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Abstract
The intersection of all zero-neighborhoods in a topological module over a topological
ring is a bounded and closed submodule whose inherited topology is the trivial
topology. In this manuscript, we prove that this is the smallest closed submodule and
thus replaces the null submodule in the Hausdorff setting. This fact motivates to
introduce a new notion in operator theory called topological kernel. Another new
concept is also defined that of Pareto optimal element for a family of continuous linear
operators between topological modules. It is then proved that topological kernels
have a strong influence on the existence of Pareto optimal elements. This work is
strongly motivated by the ongoing search for a consistent operator theory on
topological modules over general topological rings.
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1 Introduction
There are many differences between Banach spaces and general topological modules. One
of them, for instance, is the fact that finite-dimensional subspaces of a Banach space are al-
ways closed, while finitely spanned submodules of a topological module (even of a Hilbert
C∗-module) are not necessarily closed. This is one of the reasons why some notions and
results from operator theory on Banach spaces cannot directly be transported to opera-
tors on topological modules. As a consequence, operator theory on topological modules
sometimes requires another approach than operator theory on Banach spaces. Fredholm
and semi-Fredholm theory on the standard Hilbert module over a unital C∗-algebra is
one of the examples illustrating how much the proofs and the approach in this setting
differ from the situation of the classical Fredholm and semi-Fredholm theory on Banach
spaces. Although Hilbert C∗-modules are also Banach spaces, semi-Fredholm theory in
the sense of [9, 10, 13, 14] is very different from the classical semi-Fredholm theory, ex-
actly due to the fact that finitely spanned submodules may behave quite differently from
finite-dimensional subspaces.

The irruption of Hilbert C∗-modules boosted the development of a consistent opera-
tor theory for general topological modules over general topological rings. As mentioned
above, Hilbert C∗-modules are also Banach spaces, since C∗-algebras are complex alge-
bras, therefore a Hilbert C∗-module acquires structure of a complex Banach space. How-
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ever, Hilbert C∗-modules undoubtedly present a major interest as modules over a C∗-
algebra.

In [6, Theorem 2], it is proved that if M is a topological module over a topological ring
R and N0(M) denotes the filter of all neighborhoods of 0 in M, then OM :=

⋂
V∈N0(M) V

is a bounded and closed submodule of M whose inherited topology is the trivial topol-
ogy. As an immediate consequence, if OM is linearly complemented in M, then any linear
projection from M onto OM is trivially continuous. This closed submodule OM is partic-
ularly interesting in the non-Hausdorff ambience, since OM is precisely the null submod-
ule {0} if and only if the module topology of M is Hausdorff [2, 18, 19]. Recall that an
R-linear operator between two topological R-modules M, N is simply a map T : M → N ,
which is additive and R-homogeneous, that is, T(m + p) = T(m) + T(p) and T(rm) = rT(m)
for all m, p ∈ M and all r ∈ R. When two topological modules M, N are Hausdorff over a
Hausdorff topological ring R, then R-linear operators between them tend to satisfy certain
properties of classical real or complex operator theory (not all of them though) [1, 12]. This
manuscript is then framed in the non-classical operator theory and tires to understand as
its main goal how linear operators behave, not only for general module topologies but also
for seminormable module topologies.

The difference between a ring seminorm ‖ · ‖ and an absolute semivalue | · | is that the
ring seminorm is submultiplicative (‖rs‖ ≤ ‖r‖‖s‖) and the absolute semivalue is multi-
plicative (|rs| = |r||s|). For this reason, a seminorm on a module is asked to be absolutely
homogeneous (‖rm‖ = |r|‖m‖) if the underlying ring is absolutely semivalued, and sub-
multiplicative (‖rm‖ ≤ ‖r‖‖m‖) if the underlying ring is seminormed. Throughout this
paper we will consider all module seminorms, ring seminorms, and absolute semivalues
as nonzero, as well as all modules as left and unital (1m = m) and all rings as associative
and unitary.

