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Abstract
This paper deals with a hyperbolic-type equation with a logarithmic source term and
dynamic boundary condition. Given convenient initial data, we obtained the local
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1 Introduction
In this paper, we study the problem of wave equation with logarithmic nonlinearity and
dynamic boundary condition

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt – �u = 0, in (0,∞) × �,

u(x, t) = 0 on [0,∞) × �0,
∂
∂n u(x, t) = –|ut|k–2ut + |u|p–2u ln |u| on [0,∞) × �1,

u(x, 0) = u0(x), ut(0, x) = u1(x) on �,

(1)

where � ⊂ Rn, n ≥ 1 is a regular, bounded domain with a boundary ∂� = �0 ∪ �1,
�0 ∩ �1 =, where �0 and �1 are measurable over ∂�, endowed with the (n – 1) dimen-
sional Lebesgue measures λn–1(�0) and λn–1(�1). Additionally, λn–1(�0) and λn–1(�1) are
assumed to be positive throughout paper. k ≥ 2 and p ≥ 2 are positive constants to be
chosen later.

Dynamic boundary problems are widely applied in many mathematical models, such
hydro logic filtration process, thermoelasticity, diffusion phenomenon, and hydrodynam-
ics [2, 15, 25–27]. A dynamic boundary condition has been introduced by a group of
physicists to underline the fact that the kinetics of the process, i.e. the term ∂u

∂n becomes
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more visible in some boundary conditions [18, 24]. This type of option is characterized by
the interaction of the components of the system with the walls (i.e., within �) [7]. Since
the paper by Lions [29] has been introduced in 1969, evolution equations with dynam-
ical boundary conditions (first order equations in time) have been studied well. Later,
mathematicians and physicists studied it for a long time and achieved creative success;
see [3, 6, 9, 17, 19, 20, 22, 28, 31] and references therein.

In [31], the author considered the problem (1) without logarithmic source term for
∂
∂n u(x, t) = –|ut|k–2ut + |u|p–2u boundary condition and proved the local and global ex-
istence under suitable condition. When 2 < p < k, the solutions exist globally for arbitrary
initial data. For k < p, solutions blow up. Later, Zhang and Hu [36] considered the blow-up
of the solution under the condition E(0) < d when the initial data are in the unstable set.
In [12], they established blow-up results of the solution for a finite time at a critical energy
level or high-energy level for the same problem.

Let us go back and look at a wave equation with logarithmic nonlinearity associated
with problem (1). In [8], Cazenave and Haraux considered the following equation for the
Cauchy problem

utt – �u = ku ln |u|. (2)

They studied deeply the existence and uniqueness of the solutions using different tech-
niques. As far as is known, this type of problem has been employed in various ar-
eas of physics, such as geophysics, nuclear physics, and optics; see in Bialynicki-Birula
and Mycielski [4, 5]. Moreover, there are many research points devoted to the given
problem in different models of hyperbolic wave equation with logarithmic source term
[10, 13, 14, 16, 21, 23, 33]. Ma and Fang [32] considered problem (2) with strong damping
term. They proved decay estimates and blow-up result under the null Dirichlet boundary
condition.

In [11], Cui and Chai considered the following equation

utt – div
(
A(x)∇u

)
= |u|pu ln |u|

with acoustic boundary condition. They obtained local existence and uniqueness using the
semigroup theory. As far as is known, not many works are related to the logarithmic wave
equation with a dynamic boundary condition. According to the studies mentioned above,
our work aims to expand the result of wave equation with logarithmic nonlinearity and
dynamic boundary conditions. The rest of the work is arranged as follows: In Sect. 2 gives
notations and lemmas to illustrate our paper path. Sections 3–4 state the local existence
result and potential well of (1). In the last part, we established blow-up result for a lower
bound time.

2 Preliminaries
First, we denote

‖ · ‖ = L2(�), ‖ · ‖q = Lq(�), ‖ · ‖q,�1 = Lq(�1), 1 ≤ q ≤ ∞

and

H1
�0 (�) =

{
u ∈ H1(�) : u|�0 = 0

}
,
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(u|�0 is in the trace sense). Let T > 0 be a real number and X be a Banach space endowed
with norm ‖ ·‖x.Lp(0, T ; X) indicates the space of functions h, which are Lp over (0, T) with
values in X, which are measurable with ‖h‖x ∈ Lp(0, T). We set the Banach space endowed
with the norm

‖h‖Lp(0,T ;X) =
(∫ T

0
‖h‖p

X

) 1
p

.

L∞(0, T ; X) denotes the space of functions h : (0, T) → X, which are measurable with
‖h‖x ∈ L∞(0, T). We set the Banach space endowed with the norm

‖h‖Lp(0,T ;X) =
(∫ T

0
‖h‖p

X

) 1
p

.

We know that if X and Y are Banach spaces such that X is continuous embedding to Y ,
then Lp(0, T ; X) ↪→ Lp(0, T ; Y ) for 1 ≤ p ≤ ∞.

We define the total energy function as

E(t) =
1
2
‖ut‖2 +

1
2
‖∇u‖2 +

1
p2 ‖u‖p

p,�1
–

1
p

∫

�1

|u|p ln |u|dx. (3)

By the definition of E(t) on H1
�1

(�), the initial energy can be considered

E(0) =
1
2
‖u1‖2 +

1
2
‖∇u0‖2 +

1
p2 ‖u0‖p

p,�1
–

1
p

∫

�1

|u0|p ln |u0|dx. (4)

Lemma 1 [1] (Trace-Sobolev Embedding inequality). Let H1
�0

(�) ↪→ Lp(�1) for 2 ≤ p < κ

hold, where

κ =

⎧
⎨

⎩

2(n–1)
n–2 , if n ≥ 3,

∞, if n = 1, 2.

So that, there is a constant Cp that is the smallest nonnegative number, satisfying

‖u‖p,�1 ≤ Cp‖∇u0‖. (5)

Proposition 2 Suppose that Lemma 1 holds, we define

α∗ =

⎧
⎨

⎩

2(n–1)
n–2 – p, if n ≥ 3,

∞, if n = 1, 2

for any α ∈ [0,α∗), then H1
�0

(�) ↪→ Lp+α(�1) continuously.

