτ ,

where � ∈ [0, 1] and K1 and K0 are functions that satisfy the following conditions:

lim
�→0+

K0(�, τ ) = 0; lim
�→1

K0(�, τ ) = 1; K0(�, τ ) �= 0, � ∈ (0, 1];

lim
�→0

K1(�, τ ) = 0; lim
�→1–

K1(�, τ ) = 1; K1(�, τ ) �= 0, � ∈ [0, 1).

On the other hand, Sarıkaya proposed the new definition by utilizing different K1 and
K0 functions in the light of Definition 3 and also gave the Hermite–Hadamard inequality
using this definition in [36] as follows:

Definition 4 Let ψ : I ⊂ R
+ → R be a differentiable function on I◦ and ψ , ψ ′ ∈ L1(I).

The left-sided and right-sided proportional Caputo-hybrid operator of order � are defined
respectively as follows:

PC
ζ+ D�

ϑψ(ϑ) =
1

�(1 – �)

∫ ϑ

ζ

[
K1(�,ϑ – τ )ψ(τ ) + K0(�,ϑ – τ )ψ ′(τ )

]
(ϑ – τ )–� dτ

and

PC
ϑ– D�

ζ ψ(ζ ) =
1

�(1 – �)

∫ ϑ

ζ

[
K1(�, τ – ζ )ψ(τ ) + K0(�, τ – ζ )ψ ′(τ )

]
(τ – ζ )–� dτ ,

where � ∈ [0, 1] and K0(�, τ ) = (1 – �)2τ 1–� and K1(�, τ ) = �2τ� .

Theorem 2 Let ψ : I ⊂R
+ →R be a differentiable function on I◦, the interior of the inter-

val I , where ζ ,ϑ ∈ I◦ with ζ < ϑ , and ψ , ψ ′ be the convex functions on I . Then the following
inequalities hold:

�2(ϑ – ζ )�ψ
(

ζ + ϑ

2

)
+

1
2

(1 – �)(ϑ – ζ )1–�ψ ′
(

ζ + ϑ

2

)

≤ �(1 – �)
2(ϑ – ζ )1–�

[PC
ζ+ D�

ϑψ(ϑ) + PC
ϑ– D�

ζ ψ(ζ )
]

≤ �2(ϑ – ζ )�
[

ψ(ζ ) + ψ(ϑ)
2

]
+ (1 – �)(ϑ – ζ )1–�

[
ψ ′(ζ ) + ψ ′(ϑ)

4

]
.
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Additionally, Demir et al. [13] introduced an alternative formulation of the Hermite–
Hadamard inequality utilizing the Caputo-hybrid operator in a different approach com-
pared to the previous theorem. This can be observed in the following expression.

Theorem 3 Let ψ : I ⊂ R
+ → R be a differentiable function on Io, the interior of the in-

terval I, where ζ ,ϑ ∈ Io satisfying ζ < ϑ , and ψ , ψ ′ be the convex functions on I . Then the
following inequalities are satisfied:

�2(ϑ – ζ )�2–�ψ

(
ζ + ϑ

2

)
+ (1 – �)(ϑ – ζ )1–�2�–2ψ ′

(
ζ + ϑ

2

)

≤ �(1 – �)
2�(ϑ – ζ )–�+1

[
PC
ζ+ D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)
+ PC

ϑ– D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)]

≤ �2(ϑ – ζ )�2–�

[
ψ(ζ ) + ψ(ϑ)

2

]
+ (1 – �)(ϑ – ζ )1–�2�–2

[
ψ ′(ζ ) + ψ ′(ϑ)

2

]
.

The motivation of this paper is to investigate analogous versions of the Hermite–
Hadamard-type inequalities with regard to Riemann integrals by using the proportional
Caputo-hybrid operator. In line with this purpose, we initially present an identity with the
help of the newly defined proportional Caputo-hybrid operator. This identity plays a cru-
cial role in establishing various midpoint-type inequalities. Then, we give many significant
inequalities by utilizing convexity, the Hölder inequality, and the power mean inequality.
Also, to validate our main findings, we provide concrete examples along with graphical il-
lustrations. These results extend and generalize the inequalities derived in previous stud-
ies by considering suitable assumptions of �.