Notable subsets of a seminormed module M are the unit ball, BM := {m ∈ M : ‖m‖ ≤ 1},
and the unit sphere SM := {m ∈ M : ‖m‖ = 1}. Usually, the underlying seminormed ring R
is required to be practical. Recall [3, 4, 6] that a topological ring R is said to be practical
when the invertibles approach 0, that is, 0 ∈ cl(U (R)), where U (R) stands for the multi-
plicative group of invertibles of R. This way, if M is a seminormed module over a practical
seminormed ring R, then for every m ∈ M there exists r ∈ U (R) such that rm ∈ BM . The
following inequalities, that work for all r ∈ U (R) and all m ∈ M, are used throughout the
paper:

∥
∥r–1∥∥–1‖m‖ ≤ ‖rm‖ ≤ ‖r‖‖m‖. (1)

The above inequality is simply a direct consequence of the fact that 1 ≤ ‖1‖ = ‖rr–1‖ ≤
‖r‖‖r–1‖ for all r ∈ U (R). According to [5], an invertible element u of a seminormed ring R
is said to be absolutely invertible provided that ‖u–1‖ = ‖u‖–1. The existence of absolutely
invertible elements implies that ‖1‖ = 1 (seminormed rings satisfying that ‖1‖ = 1 are
called unital). Absolutely invertible elements form a subgroup of U (R) denoted as U1(R).
If {‖u‖ : u ∈ U1(R)} is dense in [0,∞), then R is called hyperpractical. Notice that hyper-
practical rings satisfy that 0 ∈ cl(U1(R)), so in particular they are also practical.

2 Results
This section is divided into two subsections. The first subsection introduces the novel no-
tion of topological kernel, which plays the role of the kernel of a linear operator in the
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classical Hausdorff setting. The second subsection deals with the study of Pareto optimal
solutions to multiobjective optimization problems that involve linear operators on semi-
normed modules.

2.1 Topological kernel of a linear operator
Let us recall first that by Nx(X) we intend to denote the filter of all neighborhoods of x in
a topological space X. Also, recall that

X(x) :=
⋂

Nx(X) =
⋂

V∈Nx(X)

V =
{

y ∈ X : x ∈ cl
({y})}.

Lemma 1 Let X be a regular topological space. For all x, y ∈ X, the following conditions
are equivalent:

1. y ∈ X(x).
2. x ∈ X(y).
3. y ∈ cl({x}).
4. x ∈ cl({y}).

As a consequence, X(x) = cl({x}), hence X(x) is contained in any closed subset of X that con-
tains x.

Proof It is trivial by definition that y ∈ X(x) if and only if x ∈ cl({y}). By switching x and y,
x ∈ X(y) if and only if y ∈ cl({x}). Therefore, it only remains to show the equivalence of (1)
and (2). Suppose that y ∈ X(x) but x /∈ X(y). There exists U ∈ Ny(X) with x /∈ U . Since X is
regular, there exists V ∈ Ny(X) with cl(V ) ⊆ U . Then x ∈ X \ cl(V ) so X \ cl(V ) ∈ Nx(X).
By assumption, y ∈ X(x) ⊆ X \ cl(V ). This is a contradiction. As a consequence, x ∈ X(y). By
swapping x and y, we obtain that y ∈ X(x) if x ∈ X(y). Finally,

X(x) =
⋂

V∈Nx(X)

V =
{

y ∈ X : x ∈ cl
({y})} =

{
y ∈ X : y ∈ cl

({x})} = cl
({x}).

�

If M is a topological module over a topological ring R and N0(M) denotes the filter of all
neighborhoods of 0 in M, then the intersection of all 0-neighborhoods of M is commonly
denoted as OM , that is, OM := M(0) :=

⋂
V∈N0(M) V . Observe that OM is a bounded and

closed submodule of M whose inherited topology is the trivial topology [6, Theorem 2]. It
is well known that M is Hausdorff if and only if OM = {0}. Our first result assures that OM

is the smallest closed submodule of M, which is a direct consequence of Lemma 1.

Theorem 1 If M is a topological module over a topological ring R, then OM is contained
in every closed submodule N of M.

Proof Let N be any closed submodule of M. Since {0} ⊆ N , we have that cl({0}) ⊆ N . Fi-
nally, any topological group is regular, in particular every any topological module, there-
fore OM = cl({0}) ⊆ N in view of Lemma 1. �

Theorem 1 motivates the definition of topological kernel.
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Definition 1 (Topological kernel) Let M, N be topological modules over a topological
ring R. The topological kernel of an R-linear operator T : M → N is defined as

kert(T) := T–1(ON ) =
{

m ∈ M : T(m) ∈
⋂

V∈N0(M)

V
}

.

Instead of taking the pre-image of 0, take the pre-image of the intersection of all neigh-
borhoods of 0. Notice that if N is Hausdorff, then kert(T) = T–1(ON ) = T–1({0}) = ker(T).
In case M, N are seminormed modules, then ON = {n ∈ N : ‖n‖ = 0} in view of [6, Theo-
rem 2], hence kert(T) = {m ∈ M : ‖T(m)‖ = 0}.