Lemma 3 E(t) is a nonincreasing function for 0 ≤ s ≤ t ≤ T and

E(t) +
∫ t

s

∥
∥uτ (τ )

∥
∥k

k,�1
dτ = E(s) ≤ 0. (6)
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Proof By multiplying equation (1) by ut and integrating on �, we have

∫

�

uttut dx –
∫

�

	uut dx = 0,

d
dt

(
1
2
‖ut‖2 +

1
2
‖∇u‖2

∣
∣
∣
∣

t

s
+

1
p2 ‖u‖p

p,�1
–

1
p

∫

�1

|u|p ln |u|dx
)

= –‖ut‖k
k,�1 . (7)

By integrating of (7) over (s, t), we have equality (6). �

Lemma 4 Let ϑ be a positive number. Then, the inequality holds

∣
∣|s|p–2 log |s|∣∣ ≤ A + sp–2+ϑ , p > 2 (8)

for A > 0.

Proof Notice that lim|s|→∞ ln |s|
sϑ = 0. Then, there is a positive constant K > 0 such that

log |s|
sϑ

< 1

for ∀|s| > K . Therefore,

log |s| < sϑ

|s|p–2 log |s| < sp–2+ϑ ,

for ∀|s| > K . Since p > 2, then ||s|p–2 log |s|| ≤ A, for some A > 0 and for all |s| ≤ K .
Thus,

∣
∣|s|p–2 log |s|∣∣ ≤ A + sp–2+ϑ , p > 2. �

3 Existence of local solution
We will apply the Faedo-Galerkin technique and the Schauder fixed-point theorem.

Theorem 5 There exists T > 0, such that problem (1) has a unique local weak solution u
of (1) on (0, T) × �. Therefore,

u ∈ C
(
[0, T]; H1

�0 (�)
) ∩ C1([0, T

)
; L2(�)),

ut ∈ Lk((0, T) × �1
)

and the energy identity

1
2
‖ut‖2 +

1
2
‖∇u‖2

∣
∣
∣
∣

t

s
+

∫ t

s
‖ut‖k

k,�1 =
∫ t

s

∫

�1

|u|p ln |u|ut dx

holds for 0 ≤ s ≤ t ≤ T . Therefore, T = T(‖u0‖2
H1

�0
(�) + ‖u1‖2|ts, k, p,�,�1) is decreasing in

the first variable.
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Now, we will give some existence result and lemma used for the proof of Theorem 5.
To define the function and show that the fixed point exists, we introduce the following

problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vtt – �v = 0, in (0, T) × �,

v = 0 on [0, T) × �0,
∂
∂n v(x, t) = –|vt|k–2vt + |u|p–2u ln |u| on [0, T) × �1,

v(x) = u0(x), vt(x) = u1(x) on �.

(9)

Let the solution v of problem (9) be v = ζ (u). We can see that v corresponds to u and
ζ : XT → XT .

Lemma 6 Let 2 ≤ p ≤ κ and κ

κ–p+1 < k. Assume that u ∈ H1
�0

(�) and u1 ∈ Lk(�) hold.
Then, there exists a unique weak solution u of (9) on (0, T) × �. Therefore,

YT =
{

(v, vt) ∈ C
(
[0, T]; H1

�0 (�)
) ∩ C1([0, T

)
; L2(�)), vt ∈ Lk((0, T) × �1

)}
(10)

endowed with the norm

∥
∥(v, vt)

∥
∥2

YT
= max

0≤t≤T

[

‖vt‖2 +
1
2
‖∇v‖2

]

+ ‖vt‖k
Lk ((0,T)×�1), (11)

and the energy identity

1
2
‖vt‖2 +

1
2
‖∇v‖2

∣
∣
∣
∣

t

s
+

∫ t

s
‖vt‖k

k,�1 =
∫ t

s

∫

�1

|u|p ln |u|ut dx, (12)

holds for 0 ≤ s ≤ t ≤ T .

To see the first step of the proof of Lemma 6, we will use the following proposition. The
proposition was proved similar to [35]. We have some results in [35] as follows:

Proposition 7 Let 2 ≤ p ≤ κ and κ

κ–p+1 < k. Assume that u ∈ H1
�0

(�) and u1 ∈ Lk(�) hold.
Then, there is T > 0 and a unique solution v for (9) problem on (0, T) such that, i.e.

u ∈ L∞(
[0, T]; H1

�0 (�)
)

such that

ut ∈ L∞(
0, T ; L2(�) ∩ Lk((0, T) × �1

))

and
∫ T

0
� – utϕt + ∇u∇ϕ +

∫ T

0
�1|ut|k–2utϕ –

∫ T

0
�1|u|p–2u ln |u|ϕ = 0

for all ϕ ∈ C((0, T); H1
�0

(�)) ∩ C1((0, T); L2(�)) ∩ Lk((0, T) × �1). Then

u ∈ C
(
[0, T]; H1

�0 (�)
) ∩ C1([0, T]; L2(�)

)
,
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and the energy identity

1
2
‖ut‖2 +

1
2
‖∇u‖2

∣
∣
∣
∣

t

s
+

∫ t

s
‖ut‖k

k,�1 =
∫ t

s

∫

�1

|u|p ln |u|ut dx

holds for 0 ≤ s ≤ t ≤ T . Now, we can state the proof of Lemma 6.

Proof Let {wj}∞j=1 be a sequence of linearly independent vectors in X = {u ∈ H1
�0

(�) : u|�1 ∈
Lk(�1)} whose finite linear combinations are dense in X. In the event, using the Grahm-
Schmidt orthogonalization method, we can conclude {wj}∞j=1 to be orthonormal in L2(�)∩
L2(�1). Using some technical mathematical result, we can clearly see that X(u ∈ H1

�0
(�) ∩

Lk(�1)) is dense in H1
�0

(�) and in L2(�). Moreover, there exist u0m, u1m ∈ [w1, w2, . . . , wm]
where w1, w2, . . . , wm are the span of the vectors such that

u0m =
m∑

i=1

(∫

�

u0wi

)

wi → u0 in H1
�0 (�),

u1m =
m∑

i=1

(∫

�

u1wi

)

wi → u1 in L2(�).