2 Main results
We rely on the following lemma to show our other main findings. We develop various
integral inequalities based on this discovery that relate to the left-hand side of Hermite–
Hadamard-type inequalities for proportional Caputo-hybrid operators.

Lemma 1 Let ψ : I ⊂ R
+ → R be a twice differentiable function on Io, the interior of the

interval I, where ζ ,ϑ ∈ Io satisfying ζ < ϑ , and let ψ ,ψ ′,ψ ′′ ∈ L1[ζ ,ϑ]. Then the following
identity is satisfied:

�2(ϑ – ζ )�+12–�+1
[∫ 1

2

0
sψ ′(

sζ + (1 – s)ϑ
)

ds +
∫ 1

1
2

(s – 1)ψ ′(
sζ + (1 – s)ϑ

)
ds

]
(2)

+ (1 – �)(ϑ – ζ )2–�2�–3

×
∫ 1

0

(
s

2–2� – 1
)[

ψ ′′
(

1 + s

2
ζ +

1 – s

2
ϑ

)
– ψ ′′

(
1 – s

2
ζ +

1 + s

2
ϑ

)]
ds

= –�2(ϑ – ζ )�2–�+1ψ

(
ζ + ϑ

2

)
– (1 – �)(ϑ – ζ )1–�2�–1ψ ′

(
ζ + ϑ

2

)

+
�(1 – �)

2�–1(ϑ – ζ )–�+1

[
PC
ζ+ D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)
+ PC

ϑ– D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)]
.



Demir and Tunç Journal of Inequalities and Applications          (2024) 2024:2 Page 6 of 15

Proof By integration by parts, we have

∫ 1

0
(s – 1)ψ ′

(
1 – s

2
ζ +

1 + s

2
ϑ

)
ds

=
2

ϑ – ζ
ψ

(
ζ + ϑ

2

)
–

2
ϑ – ζ

∫ 1

0
ψ

(
1 – s

2
ζ +

1 + s

2
ϑ

)
ds

and
∫ 1

0

(
s

2–2� – 1
)
ψ ′′

(
1 – s

2
ζ +

1 + s

2
ϑ

)
ds

=
2

ϑ – ζ
ψ ′

(
ζ + ϑ

2

)
–

4(1 – �)
ϑ – ζ

∫ 1

0
s

1–2�ψ ′
(

1 – s

2
ζ +

1 + s

2
ϑ

)
ds.

By utilizing a change of variable, multiplying the outcomes by �2(ϑ – ζ )�+12–�–1 and
(1 – �)(ϑ – ζ )2–�2�–3, and merging them side by side, we attain the following result:

�2(ϑ – ζ )�+12–�–1
∫ 1

0
(s – 1)ψ ′

(
1 – s

2
ζ +

1 + s

2
ϑ

)
ds (3)

+ (1 – �)(ϑ – ζ )2–�2�–3
∫ 1

0

(
s

2–2� – 1
)
ψ ′′

(
1 – s

2
ζ +

1 + s

2
ϑ

)
ds

= �2(ϑ – ζ )�2–�ψ

(
ζ + ϑ

2

)
+ (1 – �)(ϑ – ζ )1–�2�–2ψ ′

(
ζ + ϑ

2

)

–
21–�

(ϑ – ζ )1–�

∫ ϑ

ζ+ϑ
2

[
�2

(
τ –

ζ + ϑ

2

)�

ψ(τ ) + (1 – �)2
(

τ –
ζ + ϑ

2

)1–�

ψ ′(τ )
]

×
(

τ –
ζ + ϑ

2

)–�

dτ .