The notion of topological kernel introduced in Definition 1 is not the first generaliza-
tion of the classical concept of kernel of a linear operator. For instance, there exists the
notion of generalized kernel [7, 11, 17, 21] which consists in

⋃
n∈N ker(Tn) for T : X → Y

a continuous linear operator between real or complex topological vector spaces X, Y .

Theorem 2 Let M, N be topological modules over a topological ring R. Consider an R-
linear operator T : M → N . Then kert(T) is a submodule of M. Even more, if T is contin-
uous, then kert(T) is closed and contains OM .

Proof In view of [6, Theorem 2], ON is a closed submodule of N , so kert(T) := T–1(ON )
is a submodule of M. Suppose that T is continuous. Then kert(T) is closed in M because
ON is a closed submodule of N . On the other hand, the continuity of T allows that T–1

preserve neighborhoods of 0, hence

{
T–1(V ) : V ∈N0(N)

} ⊆N0(M).

Therefore,

OM =
⋂

W∈N0(M)

W ⊆
⋂

V∈N0(N)

T–1(V ) = T–1
( ⋂

V∈N0(N)

V
)

= T–1(ON ) = kert(T).
�

Notice that, under the settings of the previous theorem, the fact that kert(T) contains
OM if T is continuous can be directly inferred from Lemma 1 together with the fact that
kert(T) is closed.

2.2 Pareto optimal elements for a family of linear operators
We refer the reader to the Appendix for a review on multiobjective optimization prob-
lems and proper references. Commonly studied multiobjective optimization problems in
bioengineering and physics involve linear operators on seminormed modules over semi-
normed rings.

Definition 2 (Optimal elements) Let M, N be seminormed modules over a seminormed
ring R. Let F be a family of R-linear operators Ti, Sj : M → N , i ∈ I , j ∈ J . Let R be a
nonempty subset of M. An element m0 ∈ R is said to be optimal for the family F on R
provided that ‖Ti(m0)‖ ≥ ‖Ti(m)‖ and ‖Sj(m0)‖ ≤ ‖Sj(m)‖ for all i, j ∈ I and all m ∈ R.
The set of optimal elements of F on R is denoted by solR(F ).



García-Pacheco Journal of Inequalities and Applications        (2023) 2023:160 Page 5 of 12

If R := M, then we will simply write sol(F ). The need to consider Pareto optimal solu-
tions is justified by plenty of multi-objective optimization problems for which there are
no optimal solutions [15, Theorem 2].

Proposition 3 Let M, N be seminormed modules over a seminormed ring R. Let F be a
family of R-linear operators Ti, Sj : M → N , i ∈ I , j ∈ J . Then sol(F ) = ∅ in any of the fol-
lowing situations:

1. There exist i0 ∈ I and j0 ∈ J such that kert(Sj0 ) ⊆ kert(Ti0 ) 
= M.
2. There is a sequence (mn)n∈N in M and some i0 ∈ I such that ‖Ti0 (mn)‖ → ∞.
3. R is practical and there exist i0 ∈ I and m0 ∈ M such that ‖Ti0 (m0)‖ > 0.

Proof The proof is itemized according to the statement of the proposition.
1. If m0 ∈ sol(F ), then ‖Sj0 (m0)‖ ≤ ‖Sj0 (0)‖ = 0, which implies that

m0 ∈ kert(Sj0 ) ⊆ kert(Ti0 ). Next, if we consider any m ∈ M \ kert(Ti0 ), then we reach
the contradiction that 0 = ‖Ti0 (m0)‖ ≥ ‖Ti0 (m)‖ > 0.

2. Let m ∈ M be arbitrary. Then there is some positive integer n such that
‖Ti0 (m)‖ < ‖Ti0 (mn)‖, hence m /∈ sol(F ). This shows that sol(F ) = ∅.