(13)

According to their multiplicity of

	wi + λiwi = 0

we denote by {λi} the related eigenvalues to w1, w2, . . . , wm. For all m ≥ 1, we will seek an
approximate solution (m functions γim) such that

vm(t) =
m∑

i=1

γ m
i (t)wi (14)

satisfying the following Cauchy problem

{

(vmtt , wi) + (∇vm,∇wi) +
∫

�1

|vmt|k–2vmtwi =
∫

�1

|u|p–2u ln |u|wi, (15)

where t ≥ 0. In (15), for the first term, we obtain

∫

�

vmtt(t)wi dx =
∫

�

( m∑

j=1

γ̈ m
jtt (t)wj

)

wi dx = γ̈ m
i (t)

∫

�

|wi|2 dx = γ̈ m
i (t). (16)

Similarly,

∫

�

–	vmwi dx = –
∫

�

	

( m∑

j=1

γ m
j (t)wj

)

wi dx

= –
∫

�

( m∑

j=1

γ m
j (t)	wj

)

wi dx
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=
∫

�

m∑

j=1

γ m
j (t)λjwjwi dx (17)

= γ m
i (t)λi

∫

�

|wi|2 dx

= γ m
i (t)λi.

For the fourth term, we get

∫

�1

∣
∣vmt(t)

∣
∣k–2vmt(t)wi dx =

∫

�1

( m∑

j=1

∣
∣γ̇ m

j (t)
∣
∣k–2

γ̇ m
j (t)wj

)

wi dx

=
∣
∣γ̇ m

j (t)
∣
∣k–2

γ̇ m
j (t)

∫

�

|wi|2 dx

=
∣
∣γ̇ m

j (t)
∣
∣k–2

γ̇ m
j (t).

(18)

Then, we insert (16)–(18) in (15) so that (15) yields the following Cauchy problem for a
linear ordinary differential equation for unknown functions γ m

i (t) for i = 1, 2, . . . , m;

γ̈ m
i (t) + γ m

i (t)λi + ∇γ̇ m
j (t) +

∣
∣γ̇ m

j (t)
∣
∣k–2

γ̇ m
j (t) = Gi(t),

γ m
i (0) =

∫

�

u0wi dx, γ̇ m
i (0) =

∫

�

u1wi dx,
(19)

where

Gi(t) =
∫

�1

|u|p–2u ln |u|wi, i = 1, 2, . . . , m, (20)

for t ∈ [0, T]. Then the problem above has a unique local solution γ m
i ∈ C2[0, T] for all i,

which satisfies a unique vm defined by (14) and satisfies (15).
Now, taking wi = vmt in equation (15) and then integrating over [0, t], 0 < t < tm and by

parts,

∥
∥vmt(t)

∥
∥2 +

∥
∥∇vm(t)

∥
∥2 + 2

∫ t

0

∥
∥vmt(τ )

∥
∥k

k,�1
dτ

=
∥
∥v1m(t)

∥
∥2 + ‖∇v0m‖2 + 2

∫ t

0

∫

�1

|u|p–2u ln |u|vmt dx ds
(21)

for each m ≥ 1.
To estimate the last term on the right-hand side of (21), set vm ∈ H1(0, tm; H1

�0
(�)) and

by the trace theorem; vm ∈ H1(0, tm; Lk(�1)). Applying the Young and the trace Sobolev
inequalities, we conclude that

2
∫ t

0

∫

�1

|u|p–2u ln |u|vmt dx ds

≤ 2
∫ t

0

∫

�1

∣
∣|u|p–1 ln |u|∣∣∣∣vmt(s)

∣
∣dx ds

≤
∫ t

0

∫

�1

||u|p–1 ln |u| k
k–1 dx ds +

∫ t

0

∥
∥vmt(s)

∥
∥

k,�1
ds,

(22)
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since �1 is bounded. To estimate (22), we focus on the first term

∫ t

0

∫

�1

∣
∣|u|p–1 ln |u|∣∣ k

k–1 dx ds.

We define

�–
1 =

{
x ∈ �; |u(x)| < 1

}
and �+

1 =
{

x ∈ �; |u(x)| ≥ 1
}

,

where �1 = �–
1 ∪�+

1 . Because of that,
∫ t

0
∫

�
||u|p–1 ln |u|| k

k–1 dx ds can be recalled as follows

∫

�1

∣
∣
∣
∣u(s)

∣
∣p–1

ln
∣
∣u(s)

∣
∣
∣
∣

k
k–1 dx

=
∫

�–
1

∣
∣
∣
∣u(s)

∣
∣p–1

ln
∣
∣u(s)

∣
∣
∣
∣

k
k–1 dx +

∫

�+
1

∣
∣
∣
∣u(s)

∣
∣p–1

ln
∣
∣u(s)

∣
∣
∣
∣

k
k–1 dx.

(23)

Then, the use of Lemma 4 gives

�–
1
∣
∣
∣
∣u(s)

∣
∣p–1

ln
∣
∣u(s)

∣
∣
∣
∣

k
k–1 dx ≤ [

e(p – 1)
]– k

k–1 |�1| = C, (24)

where

inf
s∈(0,1)

sp–1 ln s =
[
e(p – 1)

]–1.

Let

θ =
2(n – 1)

n – 2
· k

k – 1
– p + 1 > 0 for n ≥ 3; each positive θ for n = 1, 2.

By the Sobolev embedding H1
0 (�) ↪→ L

2(n–1)
n–2 (�1), recalling u ∈ � = C([0, T]; H1

0 (�)), we
obtain

∫

�+
1

∣
∣
∣
∣u(s)

∣
∣p–1

ln
∣
∣u(s)

∣
∣
∣
∣

k
k–1 dx ≤

∫

�+
1

θ– k
k–1 θ

k
k–1

(∣
∣u(s)

∣
∣p–1

ln
∣
∣u(s)

∣
∣
) k

k–1 dx

≤ θ– k
k–1

∫

�+
1
(∣
∣u(s)

∣
∣p–1

ln
∣
∣u(s)

∣
∣θ

) k
k–1 dx

≤ θ– k
k–1

∫

�+
1

(∣
∣u(s)

∣
∣p–1+θ) k

k–1 dx

≤ θ– k
k–1

∫

�+
1

∣
∣u(s)

∣
∣

2(n–1)
n–2 dx

≤ θ– k
k–1

∫

�1=�–
1 ∪�+

1

∣
∣u(s)

∣
∣

2(n–1)
n–2 dx

= θ– k
k–1 ‖u‖

2(n–1)
n–2

2(n–1)
n–2

≤ C‖u‖
2(n–1)

n–2
�

≤ C. (25)



Irkıl et al. Journal of Inequalities and Applications        (2023) 2023:159 Page 9 of 23

Case n = 1, 2 proof is similar. So that, for taking t = T , we conclude that |u(s)|p–1 ln |u(s)|
is bounded in L

k
k–1 ((0, T) × �1).