Another result derived using similar methods is presented here:

�2(ϑ – ζ )�+12–�–1
∫ 1

0
(s – 1)ψ ′

(
1 + s

2
ζ +

1 – s

2
ϑ

)
ds (4)

+ (1 – �)(ϑ – ζ )2–�2�–3
∫ 1

0

(
s

2–2� – 1
)
ψ ′′

(
1 + s

2
ζ +

1 – s

2
ϑ

)
ds

= –�2(ϑ – ζ )�2–�ψ

(
ζ + ϑ

2

)
– (1 – �)(ϑ – ζ )1–�2�–2ψ ′

(
ζ + ϑ

2

)

+
21–�

(ϑ – ζ )1–�

∫ ζ+ϑ
2

ζ

[
�2

(
ζ + ϑ

2
– τ

)�

ψ(τ ) + (1 – �)2
(

ζ + ϑ

2
– τ

)1–�

ψ ′(τ )
]

×
(

ζ + ϑ

2
– τ

)–�

dτ .

Subtracting (4) from (3), we get

�2(ϑ – ζ )�+12–�–1
∫ 1

0
(s – 1)

[
ψ ′

(
1 + s

2
ζ +

1 – s

2
ϑ

)
– ψ ′

(
1 – s

2
ζ +

1 + s

2
ϑ

)]
ds

+ (1 – �)(ϑ – ζ )2–�2�–3
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×
∫ 1

0

(
s

2–2� – 1
)[

ψ ′′
(

1 + s

2
ζ +

1 – s

2
ϑ

)
– ψ ′′

(
1 – s

2
ζ +

1 + s

2
ϑ

)]
ds

= –�2(ϑ – ζ )�2–�+1ψ

(
ζ + ϑ

2

)
– (1 – �)(ϑ – ζ )1–�2�–1ψ ′

(
ζ + ϑ

2

)

+
�(1 – �)

2�–1(ϑ – ζ )–�+1

[
PC
ζ+ D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)
+ PC

ϑ– D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)]
.

Therefore, with the utilization of the equality

∫ 1

0
(s – 1)

[
ψ ′

(
1 + s

2
ζ +

1 – s

2
ϑ

)
– ψ ′

(
1 – s

2
ζ +

1 + s

2
ϑ

)]
ds

= 4
[∫ 1

2

0
sψ ′(

sζ + (1 – s)ϑ
)

ds +
∫ 1

1
2

(s – 1)ψ ′(
sζ + (1 – s)ϑ

)
ds

]
,

we reach the proof ’s conclusion. �

Remark 1 By considering the limit as � → 1 in Lemma 1, it can be deduced that

1
ϑ – ζ

∫ ϑ

ζ

ψ(κ) dκ – ψ

(
ζ + ϑ

2

)

= (ϑ – ζ )
[∫ 1

2

0
sψ ′(

sζ + (1 – s)ϑ
)

ds +
∫ 1

1
2

(s – 1)ψ ′(
sζ + (1 – s)ϑ

)
ds

]
,

as demonstrated by Kırmacı [25].

Corollary 1 When we consider the limiting case of � approaching 0 in Lemma 1, we find
that

(ϑ – ζ )2

8

(∫ 1

0

(
s

2 – 1
)[

ψ ′′
(

1 + s

2
ζ +

1 – s

2
ϑ

)
– ψ ′′

(
1 – s

2
ζ +

1 + s

2
ϑ

)]
ds

)

= –
(ϑ – ζ )

2
ψ ′

(
ζ + ϑ

2

)
+

[
ψ(ϑ) – ψ(ζ )

]

+
2

ϑ – ζ

(∫ ζ+ϑ
2

ζ

ψ(κ) dκ –
∫ ϑ

ζ+ϑ
2

ψ(κ) dκ
)

.

Moreover, by selecting � = 1
2 , equality (2) takes the form

1
ϑ – ζ

{
–ψ

(
ζ + ϑ

2

)
– ψ ′

(
ζ + ϑ

2

)
+

1
ϑ – ζ

[∫ ϑ

ζ

ψ(κ) dκ + ψ(ϑ) – ψ(ζ )
]}

=
∫ 1

2

0
sψ ′(

sζ + (1 – s)ϑ
)

ds +
∫ 1

1
2

(s – 1)ψ ′(
sζ + (1 – s)ϑ

)
ds

+
1
4

∫ 1

0
(s – 1)

[
ψ ′′

(
1 + s

2
ζ +

1 – s

2
ϑ

)
– ψ ′′

(
1 – s

2
ζ +

1 + s

2
ϑ

)]
ds.