3. Next, suppose that R is practical and there exist i0 ∈ I and m0 ∈ M such that
‖Ti0 (m0)‖ > 0. Take a sequence (rn)n∈N ⊆ U (R) of invertibles converging to 0.
Following (1), we have that

‖rn‖–1∥∥Ti0 (m0)
∥
∥ ≤ ∥

∥r–1
n Ti0 (m0)

∥
∥ =

∥
∥Ti0

(
r–1

n m0
)∥
∥ → ∞

as n → ∞, since ‖rn‖–1 → ∞ as n → ∞. As a consequence, sol(F ) = ∅ in view of
Proposition 3(2) by taking mn := r–1

n m0 for all n ∈N. �

Proposition 3 motivates the notion of Pareto optimal element for a family of linear op-
erators. The notion of Pareto optimal solution is proper from optimization theory and
serves to partially solve a multi-objective optimization problem when it lacks optimal so-
lutions. The notion of Pareto optimal element for a family of linear operators is novel of
this work and is motivated by the one of Pareto optimal solution.

Definition 3 (Pareto optimal elements) Let M, N be seminormed modules over a semi-
normed ring R. Let F be a family of R-linear operators Ti, Sj : M → N , i ∈ I , j ∈ J . Let R be
a nonempty subset of M. An element m0 ∈R is said to be Pareto optimal for the family F
on R provided that the following Pareto condition holds: If m ∈R satisfies that there ex-
ists i ∈ I with ‖Ti(m)‖ > ‖Ti(m0)‖ or exists j ∈ J with ‖Sj(m)‖ < ‖Sj(m0)‖, then there exists
i′ ∈ I with ‖Ti′ (m)‖ < ‖Ti′ (m0)‖ or exists j′ ∈ J with ‖Sj′ (m)‖ > ‖Sj′ (m0)‖. The set of Pareto
optimal elements of F on R is denoted by ParR(F ).

If R := M, then we simply write Par(F ). Next remark highlights an important observa-
tion related to Pareto optimal elements.

Remark 1 Let M, N be seminormed modules over a seminormed ring R. Let F be a family
of R-linear operators Ti, Sj : M → N , i ∈ I , j ∈ J . LetR be a nonempty subset of M. Suppose
that m0 ∈ ParR(F ). If m ∈ R satisfies that ‖Ti(m)‖ ≥ ‖Ti(m0)‖ for all i ∈ I and ‖Sj(m)‖ ≤
‖Sj(m0)‖ for all j ∈ J , then ‖Ti(m)‖ = ‖Ti(m0)‖ for all i ∈ I and ‖Sj(m)‖ = ‖Sj(m0)‖ for all
j ∈ J , hence m ∈ ParR(F ).
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The following theorem establishes a necessary condition for the existence of Pareto op-
timal elements.

Theorem 4 Let R be a practical seminormed ring and M, N seminormed R-modules. Let
F be a family of R-linear operators Ti, Sj : M → N , i ∈ I , j ∈ J . Suppose the following:

• {‖Ti(m)‖ : i ∈ I} is bounded below for every m ∈ ⋂
j∈J kert(Sj).

• Par(F ) 
= ∅ and {‖Ti(m)‖ : i ∈ I} is bounded above for some m ∈ Par(F ).
Then

⋂
j∈J kert(Sj) ⊆ ⋃

i∈I kert(Ti).

Proof Fix m0 ∈ Par(F ) such that {Ti(m0) : i ∈ I} is bounded above. Let us assume that,
on the contrary, there exists m1 ∈ ⋂

j∈J kert(Sj) \ ⋃
i∈I kert(Ti). In particular, ‖Sj(m1)‖ = 0

for all j ∈ J and ‖Ti(m1)‖ > 0 for all i ∈ I . Let L > 0 be a lower bound for {Ti(m1) : i ∈ I}
and K > 0 an upper bound for {Ti(m0) : i ∈ I}. Since R is practical, we can find a sequence
(rk)k∈N ⊆ R such that (‖rk‖)k∈N converges to 0. By bearing in mind again (1), for every i ∈ I
and each k ∈N, we have that

‖rk‖–1L ≤ ‖rk‖–1∥∥Ti(m1)
∥
∥ ≤ ∥

∥r–1
k Ti(m1)

∥
∥ =

∥
∥Ti

(
r–1

k m1
)∥
∥.

We can then find k1 ∈N such that ‖rk1‖ < L
K . This way

∥
∥Ti

(
r–1

k1 m1
)∥
∥ ≥ ‖rk1‖–1L > K ≥ ∥

∥Ti(m0)
∥
∥

for all i ∈ I . Since m0 ∈ Par(F ), there must exist j0 ∈ J such that

∥
∥Sj0 (m0)

∥
∥ <

∥
∥Sj0

(
r–1

k1 m1
)∥
∥ ≤ ∥

∥r–1
k1

∥
∥
∥
∥Sj0 (m1)

∥
∥ = 0,

which is a contradiction. �

The reader may trivially notice that, under the settings of Theorem 4, if I is finite, then
{‖Ti(m)‖ : i ∈ I} is bounded below for every m ∈ ⋂

j∈J kert(Sj) and bounded above for every
m ∈ Par(F ). In order to prove our next theorem, a technical lemma is needed first.