Writing (24), (25) into (22), we conclude that

2
∫ t

0

∫

�1

|u(s)|p–2u(s) ln |u(s)|vmt(s) dx ds ≤ CT +
∫ t

0

∥
∥vmt(s)

∥
∥

k,�1
ds. (26)

Replacing (26) into (21), we can write

∥
∥vmt(t)

∥
∥2 +

∥
∥∇vm(t)

∥
∥2 + 2

∫ t

0

∥
∥vmt(τ )

∥
∥k

k,�1
dτ

≤ ∥
∥v1m(t)

∥
∥2 + ‖∇v0m‖2 + CT +

∫ t

0

∥
∥vmt(s)

∥
∥

k,�1
ds,

(27)

where C is a positive constant independent of m. Since the elementary estimate

xa ≤ C1 + C2x ⇒ x ≤ (1 + C1 + C2)
1

a–1 (28)

for C1, C2 ≥ 0 and a > 1, (27) can be written as

∥
∥vmt(t)

∥
∥2 +

∥
∥∇vm(t)

∥
∥2 + 2

∫ t

0

∥
∥vmt(τ )

∥
∥k

k,�1
dτ

≤ C4

(29)

where C4 = ‖v1m(t)‖2 + ‖∇v0m‖2 + CT + (1 + C1 + C2)
1

k–1 . Since

∥
∥vm(t)

∥
∥ ≤ ∥

∥vm(0)
∥
∥ + T‖vmt‖L∞(0,T ;L2(�)) (30)

we have that vm(t) is bounded in L∞(0, T ; H1
�0

(�)). Consequently, it follows from (29) and
(30) that

⎧
⎨

⎩

vm, is bounded in L∞(0, T ; H1
�0

(�)),

vmt , is bounded in L∞(0, T ; L2(�)) ∩ Lk(0, T ; Lk(�1)).
(31)

Using a standard procedure of the Aubin-Lions lemma [30, 34], we deduce that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vm
z∗→ v in L∞(0, T ; H1

�0
(�)),

vmt
z∗→ η1 in L∞(0, T ; L2(�)),

vmt
z→ η2 in Lk((0, T) × �1),

|vmt|k–2vmt
z→ |vmt|k–2vmt in L

k
k–1 ((0, T) × �1),

where η1 = vt and v(0) = v0. Now, we suppose that η2 = vt a.e. in (0, T) × �1. It is clear
that, since the weak limit of vmt on (0, T) × ∂� is equal to η2 on (0, T) × �1 and to 0 on
(0, T) × �0, and since u = 0 on (0, T) × �0, the assumption is that the weal limit of vmt

on (0, T) × ∂� is the distribution time derivative of v on (0, T) × ∂�. Therefore, up to
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subsequence, we can pass to limit in (15) and find a weak solution (9) applying argument
similar to that given in [35] (see Proposition 1).

Uniqueness proof is given by contradiction, claiming two distinct solutions exist. Say
w and v have the same initial data. Subtracting both two equations and testing result by
wt – vt , we conclude that

‖wt – vt‖2 + ‖∇w – ∇v‖2

+ 2
∫ T

0

∫

�1

(|wτ |k–2wτ – |vτ |k–2vτ

)
(wτ – vτ ) dτ

= 0.

(32)

From the following inequality

(|f |k–2f – |g|k–2g
)
(f – g) ≥ C|f – g|k for k ≥ 2,∀f , g ∈ R,∃C > 0

equation (9) yields

‖wt – vt‖2 + ‖∇w – ∇v‖2

+ c
(

+
∫ T

0
‖∇wτ – ∇vτ‖k

k,�1

)

≤ 0

which satisfies w – v = 0. Therefore, (9) satisfies a unique weak solution. �

Now, we can deal with the proof of Theorem 5.

Proof To obtain the proof, we apply the contraction mapping theorem. For T > 0, we de-
note the convex closed subset of YT as

XT =
{

(v, vt) ∈ YT : v(0, x) = u0(x), vt(0, x) = u1(x)
}

.

We define

Br(XT ) =
{

v ∈ XT :
∥
∥(v)

∥
∥2

XT
≤ r2},

where r2 = 1
2 (‖u1‖2 + ‖∇u0‖2). Thanks to Lemma 6, for any u ∈ Br(XT ), we can introduce

v = ζ (u), which is the unique solution of (9). We can see that v corresponds to u and ζ :
XT → XT . Our aim is to get that ζ is a contraction map, which implies ζ (Br(XT )) ⊂ Br(XT )
for any T > 0. Using energy identity for all t ∈ (0, T], we have

1
2
(‖vt‖2 + ‖∇v‖2) +

∫ t

0

∥
∥vt(τ )

∥
∥k

k,�1
dτ

≤ 1
2
(‖u1‖2 + ‖∇u0‖2)

+
∫ t

0

∫

�1

|u(s)|p–2u(s) ln |u(s)|vt(s) dx ds.

(33)
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Then by

∫

�1

|u|p–2u ln |u| ≤
∫

�1

|u|p

(33) yields that

1
2
(‖vt‖2 + ‖∇v‖2) +

∫ t

0

∥
∥vt(τ )

∥
∥k

k,�1
dτ

≤ 1
2
(‖u1‖2 + ‖∇u0‖2) +

∫ t

0

∫

�1

|u|pvt dx ds.
(34)

The last term on the right-hand side of inequality (34) can be estimated using the Holder
inequality and similar calculations as for (23) and (25),

1
2
(‖vt‖2 + ‖∇v‖2) +

∫ t

0

∥
∥vt(τ )

∥
∥k

k,�1
dτ

≤ 1
2
(‖u1‖2 + ‖∇u0‖2) + Cr

2(n–1)
n–2 T

k–1
k ‖vt‖Lk ((0,T)×�1).