Theorem 4 Let ψ : I ⊂R
+ →R be a twice differentiable function on Io, the interior of the

interval I, where ζ ,ϑ ∈ Io satisfying ζ < ϑ , and let ψ ,ψ ′,ψ ′′ ∈ L1[ζ ,ϑ]. If |ψ ′|q and |ψ ′′|q
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are convex on [ζ ,ϑ] for q ≥ 1, then the following inequality holds:

∣∣∣∣ �(1 – �)
2�–1(ϑ – ζ )–�+1

[
PC
ζ+ D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)
+ PC

ϑ– D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)]
(5)

– �2(ϑ – ζ )�2–�+1ψ

(
ζ + ϑ

2

)
– (1 – �)(ϑ – ζ )1–�2�–1ψ ′

(
ζ + ϑ

2

)∣∣∣∣

≤ �2(ϑ – ζ )�+12–�–2
(

1 + 2
1
q

3
1
q

)(∣∣ψ ′(ζ )
∣∣ +

∣∣ψ ′(ϑ)
∣∣)

+ (1 – �)(ϑ – ζ )2–�2�–3
{(

2 – 2�

3 – 2�

) q–1
q

([ |ψ ′′(ζ )|q
2

(
3
2

–
1

3 – 2�
–

1
4 – 2�

)

+
|ψ ′′(ϑ)|q

2

(
1
2

–
1

3 – 2�
+

1
4 – 2�

)] 1
q

+
[ |ψ ′′(ζ )|q

2

(
1
2

–
1

3 – 2�
+

1
4 – 2�

)

+
|ψ ′′(ϑ)|q

2

(
3
2

–
1

3 – 2�
–

1
4 – 2�

)] 1
q
)}

.

Proof To begin with, consider the case where q = 1. By employing the convexity of |ψ ′|
and |ψ ′′|, it follows from Lemma 1 that

∣∣∣∣ �(1 – �)
2�–1(ϑ – ζ )–�+1

[
PC
ζ+ D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)
+ PC

ϑ– D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)]
(6)

– �2(ϑ – ζ )�2–�+1ψ

(
ζ + ϑ

2

)
– (1 – �)(ϑ – ζ )1–�2�–1ψ ′

(
ζ + ϑ

2

)∣∣∣∣

≤ �2(ϑ – ζ )�+12–�+1
[∫ 1

2

0
s
(
s
∣∣ψ ′(ζ )

∣∣ + (1 – s)
∣∣ψ ′(ϑ)

∣∣)ds

+
∫ 1

1
2

(1 – s)
(
s
∣∣ψ ′(ζ )

∣∣ + (1 – s)
∣∣ψ ′(ϑ)

∣∣)ds
]

+ (1 – �)(ϑ – ζ )2–�2�–3
∫ 1

0

(
1 – s

2–2�
)

×
(

1 – s

2
∣∣ψ ′′(ζ )

∣∣ +
1 + s

2
∣∣ψ ′′(ϑ)

∣∣ +
1 + s

2
∣∣ψ ′′(ζ )

∣∣ +
1 – s

2
∣∣ψ ′′(ϑ)

∣∣)ds.

Then, because of

∫ 1
2

0
s

2 ds =
∫ 1

1
2

(1 – s)2 ds =
1

24
,

∫ 1
2

0
s(1 – s) ds =

∫ 1

1
2

(1 – s)sds =
1

12

and

∫ 1

0

(
1 – s

2–2�
)

ds =
2 – 2�

3 – 2�
,
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we have that the expression on the right-hand side of inequality (6) is

�2(ϑ – ζ )�+12–�+1

4

( |ψ ′(ζ )| + |ψ ′(ϑ)|
2

)

+ (1 – �)(ϑ – ζ )2–�2�–2
(

2 – 2�

3 – 2�

)( |ψ ′′(ζ )| + |ψ ′′(ϑ)|
2

)
.