Lemma 2 Let R be a seminormed ring and M a seminormed R-module. Then ‖um‖ =
‖u‖‖m‖ for all u ∈ U1(R) and all m ∈ M.

Proof Simply observe that ‖m‖ = ‖u–1um‖ ≤ ‖u–1‖‖um‖ = ‖u‖–1‖um‖, so ‖u‖‖m‖ ≤
‖um‖ ≤ ‖u‖‖m‖. �

Theorem 5 Let R be a unital seminormed ring and M, N seminormed R-modules. Let F
be a family of R-linear operators Ti, Sj : M → N , i ∈ I , j ∈ J . Then Par(F ) = U1(R)Par(F ).

Proof Since 1 ∈ U1(R), we trivially have that Par(F ) ⊆ U (R)Par(F ). Conversely, fix arbi-
trary elements u ∈ U1(R) and m ∈ Par(F ). We have to prove that um ∈ Par(F ). Suppose
not. There exists m0 ∈ M satisfying one of the following conditions: either there exists i0 ∈
I such that ‖Ti0 (m0)‖ > ‖Ti0 (um)‖, ‖Ti(m0)‖ ≥ ‖Ti(um)‖ for all i ∈ I \ {i0}, and ‖Sj(m0)‖ ≤
‖Sj(um)‖ for all j ∈ J ; or there exists j0 ∈ J such that ‖Sj0 (m0)‖ < ‖Sj0 (um)‖, ‖Sj(m0)‖ ≤
‖Sj(um)‖ for all j ∈ J \ {j0}, and ‖Ti(m0)‖ ≥ ‖Ti(um)‖ for all i ∈ I . We may assume without
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any loss of generality that the first condition above is satisfied. Then Lemma 2 assures
that ‖Ti0 (u–1m0)‖ = ‖u–1‖‖Ti0 (m0)‖ > ‖u–1‖‖Ti0 (um)‖ = ‖Ti0 (m)‖. Since m ∈ Par(F ),
there must exist i ∈ I \ {i0} or j ∈ J such that either ‖Ti(m)‖ > ‖Ti(u–1m0)‖ or ‖Sj(m)‖ <
‖Sj(u–1m0)‖. Each condition implies that ‖Ti(um)‖ > ‖Ti(m0)‖ or ‖Sj(um)‖ < ‖Sj(m0)‖,
respectively, reaching then a contradiction with the first condition. �

The following theorem relates Pareto optimal elements when a family of linear operators
suffers a slight perturbation.

Theorem 6 Let R be a seminormed ring and M, N seminormed R-modules. Let F be a
family of R-linear operators Ti, Sj : M → N , i ∈ I , j ∈ J . Fix j′ ∈ J and consider the family F ′

of R-linear operators Ti, Sj : M → N , i ∈ I , j ∈ J \ {j′}. Take t ≥ 0 and consider R′ := {m ∈
M : ‖Sj′ (m)‖ ≤ t}. Then Par(F ) ∩ {m ∈ M : ‖Sj′ (m)‖ = t} ⊆ ParR′ (F ′).

Proof Fix an arbitrary m ∈ Par(F ) such that ‖Sj′ (m)‖ = t. Suppose to the contrary that
m /∈ ParR′ (F ′). There exists m0 ∈ R′ satisfying one of the following conditions: either
there exists i0 ∈ I such that ‖Ti0 (m0)‖ > ‖Ti0 (m)‖, ‖Ti(m0)‖ ≥ ‖Ti(m)‖ for all i ∈ I \ {i0},
and ‖Sj(m0)‖ ≤ ‖Sj(m)‖ for all j ∈ J \ {j′}; or there exists j0 ∈ J \ {j′} such that ‖Sj0 (m0)‖ <
‖Sj0 (m)‖, ‖Sj(m0)‖ ≤ ‖Sj(m)‖ for all j ∈ J \{j0, j′}, and ‖Ti(m0)‖ ≥ ‖Ti(m)‖ for all i ∈ I . If any
one of the two previous conditions is satisfied, then, by bearing in mind that m ∈ Par(F ),
the only possibility left is that ‖Sj′ (m)‖ < ‖Sj′ (m0)‖. However, this means the contradiction
that t = ‖Sj′ (m)‖ < ‖Sj′ (m0)‖ ≤ t, since m0 ∈R′. �

The following final remark analyzes whether it is possible to reverse the inclusion pro-
vided by Theorem 6 or not.