(35)

By taking t = T and using the inequality (28), we have

‖vt‖Lk ((0,T)×�1) ≤ C1

(

1 +
1
2

r2
0 + Cr

2(n–1)
n–2 T

k–1
k

) 1
k–1

. (36)

Because of the inequality for X, Y ≥ 0,

(X + Y )a ≤ 2a–1(Xa + Y a), (37)

where a is a positive constant, (36) yields that

‖vt‖Lk ((0,T)×�1) ≤ C1

(

1 +
1
2

r
2

k–1
0 + Cr

2(n–1)
(n–2)(k–1) T

1
k

)

. (38)

Now, we insert (38) into (35) and obtain the following inequality

1
2
(‖vt‖2 + ‖∇v‖2)

≤ 1
2

r2
0 + C5r

2(n–1)
n–2 T

k–1
k

(

1 +
1
2

r
2

k–1
0 + C

2(n–1)
(n–2)(k–1) T

1
k

)

.
(39)

So that, we have

‖vt‖L∞(0,T ;L2(�)) ≤ r2
0 + C6r

2(n–1)
n–2 T

k–1
k

(

1 +
1
2

r
2

k–1
0 + Cr

2(n–1)
(n–2)(k–1) T

1
k

)

. (40)
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Using inequality (37) and (40), we have

‖v‖2
2 ≤ (‖u0‖2 + t

0‖vt‖2
)2

≤ 2‖u0‖2
2 + 2T2‖vt‖L∞(0,T ;L2(�))

≤ 2r2
0 + 2T2‖vt‖L∞(0,T ;L2(�))

≤ 2r2
0 + 2T2

[

r2
0 + C6r

2(n–1)
n–2 T

k–1
k

(

1 +
1
2

r
2

k–1
0 + Cr

2(n–1)
(n–2)(k–1) T

1
k

)]

≤ 2
(
1 + T2)r2

0 + 2C6T
3k–1

k r
2(n–1)

n–2

(

1 +
1
2

r
2

k–1
0 + Cr

2(n–1)
(n–2)(k–1) T

1
k

)

.

(41)

Combining (39) and (41), we have

‖vt‖L∞(0,T ;H1
�0

(�)) ≤ (
3 + T2)r2

0 + C7T
k–1

k r
2(n–1)

n–2
(
1 + T2)

(

1 +
1
2

r
2

k–1
0 + Cr

2(n–1)
(n–2)(k–1) T

1
k

)

.

By choosing T small enough and r large enough, we derive that ζ (u) ∈ Br(XT ) and T =
T(r2

0, k, p,�,�1) is a decreasing with respect to the first variable.
Next, we will verify that ζ is a contraction mapping continuous on Br(XT ) and ζ is com-

pact in YT . Let u1, u2 ∈ Xr0,T . We define v1 = ζ (u1), v2 = ζ (u2) with u1, u2 ∈ Br(XT ), and
z = v1 – v2, then, clearly z is a solution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt – 	z = 0 in (0, T) × �,

z = 0 on [0, T) × �0,
∂
∂n z(x, t) = –|v1t|k–2v1t + |v2t|k–2v2t on [0, T) × �1,

+ |u1|p–2u1 ln |u1| – |u2|p–2u2 ln |u2| on �,

z(0, x) = zt(0, x) = 0.

(42)

Since v1t , v2t ∈ Lm((0, T) × �1), it is clearly that |v1t|k–2v1t and |v2t|k–2v2t belong to
L

k
k–1 ((0, T) × �1). Also, the functions |u1|p–2u1 ln |u1| and |u2|p–2u2 ln |u2| belong to

L
k

k–1 ((0, T) ×�1). Then, by using Lemma 6, the energy functional can be written for prob-
lem (42) such that

1
2
‖zt‖2 +

1
2
‖∇z‖2 + t

0

∫

�1

(|v1t|k–2v1t – |v2t|k–2v2t
)
(v1t – v2t)

=
∫ t

0

∫

�1

(|u1|p–2u1 ln |u1| – |u2|p–2u2 ln |u2|
)
(v1t – v2t) dx ds

(43)

for 0 ≤ t ≤ T . We denote the basic inequality for x ≥ 2, a1, a2 ∈ R such that

(|a1|b–2a1 – |a2|b–2a2
)
(a1 – a2) ≥ C∗|a1 – a2|b.
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For estimating the last integral on the left-hand side of (43), we apply the basic inequality
by taking b = k when k ≥ 2 and b = k

k–1 when 1 < k < 2. So that, (43) becomes

1
2
‖zt‖2 +

1
2
‖∇z‖2 + C∗‖zt‖k

Lk ((0,T)×�1)

=
∫ t

0

∫

�1

(|u1|p–2u1 ln |u1| – |u2|p–2u2 ln |u2|
)
(v1t – v2t) dx ds

(44)

for k ≥ 2, and

1
2
‖zt‖2 +

1
2
‖∇z‖2 + C∗∥∥|v1t|k–2v1t – |v2t|k–2v2t

∥
∥

k
k–1

L
k

k–1 ((0,T)×�1)

=
∫ t

0

∫

�1

(|u1|p–2u1 ln |u1| – |u2|p–2u2 ln |u2|
)
(v1t – v2t) dx ds

(45)

for 1 < k < 2.
Now, we need to estimate the logarithmic term in (45). If we set

G(s) = |s|p–2s ln |s|,

then

G′(s) = (p – 1)|s|p–2 ln |s| + |s|p–2

=
(
1 + (p – 1) ln |s|)|s|p–2.

From the mean value theorem, we have

∣
∣G(u1) – G(u2)

∣
∣

=
∣
∣G′(ϑu1 + (1 – ϑ)u2

)
(u1 – u2)

∣
∣

≤ [
1 + (p – 1) ln

∣
∣
(
ϑu1 + (1 – ϑ)u2

)∣
∣
]∣
∣
(
ϑu1 + (1 – ϑ)u2

)∣
∣p–2|u1 – u2|,

where 0 < ϑ < 1. From Lemma 4, we conclude that

∣
∣G(u1) – G(u2)

∣
∣ ≤ ∣

∣
(
ϑu1 + (1 – ϑ)u2

)∣
∣p–2|u1 – u2| + (p – 1)A|u1 – u2|

+ (p – 1)|u1 – u2|
∣
∣
(
ϑu1 + (1 – ϑ)u2

)∣
∣p–2+ε

≤ ∣
∣(u1 + u2)

∣
∣p–2|u1 – u2| + (p – 1)A|u1 – u2|

+ (p – 1)|u1 – u2||u1 + u2|p–2+ε .