Furthermore, for q > 1, by utilizing Lemma 1, the power mean inequality, and considering
the convexity of |ψ ′|q and |ψ ′′|q, we can conclude

∣∣∣∣ �(1 – �)
2�–1(ϑ – ζ )–�+1

[
PC
ζ+ D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)
+ PC

ϑ– D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)]

– �2(ϑ – ζ )�2–�+1ψ

(
ζ + ϑ

2

)
– (1 – �)(ϑ – ζ )1–�2�–1ψ ′

(
ζ + ϑ

2

)∣∣∣∣

≤ �2(ϑ – ζ )�+12–�+1
{(∫ 1

2

0
sds

) 1
p
(∫ 1

2

0
s
[
s
∣∣ψ ′(ζ )

∣∣q + (1 – s)
∣∣ψ ′(ϑ)

∣∣q]ds
) 1

q

+
(∫ 1

1
2

(1 – s) ds
) 1

p
(∫ 1

1
2

(1 – s)
[
s
∣∣ψ ′(ζ )

∣∣q + (1 – s)
∣∣ψ ′(ϑ)

∣∣q]ds
) 1

q
}

+ (1 – �)(ϑ – ζ )2–�2�–3
{(∫ 1

0

(
1 – s

2–2�
)

ds
) 1

p

×
(∫ 1

0

(
1 – s

2–2�
)[1 + s

2
∣∣ψ ′′(ζ )

∣∣q +
1 – s

2
∣∣ψ ′′(ϑ)

∣∣q
]

ds
) 1

q

+
(∫ 1

0

(
1 – s

2–2�
)

ds
) 1

p

×
(∫ 1

0

(
1 – s

2–2�
)[1 – s

2
∣∣ψ ′′(ζ )

∣∣q +
1 + s

2
∣∣ψ ′′(ϑ)

∣∣q
]

ds
) 1

q
}

.

Thus, since

∫ 1
2

0
sds =

∫ 1

1
2

(1 – s) ds =
1
8

,

∫ 1

0

(
1 – s

2–2�
)
(1 + s) ds =

3
2

–
1

3 – 2�
–

1
4 – 2�

,

and

∫ 1

0

(
1 – s

2–2�
)
(1 – s) ds =

1
2

–
1

3 – 2�
+

1
4 – 2�

,

inequality (5) that we aimed to prove holds true. �
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Remark 2 By taking the limit as � → 1 and setting q = 1 in Theorem 4, we find that

∣∣∣∣ 1
ϑ – ζ

∫ ϑ

ζ

ψ(κ) dκ – ψ

(
ζ + ϑ

2

)∣∣∣∣ ≤ (ϑ – ζ )
8

(∣∣ψ ′(ζ )
∣∣ +

∣∣ψ ′(ϑ)
∣∣),

which was proved by Kırmacı [25].

Corollary 2 As � approaches 0 and for q ≥ 1 in Theorem 4, we obtain

∣∣∣∣ψ(ϑ) – ψ(ζ ) +
2

ϑ – ζ

(∫ ζ+ϑ
2

ζ

ψ(κ) dκ –
∫ ϑ

ζ+ϑ
2

ψ(κ) dκ
)

–
(ϑ – ζ )

2
ψ ′

(
ζ + ϑ

2

)∣∣∣∣

≤ (ϑ – ζ )2

8

(
2
3

) q–1
q

[(
11
12

∣∣ψ ′′(ζ )
∣∣q +

5
12

∣∣ψ ′′(ϑ)
∣∣q

)1/q

+
(

5
12

∣∣ψ ′′(ζ )
∣∣q +

11
12

∣∣ψ ′′(ϑ)
∣∣q

)1/q]
.