Remark 2 Let R be a seminormed ring and M, N seminormed R-modules. Let F be a
family of R-linear operators Ti, Sj : M → N , i ∈ I , j ∈ J . Fix j′ ∈ J and consider the fam-
ily F ′ of R-linear operators Ti, Sj : M → N , i ∈ I , j ∈ J \ {j′}. Take t ≥ 0 and consider
R′ := {m ∈ M : ‖Sj′ (m)‖ ≤ t}. It cannot be assured that ParR′ (F ′) ⊆ Par(F ). Indeed, fix
an arbitrary m ∈ ParR′ (F ′). Let us assume, on the contrary, that m /∈ Par(F ). There ex-
ists m0 ∈ M satisfying one of the following conditions: either there exists i0 ∈ I such
that ‖Ti0 (m0)‖ > ‖Ti0 (m)‖, ‖Ti(m0)‖ ≥ ‖Ti(m)‖ for all i ∈ I \ {i0}, and ‖Sj(m0)‖ ≤ ‖Sj(m)‖
for all j ∈ J ; or there exists j0 ∈ J such that ‖Sj0 (m0)‖ < ‖Sj0 (m)‖, ‖Sj(m0)‖ ≤ ‖Sj(m)‖ for
all j ∈ J \ {j0}, and ‖Ti(m0)‖ ≥ ‖Ti(m)‖ for all i ∈ I . If the first condition holds, then
m0 ∈ R′, meaning a contradiction with the fact that m ∈ ParR′ (F ′). So, let us assume
that the second condition holds. If j0 
= j′, then again m0 ∈ R′, reaching a contradiction
with m ∈ ParR′ (F ′). Therefore, we will assume that j0 = j′. In this situation, we have that
‖Sj′ (m0)‖ < ‖Sj′ (m)‖, ‖Sj(m0)‖ ≤ ‖Sj(m)‖ for all j ∈ J \ {j′}, and ‖Ti(m0)‖ ≥ ‖Ti(m)‖ for all
i ∈ I . Since m ∈ ParR′ (F ′), we actually have that ‖Sj′ (m0)‖ < ‖Sj′ (m)‖, ‖Sj(m0)‖ = ‖Sj(m)‖
for all j ∈ J \ {j′}, and ‖Ti(m0)‖ = ‖Ti(m)‖ for all i ∈ I . At this stage we cannot advance
further.

If we rely on hyperpractical rings and restrict J to a singleton, then we can reverse the
inclusion provided by Theorem 6.
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Theorem 7 Let R be a hyperpractical seminormed ring and M, N seminormed R-modules.
Let F be a family of R-linear operators Ti, S : M → N , i ∈ I . Consider the family F ′ of R-
linear operators Ti : M → N , i ∈ I . Take t ≥ 0 and consider R′ := {m ∈ M : ‖S(m)‖ ≤ t}.
Then Par(F ) ∩ {m ∈ M : ‖S(m)‖ = t} = ParR′ (F ′).

Proof In accordance with Theorem 6, Par(F ) ∩ {m ∈ M : ‖S(m)‖ = t} ⊆ ParR′ (F ′). Fix
an arbitrary m ∈ ParR′ (F ′). We will show first that ‖S(m)‖ = t. Indeed, let us assume,
on the contrary, that ‖S(m)‖ < t. By hypothesis, R is hyperpractical, therefore, there ex-
ists u ∈ U1(R) with 1 < ‖u‖ < t