(46)

Inserting (47) into (45), we obtain

1
2
‖zt‖2 +

1
2
‖∇z‖2 + C∗∥∥|v1t|k–2v1t – |v2t|k–2v2t

∥
∥

k
k–1

L
k

k–1

(
(0, T) × �1

)

=
∫ T

0

∫

�1

(
|(u1 + u2)|p–2|u1 – u2| + (p – 1)A|u1 – u2|

+(p – 1)|u1 – u2||u1 + u2|p–2+ε

)

(v1t – v2t) dx ds.
(47)
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We choose κ0 ∈ (p,κ) such that

κ

κ – p + 1
<

κ0

κ0 – p + 1
< k. (48)

Using (49), we can define l ∈ (0, 1) such that

1
k

+
1
κ

+
1
l

= 1, (49)

where l < κ0
p–2 .

Using (37) and the Holder inequality, we can write the first term of the integral term of
(48) as

∫ T

0

∫

�1

∣
∣(u1 + u2)

∣
∣p–2|u1 – u2|(v1t – v2t)

≤ 2l–1
∫ T

0
‖u1 – u2‖κ0,�1

(‖u1‖(p–2)
l(p–2),�1

+ ‖u2‖(p–2)
l(p–2),�1

)‖zt‖k,�1 .

(50)

Since l(p – 2) < κ0, by the trace Sobolev embedding and definition of r, we obtain

∫ T

0

∫

�1

∣
∣(u1 + u2)

∣
∣p–2|u1 – u2|(v1t – v2t)

≤ 2l–1
∫ T

0
‖u1 – u2‖κ0,�1

(‖∇u1‖(p–2)
2 + ‖∇u2‖(p–2)

2
)‖zt‖k,�1

≤ 2C10rp–2
∫ T

0
‖u1 – u2‖κ0,�1‖zt‖k,�1 .

(51)

Applying the Holder inequality, we conclude that

∫ T

0

∫

�1

∣
∣(u1 + u2)

∣
∣p–2|u1 – u2|(v1t – v2t)

≤ 2C10rp–2T
k–1

k ‖u1 – u2‖L∞(0,T ;Lκ (�1))‖zt‖Lk ((0,T)×(�1)).

(52)

Thanks to (40) and r0 ≤ r, (52) yields

∫ T

0

∫

�1

∣
∣(u1 + u2)

∣
∣p–2|u1 – u2|(v1t – v2t)

≤ C11rp–2
[(

1 +
1
2

r
2

k–1

)

T
k–1

k + Cr
2(n–1)

(n–2)(k–1) T
]

× ‖u1 – u2‖L∞(0,T ;Lκ0 (�1)).

(53)

If we choose κ1 ∈ (p,κ) such that

κ

κ – (p + ε) + 1
<

κ1

κ1 – (p + ε) + 1
< k. (54)

Using (54), we can define l1 ∈ (0, 1) such that

1
k

+
1
κ

+
1
l1

= 1,
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where l1 < κ1
p–2+ε

. Using calculations similar to (50)–(52), we obtain

∫ T

0

∫

�1

|u1 – u2||u1 + u2|p–2+ε(v1t – v2t)

≤ C12rp+ε–2
[(

1 +
1
2

r
2

k–1

)

T
k–1

k + Cr
2(n–1)

(n–2)(k–1) T
]

× ‖u1 – u2‖L∞(0,T ;Lκ (�1)),

(55)

where ε > 0 constant.
Using the trace Sobolev embedding and the Holder inequality in time and (36), we have

∫ T

0

∫

�1

|u1 – u2|(v1t – v2t)

≤
∫ T

0
‖u1 – wu2‖κ3,�1‖zt‖k,�1

≤ ‖u1 – u2‖L∞(0,T ;Lκ (�1))‖zt‖Lk ((0,T)×(�1))

≤ C1

(

1 +
1
2

r
2

k–1
0 + Cr

2(n–1)
(n–2)(k–1) T

1
k

)

‖u1 – u2‖L∞(0,T ;Lκ3(�1)),

(56)

where κ3 ∈ (p,κ).
By combining (56),(55), and (53), we obtain

∫ T

0

∫

�1

(
|(u1 + u2)|p–2(v1t – v2t) + (p – 1)A(v1t – v2t)

+(p – 1)(v1t – v2t)|u1 + u2|p–2+ε

)

(v1t – v2t) dx ds

≤ K‖u1 – u2‖L∞(0,T ;Lκ∗(�1)),

(57)

where

κ
∗ = max{κ1,κ2,κ3}

and

K = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1(1 + 1
2 r

2
k–1
0 + Cr

2(n–1)
(n–2)(k–1) T

1
k ),

C12rp+ε–2[(1 + 1
2 r

2
k–1 )T

k–1
k + Cr

2(n–1)
(n–2)(k–1) T],

C11rp–2[(1 + 1
2 r

2
k–1 )T

k–1
k + Cr

2(n–1)
(n–2)(k–1) T].

Consequently, by inserting (57) into (44) and (45), we get the following estimates

‖v1t – v2t‖2
L∞(0,T ;L2(�)) ≤ K1‖u1 – u2‖L∞(0,T ;Lκ∗ (�1)), (58)

‖∇v1 – ∇v2‖2
L∞(0,T ;L2(�)) ≤ K1‖u1 – u2‖L∞(0,T ;Lκ∗ (�1)), (59)

and

‖v1t – v2t‖k
Lk ((0,T)×�1) ≤ K1‖u1 – u2‖L∞(0,T ;Lκ∗ (�1)), (60)
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where k ≥ 2, while

∥
∥|v1t|k–2v1t – |v2t|k–2v2t

∥
∥

k
k–1

L
k

k–1 ((0,T)×�1)
≤ K1‖u1 – u2‖L∞(0,T ;Lκ∗ (�1)), (61)

where 1 < k < 2 and K1 > 0 is a constant, which depends on (p, k,�,�1, T , r). Thanks to
v1(0) = v2(0) = 0, we conclude that for 0 ≤ t ≤ T ,

‖v1 – v2‖2 ≤
∫ T

0
‖v1t – v2t‖2 ≤ T‖v1t – v2t‖L∞(0,T ;L2(�)). (62)

Plug (58) into (62) yields that

‖v1 – v2‖2
L∞(0,T ;L2(�)) ≤ K1T2‖u1 – u2‖L∞(0,T ;Lκ∗ (�1)). (63)

Thus, from estimates (58)–(63), we get contractiveness of ζ in Br(XT ). It follows that
v = ζ (u) is a Cauchy sequence in YT . The proof is completed. �

4 Potential well
In this section, we will demonstrate the global existence of the proofs of solution (1).

We defined some useful functionals total energy function as

J(u) =
1
2
‖∇u‖2 +

1
p2 ‖u‖p

p,�1
–

1
p

∫

�1

up ln |u|dx, (64)