Additionally, as � tends to 1 and for q ≥ 1, the inequality stated in Theorem 4 simplifies to

∣∣∣∣ 1
ϑ – ζ

∫ ϑ

ζ

ψ(κ) dκ – ψ

(
ζ + ϑ

2

)∣∣∣∣

≤ (ϑ – ζ )
8

(
1 + 2

1
q

3
1
q

)(∣∣ψ ′(ζ )
∣∣ +

∣∣ψ ′(ϑ)
∣∣).

Now, as an illustration of our theorem’s applicability, we present an example.

Example 1 If we take the function ψ(κ) = 2κ3 defined on the interval [0, 2], we can eval-
uate the right-hand side of inequality (5) in the following manner:

12�2
(

1 + 2
1
q

3
1
q

)
+

(1 – �)
2

(
2 – 2�

3 – 2�

) q–1
q

× 24

2
1
q

[(
1
2

–
1

3 – 2�
+

1
4 – 2�

) 1
q

+
(

3
2

–
1

3 – 2�
–

1
4 – 2�

) 1
q
]

.

Furthermore, we show that
∣∣∣∣ �(1 – �)
2�–1(ϑ – ζ )–�+1

[
PC
ζ+ D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)
+ PC

ϑ– D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)]

– �2(ϑ – ζ )�2–�+1ψ

(
ζ + ϑ

2

)
– (1 – �)(ϑ – ζ )1–�2�–1ψ ′

(
ζ + ϑ

2

)∣∣∣∣
= 4�2 +

6(1 – �)2

2 – �
.

Figure 1 clearly demonstrates that the left-hand side of inequality (5) is consistently situ-
ated below the right-hand side of this inequality for all � ∈ (0, 1) and q ≥ 1.
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Figure 1 The graph of both sides of inequality (5) depending on � ∈ (0, 1) and q ∈ [1, 3]

Theorem 5 Let ψ : I ⊂R
+ →R be a twice differentiable function on Io, the interior of the

interval I, where ζ ,ϑ ∈ Io satisfying ζ < ϑ , and let ψ ,ψ ′,ψ ′′ ∈ L1[ζ ,ϑ]. If |ψ ′|q and |ψ ′′|q
are convex on [ζ ,ϑ] for q > 1, then the following inequality holds:

∣∣∣∣ �(1 – �)
2�–1(ϑ – ζ )–�+1

[
PC
ζ+ D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)
+ PC

ϑ– D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)]
(7)

– �2(ϑ – ζ )�2–�+1ψ

(
ζ + ϑ

2

)
– (1 – �)(ϑ – ζ )1–�2�–1ψ ′

(
ζ + ϑ

2

)∣∣∣∣

≤ �2(ϑ – ζ )�+12–�– 1
p

(p + 1)
1
p

[( |ψ ′(ζ )|q + 3|ψ ′(ϑ)|q
8

) 1
q

+
(

3|ψ ′(ζ )|q + |ψ ′(ϑ)|q
8

) 1
q
]

+ (1 – �)(ϑ – ζ )2–�2�–3
(

(2 – 2�)p
(2 – 2�)p + 1

) 1
p

×
[( |ψ ′′(ζ )|q + 3|ψ ′′(ϑ)|q

4

) 1
q

+
(

3|ψ ′′(ζ )|q + |ψ ′′(ϑ)|q
4

) 1
q
]

,

where 1
p + 1

q = 1.

Proof Using absolute value in Lemma 1 and applying the well-known Hölder’s inequality
and the convexity of |ψ ′|q, |ψ ′′|q, we get

∣∣∣∣ �(1 – �)
2�–1(ϑ – ζ )–�+1

[
PC
ζ+ D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)
+ PC

ϑ– D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)]
(8)

– �2(ϑ – ζ )�2–�+1ψ

(
ζ + ϑ

2

)
– (1 – �)(ϑ – ζ )1–�2�–1ψ ′

(
ζ + ϑ

2

)∣∣∣∣

≤ �2(ϑ – ζ )�+12–�+1
[(∫ 1

2

0
s

p ds
) 1

p
(∫ 1

2

0

[
s
∣∣ψ ′(ζ )