‖S(m)‖ , meaning, by Lemma 2, that ‖S(m)‖ < ‖S(um)‖ < t (in
case ‖S(m)‖ = 0, then it suffices to take any u ∈ U1(R)). Then um ∈ R′ and ‖Ti(um)‖ =
‖u‖‖Ti(m)‖ > ‖Ti(m)‖ for all i ∈ I , meaning a contradiction with the fact that m ∈
ParR′ (F ′). As a consequence, ‖S(m)‖ = t. Let us prove now that m ∈ Par(F ). Assume this is
not the case. There exists m0 ∈ M satisfying one of the following conditions: either there
exists i0 ∈ I such that ‖Ti0 (m0)‖ > ‖Ti0 (m)‖, ‖Ti(m0)‖ ≥ ‖Ti(m)‖ for all i ∈ I \ {i0}, and
‖S(m0)‖ ≤ ‖S(m)‖; or ‖S(m0)‖ < ‖S(m)‖ and ‖Ti(m0)‖ ≥ ‖Ti(m)‖ for all i ∈ I . If the first
condition holds, then m0 ∈R′, meaning a contradiction with the fact that m ∈ ParR′ (F ′).
So, let us assume that the second condition holds. In this situation, we have that ‖S(m0)‖ <
‖S(m)‖ and ‖Ti(m0)‖ ≥ ‖Ti(m)‖ for all i ∈ I . Since m ∈ ParR′ (F ′), we actually have that
‖S(m0)‖ < ‖S(m)‖ and ‖Ti(m0)‖ = ‖Ti(m)‖ for all i ∈ I . This shows that m0 ∈ ParR′ (F ′),
implying the contradiction that t = ‖S(m0)‖ < ‖S(m)‖ = t. �

3 Applications
Theorem 6 together with Theorem 7 allows to reformulate the following common multi-
objective optimization problem into a single-optimization problem that frequently arises
in physics and bioengineering [16, 20]:

⎧
⎨

⎩

max‖Aψ‖,

min‖ψ‖,
(2)

where A ∈K
m×n is a real or complex matrix (K = R or C) and ψ ∈K

n. The reformulation
provided by Theorem 7 is precisely the following:

⎧
⎨

⎩

max‖Aψ‖,

‖ψ‖ = 1,
(3)

which essentially consists of finding all normalized vectors ψ ∈ K
n at which A attains its

matrix norm.

4 Discussion
Let M be a topological module over a topological ring R. A subset A ⊆ X is said to be
bounded if for each 0-neighborhood U in M there is an invertible u ∈ U (R) such that
A ⊆ uU . The following proposition shows that seminorm-boundedness and boundedness
coincide when the underlying ring is practical.

Proposition 8 Let R be a seminormed ring and M a seminormed R-module. If A ⊆ M
is bounded, then A is seminorm-bounded. Conversely, if R is absolutely semivalued and
practical and A ⊆ M is seminorm-bounded, then it is bounded.
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Proof Assume first that A ⊆ M is bounded. There is u ∈ U (R) with A ⊆ uBM ⊆ BM(0,‖u‖),
which means that A is seminorm-bounded. Conversely, assume that R is absolutely semi-
valued and practical and A ⊆ M is seminorm-bounded. Fix any arbitrary 0-neighborhood
V in M. Take t > 0 with BM(0, t) ⊆ V . Since A is seminorm-bounded, there exists s > 0 with
A ⊆ BM(0, s). Since R is practical, we can find an invertible v ∈ R with |u| ≤ t

s . Then

A ⊆ BM(0, s) ⊆ BM
(
0, |u|–1t

)
= u–1BM(0, t) ⊆ u–1V . �

Lemma 3 Let R be a topological ring and M, N topological R-modules. Consider an R-
linear operator T : M → N . Let B ⊆ M bounded. Then:

1. If T is continuous, then T(B) is bounded in N .
2. If there exists a 0-neighborhood V ⊆ M such that T(V ) is bounded, then T is

continuous.

Proof Suppose first that T is continuous. We will show that T(B) is bounded in N . Let
U ∈ N0(N). Then T–1(U) ∈ N0(M) ∈ N0(M). Since B ⊆ M is bounded, there exists u ∈
U (R) with B ⊆ uT–1(U). Thus, T(B) ⊆ uU . This implies that T(B) is bounded. Next, let us
assume that T is R-linear and that there exists a 0-neighborhood V ⊆ M such that T(V ) is
bounded. We will prove that T is continuous. Fix any arbitrary 0-neighborhood W ⊆ N .
By hypothesis, there exists an invertible u ∈ U (R) in such a way that T(V ) ⊆ uW , meaning
that u–1V ⊆ T–1(W ), so T–1(W ) is a neighborhood of 0 in M. This is sufficient to assure
that T is continuous. �

An R-linear operator T : M → N between seminormed modules M, N over a semi-
normed ring R is said to be bounded provided that ‖T‖ := sup{‖T(m)‖ : ‖m‖ ≤ 1} < ∞.
The set of supporting vectors of a bounded R-linear operator T : M → N is defined as

suppv(T) := arg max
‖m‖≤1

∥
∥T(m)

∥
∥ =

{
m ∈ BM :

∥
∥T(m)

∥
∥ = ‖T‖}.