I(u) = ‖∇u‖2 –
∫

�1

up ln |u|dx. (65)

Then, combining (64), (65), and definition of E(u) gives

J(u) =
1
p

I(u) +
1
p2 ‖u‖p

p (66)

and

E(u) =
1
2
‖ut‖2 + J(u). (67)

The potential well depth is defined as

W =
{

(u0, u1) ∈ H1
�0 (�) × L2(�) : J(u) ≤ d, I(u) > 0

} ∪ {0}, (68)

and the outer space of the potential well

V =
{

(u0, u1) ∈ H1
�0 (�) × L2(�) : J(u) ≤ d, I(u) < 0

}
. (69)

Lemma 8 Let u0 ∈ H1
�0

(�)\{0}, ‖u‖p
p,�1

�= 0. Then
i) limλ→0+ J(λu) = 0, limλ→∞ J(λu) = –∞;
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ii) There exists λ∗ > 0 satisfying d
dλ

J(λ∗u) = 0 such that

I(λu) =
d

dλ
J(λu)

⎧
⎪⎪⎨

⎪⎪⎩

> 0, 0 ≤ λ < λ∗,

= 0, λ = λ∗,

< 0, λ < λ∗ < ∞.

Proof i) Take J(λu),

J(λu) =
1
p
‖λ∇u‖2 +

1
p2 ‖λu‖p

p,�1
–

1
p

∫

�1

ln |λu|(λu)p dx

=
λ2

2
‖∇u‖2 +

λp

p2 ‖u‖p
p,�1

–
λp

p

∫

�1

|u|p ln |u|dx –
λp

p
ln |λ|

∫

�1

|u|p dx.

By virtue of ‖u‖p
p,�1

, we see that limλ→0 J(λu) = 0, limλ→∞ J(λu) = –∞.
ii) Now, taking the derivative of J(λu) with respect to λ, we have

d
dλ

J(λu) = λ

(

‖∇u‖2 – λp–2
∫

�1

|u|p ln |u|dx – λp–2 ln |λ|‖u‖p
p,�1

)

. (70)

Thanks to definition of J(λu), it is clearly from (70) that λ–1 d
dλ

J(λu) = N(λu). So, we
obtain

d
dλ

N(λu) = (2 – p)λp–3
∫

�1

|u|p ln |u|dx – λp–3‖u‖p
p,�1

+ (2 – p)λp–3 ln |λ|‖u‖p
p,�1

= λp–3
(

(2 – p)
∫

�1

|u|p ln |u|dx – ‖u‖p
p,�1

+ (2 – p) ln |λ|‖u‖p
p,�1

)

.

Therefore, there is a unique λ1 such that d
dλ

N(λu)|λ=λ1 = 0, by taking

λ1 = exp

(‖u‖p
p,�1

– (2 – p)
∫

�1
|u|p ln |u|dx

(2 – p)‖u‖p
p,�1

)

> 0

such that d
dλ

N(λu) > 0 on (0,λ1) and d
dλ

N(λu) < 0 on (λ1,∞). Because of N(λu)|λ=0 =
‖∇u‖2 > 0 and limλ→∞ N(λu) = –∞, there is one λ∗ > 0 such that N(λ∗u) = 0, i.e
d

dλ
J(λ∗u) = 0.
A simple corollary of the fact that

d
dλ

J(λu) = λN(λu)

which gives that d
dλ

J(λu) > 0 on (0,λ∗) and d
dλ

J(λu) < 0 on (λ∗,∞). Thus, we have the de-
sired results such that

I(λu) = λg ′(λ)

⎧
⎪⎪⎨

⎪⎪⎩

> 0, 0 ≤ λ < λ∗,

= 0, λ = λ∗,

< 0, λ < λ∗ < ∞. �
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Lemma 9 i) The depth of potential well depth defined by

d = inf
u∈H1

�0
(�)\{0},u|�1 �=0

sup
λ>0

J(λu). (71)

Then d is a positive function such that

0 < d = inf
u∈N

J(u) (72)

where N is the Nehari manifold given by

N =
{

u ∈ H1
�0 (�)\{0} : I(u) = 0

}
,

and d has a positive lower bound, namely,

d ≥ 1
2

(
eα
C∗

) 2
p+α–2

,

where C is defined as a positive constant.

Proof i) By (64), thanks to definitions of the Nehari manifold and d, it satisfies d ≥ 0. So
that, our purpose is to prove that there is a positive function such that J(u) = d. We define
{ui}∞i=1 ⊂ N as a minimizing sequence for J . So that, we conclude that

lim
i→∞ J(ui) = d.

It is clearly that, {|ui|}∞i=1 ⊂ N a minimizing sequence for J . Now, we suppose that ui > 0
in � for all i ∈N.

We also obtain that J is coercive on u ∈ N satisfying {ui}∞i=1 and is bounded in H1
�0

(�).
Since H1

�0
(�) ↪→ Lp+α(�1) is compact embedding, there is a function u and a subsequence

of {|uin |}∞i=1 of {|ui|}∞i=1, such that

uin → u weakly in H1
�0 (�),

uin → u strongly in Lp+α(�1),

uin → u a.e. in �,

where in → ∞.
Then, we get u ≥ 0 a.e. in �. Moreover, using the dominated convergence theorem, weak

lower semicontinuity and definition of J(u), I(u) and N gives

J(u) ≤ lim
in→∞ inf J(uin ) = d,

I(u) ≤ lim
in→∞ inf I(uin ) = 0.



Irkıl et al. Journal of Inequalities and Applications        (2023) 2023:159 Page 19 of 23

Since x–y ln x ≤ 1
ey for x, y > 0 and the trace Sobolev embbedding theorem, we have

‖∇uin‖2 =
∫

�1

|uin |p ln |uin |

≤
∫

�1

1
eα

|uin |p ln |uin |α

=
1

eα
‖uin‖p+α

p+α,�1

≤ C∗

eα
‖∇uin‖p+α ,

where C∗ is the best Sobolev constant, which means

(
eα
C∗

) 2
p+α–2

< ‖∇uin‖2.

Therefore, we conclude that

∫

�1

|uin |p ln |uin | ≥
(

eα
C∗

) 2
p+α–2

.