∣∣q + (1 – s)
∣∣ψ ′(ϑ)

∣∣q]ds
) 1

q

+
(∫ 1

1
2

(1 – s)p ds
) 1

p
(∫ 1

1
2

[
s
∣∣ψ ′(ζ )

∣∣q + (1 – s)
∣∣ψ ′(ϑ)

∣∣q]ds
) 1

q
]
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+ (1 – �)(ϑ – ζ )2–�2�–3 (9)

×
[(∫ 1

0

[
1 – s

2–2�
]p ds

) 1
p
(∫ 1

0

[
1 + s

2
∣∣ψ ′′(ζ )

∣∣q +
1 – s

2
∣∣ψ ′′(ϑ)

∣∣q
]

ds
) 1

q

+
(∫ 1

0

[
1 – s

2–2�
]p ds

) 1
p
(∫ 1

0

[
1 – s

2
∣∣ψ ′′(ζ )

∣∣q +
1 + s

2
∣∣ψ ′′(ϑ)

∣∣q
]

ds
) 1

q
]

.

The integrals in the inequality mentioned above can be assessed by

∫ 1
2

0
s

p ds =
∫ 1

1
2

(1 – s)p ds =
1

2p+1(p + 1)
,

∫ 1
2

0

[
s
∣∣ψ ′(ζ )

∣∣q + (1 – s)
∣∣ψ ′(ϑ)

∣∣q]ds =
|ψ ′(ζ )|q + 3|ψ ′(ϑ)|q

8
,

∫ 1

1
2

[
s
∣∣ψ ′(ζ )

∣∣q + (1 – s)
∣∣ψ ′(ϑ)

∣∣q]ds =
3|ψ ′(ζ )|q + |ψ ′(ϑ)|q

8
∫ 1

0

[
1 – s

2
∣∣ψ ′′(ζ )

∣∣q +
1 + s

2
∣∣ψ ′′(ϑ)

∣∣q
]

ds =
|ψ ′′(ζ )|q + 3|ψ ′′(ϑ)|q

4
,

∫ 1

0

[
1 + s

2
∣∣ψ ′′(ζ )

∣∣q +
1 – s

2
∣∣ψ ′′(ϑ)

∣∣q
]

ds =
3|ψ ′′(ζ )|q + |ψ ′′(ϑ)|q

4
.

Also, using the property that is (A – B)p ≤ Ap – Bp for A > B ≥ 0 and p ≥ 1, we have

∫ 1

0

[
1 – s

2–2�
]p ds≤

∫ 1

0

[
1 – s

(2–2�)p]ds =
(2 – 2�)p

(2 – 2�)p + 1
.

Hence, by substituting the computed integral results into inequality (8), the desired out-
come can be attained. �

Remark 3 In the special case where � approaches 1 in Theorem 5, we obtain

∣∣∣∣ 1
ϑ – ζ

∫ ϑ

ζ

ψ(κ) dκ – ψ

(
ζ + ϑ

2

)∣∣∣∣

≤ (ϑ – ζ )
16

(
4

p + 1

) 1
p {[∣∣ψ ′(ζ )

∣∣q + 3
∣∣ψ ′(ϑ)

∣∣q] 1
q +

[
3
∣∣ψ ′(ζ )

∣∣q +
∣∣ψ ′(ϑ)

∣∣q] 1
q
}

,

which was proved by Kırmacı in [25].

Corollary 3 In the particular case when � tends to 0 in Theorem 5, we obtain

∣∣∣∣ψ(ϑ) – ψ(ζ ) +
2

ϑ – ζ

(∫ ζ+ϑ
2

ζ

ψ(κ) dκ –
∫ ϑ

ζ+ϑ
2

ψ(κ) dκ
)

–
(ϑ – ζ )

2
ψ ′

(
ζ + ϑ

2

)∣∣∣∣

≤ (ϑ – ζ )2

8

(
2p

2p + 1

) 1
p
[( |ψ ′′(ζ )|q + 3|ψ ′′(ϑ)|q

4

) 1
q

+
(

3|ψ ′′(ζ )|q + |ψ ′′(ϑ)|q
4

) 1
q
]