In order to assure that bounded operators coincide with continuous operators, it is precise
to require certain properties from the underlying ring R, such as the practical property
[3, 6]. If R is absolutely semivalued, then it is a trivial observation that

SRsuppv(T) = suppv(T).

If, in addition, N is a seminormed (R, S)-bimodule for S, another absolutely semivalued
ring, then suppv(T) = suppv(Ts) for all s ∈ SS .

Corollary 1 Let M be a seminormed module over a seminormed ring R. Let T : M → M
be an R-linear operator. Consider the families F := {T , IM} and F ′ := {T}. Let R′ := {m ∈
M : ‖m‖ ≤ 1}. Then:

1. suppv(T) = ParR′ (F ′).
2. Par(F ) ∩ SM ⊆ suppv(T).
3. If R is hyperpractical, then Par(F ) ∩ SM = suppv(T).
4. If M is normed, then 0 ∈ Par(F ).
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Proof Since F ′ is a singleton, ParR′ (F ′) = solR′ (F ′) = arg max‖m‖≤1 ‖T(m)‖ = suppv(T).
Thus, by applying Theorem 6, Par(F )∩SM ⊆ ParR′ (F ′) = suppv(T). If R is hyperpractical,
then Par(F ) ∩ SM = ParR′ (F ′) = suppv(T) in view of Theorem 7. Finally, if M is normed
and m ∈ M is so that ‖T(m)‖ > ‖T(0)‖ = 0, then m 
= 0, so ‖m‖ > 0 = ‖0‖, which proves
that 0 ∈ Par(F ). �

5 Conclusion
In the category of modules over a ring, the null object is the null submodule. However,
when modules are endowed with a module topology that is not necessarily Hausdorff,
then the null submodule does not necessarily behave as the smallest closed submodule.
This observation is the key fact motivating the main results of this manuscript, because it
allows to consider topological kernels. The study of continuous linear operators over non-
Hausdorff spaces necessarily involves dealing with topological kernels. On the other hand,
topological kernels serve to study the feasibility of multiobjective optimization of linear
operators by providing necessary conditions for the existence of Pareto optimal solutions.
Finally, future development of this trend includes a first isomorphism theorem involving
topological kernels.

Appendix: Multiobjective optimization problem
Multiobjective optimization problems (MOPs) appear quite often in all areas of Pure, Ex-
perimental, Medical, and Social Sciences [8, 16, 20]. By means of MOPs, many real-life
situations can be modeled accurately.

Problem 1 (MOP) Let X be a nonempty set and A a totally ordered set. Let fi, gj : X → A,
i ∈ I , j ∈ J , be functions. Let R be a nonempty subset of X. Solve:

⎧
⎪⎪⎨

⎪⎪⎩

max fi(x), i ∈ I,

min gj(x), j ∈ J ,

x ∈R.

(A.1)

The functions fi, gj, i ∈ I , j ∈ J , are called objective functions. The set R is called feasible
region, region of constrains/restrictions, or set of feasible solutions, and it is often denoted
as fea(A.1). The set of optimal solutions of a MOP is defined as those feasible solutions
that optimize all the objective functions at once.

Definition 4 (Optimal solution) The set of optimal solutions of (A.1) is defined as
sol(A.1) := {x ∈R : ∀i ∈ I∀j ∈ J∀y ∈R, fi(x) ≥ fi(y) and gj(x) ≤ gj(y)}.

Note that

sol(A.1) =
⋂

i∈I

arg max
R

(fi) ∩
⋂

j∈J

arg min
R

(gj).

The above intersection is commonly empty, hence the Pareto optimal solutions come into
play.
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Definition 5 (Pareto optimal solution) The set of Pareto optimal solutions of (A.1) is
defined as the set of feasible solutions satisfying the Pareto condition Par(A.1) := {x ∈ R:
If y ∈R satisfies that there exists i ∈ I with fi(y) > fi(x) or exists j ∈ J with gj(y) < gj(x), then
there exists i′ ∈ I with fi′ (y) < fi′ (x) or exists j′ ∈ J with gj′ (x) < gj′ (y)}.

It is trivial that sol(A.1) ⊆ Par(A.1) ⊆ fea(A.1). In fact, if sol(A.1) 
= ∅, then sol(A.1) =
Par(A.1).
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