Using the dominated convergence theorem, we have

∫

�1

|u|p ln |u| ≥
(

eα
C∗

) 2
p+α–2 ·

> 0

which means that u �= 0.
Last, we show that I(u) = 0. Indeed, if it is not true, we get I(u) < 0. So, thanks to

Lemma 8, we have a positive constant λ∗ < 1 implying that I(λ∗u) = 0. Therefore, it fol-
lows that

d ≤ J
(
λ∗u

)
=

(λ∗)2

2
‖∇u‖2 +

(λ∗)p

p2 ‖u‖p
p,�1

=
(
λ∗)2

[
1
2
‖∇u‖2 +

(λ∗)p–2

p2 ‖u‖p
p,�1

]

≤ (
λ∗)2

[
1
2
‖∇u‖2 +

1
p2 ‖u‖p

p,�1

]

≤ (
λ∗)2

lim
in→∞ inf

[
1
2
‖∇uin‖2 +

1
p2 ‖uin‖p

p,�1

]

≤ (
λ∗)2

lim
k→∞

inf J(uin )

=
(
λ∗)2d < d,

where d = 1
2 ( eα

C∗ )
2

p+α–2 . it is a contradiction. �

5 Lower bound for blow-up time
In this part, we prove a lower bound for blow-up time of problem (1). First, we give lemma,
which will play a role of the proof of Theorem 11.
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Lemma 10 Suppose that (u0, u1) ∈ V , 2 ≤ p < κ. So, we get (u, ut) ∈ V for all t ≥ 0. Proof.
By way of contradiction, suppose that (u0, u1) leaves V at time t = t0, so there is a sequence
{ts}, ts → t–

0 such that I(u(ts)) ≤ 0 and E(u(ts)) ≤ d. Thanks to weak lower semicontinuity
‖ · ‖H1

�0
, we obtain

I
(
u(t0)

) ≤ lim
n→∞ inf I

(
u(ts)

) ≤ 0, (73)

and

E(t0) ≤ lim
n→∞ inf E

(
u(ts)

) ≤ d. (74)

If we take (u(t0), ut(t0)) /∈ V , I(u(t0)) = 0 or E(u(t0)) > d. Because of (6), taking E(t0) > d
is impossible, which is a contradiction with inequality (74). By the continuity of function
I(u(t)) about time, if we take I(u(t0)) = 0, by definition of d, (64) and (3), we arrive at

d ≥ E(t0) ≥ J
(
u(t0)

) ≥ inf
u∈N

J(u) = d.

Moreover, we have a contradiction. So, we get (u, ut) ∈ V for all t ≥ 0.

Theorem 11 Assume that (u0, u1) ∈ V , 2 ≤ p < κ and 2 < p < 1 + (2k–2)(n–1)
k(n–2) . Then, the

solutions u of problem (1) are bounded at finite time t = T1 with

lim
t→T–

1
‖ut‖2 + ‖∇u‖2 = ∞.

Therefore, we give lower bound for T1 such that

T1 ≥ dθ

H(t) + e(p – 1)– k
k–1 |�1| + (eα)– k

k–1 (K2)
k

k–1 (p–1+α)θ
k

k–1 (p–1+α)
,

where 0 < α < 2n–2
n–2 – p, K2 is the positive Sobolev constant and H(0) = ‖u1‖2 + ‖∇u0‖2.

Proof We define a function as

H(t) = ‖ut‖2 + ‖∇u‖2. (75)

By testing equation of problem (1) by ut(x, t) and using the Green formula, we obtain

(utt , ut) = –
∫

�

∇u,∇ut +
∫

�1

[
–|ut|k–2ut + |u|p–2u ln |u|]ut . (76)

By differentiating (75) and using (76), we conclude that

H ′(t) = 2(utt , ut) + 2
∫

�

∇u∇ut

= –2
∫

�

∇u,∇ut + 2
∫

�1

[
–|ut|k–2ut + |u|p–2u ln |u|]ut + 2

∫

�

∇u∇ut

= –2
∫

�1

|ut|k–1ut + 2
∫

�1

|u|p–2u ln |u|ut .

(77)
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Since 2 < p < 1 + (2k–2)(n–1)
k(n–2) , by applying the trace Sobolev embedding theorem where

α is a positive constant such that (p – 1 + α) < (2k–2)(n–1)
k(n–2) . Therefore, if we use the Young

inequality and Sobolev theorems, (77) yields that

2
∫

�1

|u|p–2u ln |u|ut

≤ ‖ut‖k
k,�1 +

(∫

�1

|u|p–2u ln |u|
) k

k–1

≤ ‖ut‖k
k,�1

∫

�–
1

(|u|p–2u ln |u|) k
k–1 +

∫

�+
1

(|u|p–2u ln |u|) k
k–1

≤ ‖ut‖k
k,�1 + e(p – 1)– k

k–1 |�1| + (eα)– k
k–1

∫

�+
1

(|u|p–1+α
) k

k–1

≤ ‖ut‖k
k,�1 + e(p – 1)– k

k–1 |�1| + (eα)– k
k–1 (K2)

k
k–1 (p–1+α)‖∇u‖

k
k–1 (p–1+α)
2

≤ H(t) + e(p – 1)– k
k–1 |�1| + (eα)– k

k–1 (K2)
k

k–1 (p–1+α)H(t)
k

k–1 (p–1+α), (78)

where |xy ln x| ≤ 1
ey for 0 < x < 1 and x–y ln x ≤ 1

ey for x ≥ 1.
Inserting (78) into (77) gives

H ′(t) ≤ H(t) + e(p – 1)– k
k–1 |�1| + (eα)– k

k–1 (K2)
k

k–1 (p–1+α)H(t)
k

k–1 (p–1+α). (79)

Using integration of (79) over t, we conclude

∫ H(t)

H(0)

dθ

H(t) + e(p – 1)– k
k–1 |�1| + (eα)– k

k–1 (K2)
k

k–1 (p–1+α)θ
k

k–1 (p–1+α)
.

It is easy to see that there is a time T1 such that the solution goes to the infinity with
limt→T1 H(t) = ∞. Thus, we have a lower bound for T1 given by

T1 ≥ dθ

H(t) + e(p – 1)– k
k–1 |�1| + (eα)– k

k–1 (K2)
k

k–1 (p–1+α)θ
k

k–1 (p–1+α)
.

This completed the proof. �

6 Conclusion
This work proves the existence of the result for a hyperbolic-type equation with logarith-
mic nonlinearity and dynamical boundary condition. This result is modern for these types
of problems, and it can be generalized to many problems in the coming literature.
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