.
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In addition, by choosing � = 1
2 , we get

∣∣∣∣ 1
ϑ – ζ

[∫ ϑ

ζ

ψ(κ) dκ + ψ(ϑ) – ψ(ζ )
]

–
[
ψ

(
ζ + ϑ

2

)
+ ψ ′

(
ζ + ϑ

2

)]∣∣∣∣

≤ (ϑ – ζ )
2

(
1

2(p + 1)

) 1
p
[( |ψ ′(ζ )|q + 3|ψ ′(ϑ)|q

8

) 1
q

+
(

3|ψ ′(ζ )|q + |ψ ′(ϑ)|q
8

) 1
q
]

+
ϑ – ζ

4

(
p

p + 1

) 1
p
[( |ψ ′′(ζ )|q + 3|ψ ′′(ϑ)|q

4

) 1
q

+
(

3|ψ ′′(ζ )|q + |ψ ′′(ϑ)|q
4

) 1
q
]

.

Now, we give an example that proves the validity of the inequality established in Theo-
rem 5 in order to illustrate it.

Example 2 Taking into account the function ψ defined in Example 1, the expression on
the right-hand side of inequality (7) can be evaluated as follows:

24
(

1 + 3
p–1

p

4
p–1

p

)[
�2 1

(p + 1)
1
p

+
(1 – �)

2

(
(2 – 2�)p

(2 – 2�)p + 1

) 1
p
]

.

On the other hand, we know that

∣∣∣∣ �(1 – �)
2�–1(ϑ – ζ )–�+1

[
PC
ζ+ D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)
+ PC

ϑ– D�

( ζ+ϑ
2 )

ψ

(
ζ + ϑ

2

)]

– �2(ϑ – ζ )�2–�+1ψ

(
ζ + ϑ

2

)
– (1 – �)(ϑ – ζ )1–�2�–1ψ ′

(
ζ + ϑ

2

)∣∣∣∣
= 4�2 +

6(1 – �)2

2 – �
.

Therefore, it can be seen from Fig. 2 that the left-hand side of inequality (7) is consistently
lower than the right-hand side for all values of � ∈ (0, 1) and p > 1.

Figure 2 The graph of both sides of inequality (7) depending on � ∈ (0, 1) and p ∈ (1, 3]
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3 Conclusion
Numerous research works have been conducted to optimize the bounds with the aid of
various fractional integral operators in light of recent advancements in the field of frac-
tional analysis. One of these operators is the proportional Caputo hybrid operator. The pri-
mary goal of this study is to obtain new and general inequalities that establish a connection
between inequality theory and fractional analysis by utilizing this operator since this topic
is important and has numerous implications in modeling real-world natural events. In this
work, we develop a new technique concerning the left-hand side of Hermite–Hadamard-
type inequalities for the current operator with respect to functions whose derivatives in
absolute value at certain powers are convex functions. Moreover, we demonstrate how the
results develop upon and enhance a great deal of prior research in the context of integral
inequalities. Afterward, we provide concrete examples together with the corresponding
graphs to provide greater understanding of the newly found inequalities. Therefore, it is
expected that these theoretical studies will pave the way to further investigation of novel
approaches for the proportional Caputo-hybrid operator as well as in many areas of ap-
plication. In future work, one can investigate different inequalities, such as Grüss-type
inequalities, Chebyshev-type inequalities, or Simpson-type inequalities, via this operator.
Moreover, one can concentrate on how these inequalities are used in the real world.
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İ.D and T.T. wrote the main manuscript text and İ.D. prepared Figs. 1–2. All authors reviewed manuscript.

Received: 14 June 2023 Accepted: 21 December 2023

References
1. Al-Qurashi, M., Asif, Q.U., Chu, Y.M., Rashid, S., Elagan, S.K.: Complexity analysis and discrete fractional difference

implementation of the Hindmarsh-Rose neuron system. Results Phys. 51, 106627 (2023)
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