Estimation of q for ℓ_{q}-minimization in signal recovery with tight frame

Kaihao Liang ${ }^{1 *}$, Chaolong Zhang ${ }^{1}$ and Wenfeng Zhang ${ }^{2}$

Correspondence:
karman03@126.com
' Department of Mathematics, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
Full list of author information is available at the end of the article

Abstract

This study aims to reconstruct signals that are sparse with a tight frame from undersampled data by using the ℓ_{q}-minimization method. This problem can be cast as a ℓ_{q}-minimization problem with a tight frame subjected to an undersampled measurement with a known noise bound. We proved that if the measurement matrix satisfies the restricted isometry property with $\delta_{2 s} \leq 1 / 2$, there exists a value q_{0} such that for any $q \in\left(0, q_{0}\right]$, any signal that is s-sparse with a tight frame can be robustly recovered to the true signal. We estimated q_{0} as $q_{0}=2 / 3$ in the case of $\delta_{2 s} \leq 1 / 2$ and discussed that the value of q_{0} can be much higher. We also showed that when $\delta_{2 s} \leq 0.3317$, for any $q \in(0,1]$, robust recovery for signals via ℓ_{q}-minimization holds, which is consistent with the case of ℓ_{q}-minimization without a tight frame.

Keywords: Compressed sensing; Tight frame; ℓ_{q}-minimization

1 Introduction

Sparse representation and sparse signal recovery are derived from signal and image processing [14, 15, 26] and have been extended to other areas, such as sampling theory [21, 27], model identification [23, 36], and sensor networks [20, 30, 32]. Most of these applications search for sparse signals. Here, a signal or vector x is considered s-sparse if $\|x\|_{0} \leq s$ and $\|\cdot\|_{0}$ are the ℓ_{0}-norm, which counts the nonzero entries of x. Compressed sensing is a sparse signal recovery theory that searches for the sparsest signal in an underdetermined linear system $A x=y$, where $A \in \mathbb{R}^{n \times N}(n \ll N)$ is the so-called measurement matrix, which is usually full rank, whereas $y \in \mathbb{R}^{n}$ is the given measurement vector. This procedure can be cast as a ℓ_{0}-minimization problem. However, the ℓ_{0}-minimization problem is NP-hard [24], some of which can be extended to ℓ_{1}-minimization, replacing $\|x\|_{0}$ with $\|x\|_{1}$ in ℓ_{0}-minimization. The ℓ_{1}-minimization seeks a slightly sparse solution for $y=A x$. Donoho, Candès, Romberg, and Tao specified the conditions in [4, 5] that solutions of ℓ_{1}-minimization are the solutions of ℓ_{0}-minimization. Furthermore, ℓ_{1}-minimization is a linear programming problem that can be solved using certain algorithms [6, 9, 25, 31, 33].

In some other situations, signal x is not sparse itself, but it is sparse under some bases [29] (such as a Fourier base or wavelet base), frames [11, 12], or redundant dictionaries [10, 28]. In this study, signal x that was sparse in a tight frame was considered. A tight frame is defined as follows.

Definition 1 (Tight frame) [7] Vectors $D_{1}, D_{2}, \ldots, D_{d} \in \mathbb{R}^{N}$ are said to be a tight frame if they satisfy

$$
x=\sum_{k}\left\langle x, D_{k}\right\rangle D_{k}, \quad \forall x \in \mathbb{R}^{N} .
$$

Sometimes, we also say that the matrix $D=\left(D_{1}, D_{2}, \ldots, D_{d}\right) \in \mathbb{R}^{N \times d}$ is a tight frame. For some signal $x, D^{*} x$ is either sparse or approximately sparse. In a noisy setting, the sparsityseeking question can be expressed as

$$
\begin{equation*}
\bar{x}=\arg \min _{x \in \mathbb{R}^{N}}\left\{\left\|D^{*} x\right\|_{0}:\|A x-y\| \leq \epsilon\right\}, \tag{1}
\end{equation*}
$$

where D^{*} is the conjugate transpose of D and ϵ is the energy of the known errors. Its ℓ_{1}-minimization problem is available accordingly $[1,8,16,18]$,

$$
\begin{equation*}
\bar{x}=\arg \min _{x \in \mathbb{R}^{N}}\left\{\left\|D^{*} x\right\|_{1}:\|A x-y\|_{2} \leq \epsilon\right\} . \tag{2}
\end{equation*}
$$

The compliance of the solutions with ℓ_{0} and ℓ_{1}-minimizations has a sufficient condition with a coherent tight frame, which is said to be a restricted isometric property adapted to tight frame D (D-RIP).

Definition 2 (D-RIP) [3] The measurement matrix A satisfies the restricted isometric property adapted to tight frame D with order s if there exists a positive number $\delta_{s} \in(0,1)$ such that

$$
\left(1-\delta_{s}\right)\|D x\|_{2}^{2} \leq\|A D x\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|D x\|_{2}^{2}
$$

holds for $\forall x \in \sum_{s}$, where $\sum_{s}=\left\{x:\|x\|_{0} \leq s\right\}$. Here, δ_{s} is the restricted isometric constant (RIC) of order s.

Let $v_{\max (s)}$ be an operator that returns the s largest coefficients of $v \in \mathbb{R}^{N}$ in magnitude,

$$
v_{\max (s)}=\arg \min _{\|\tilde{v}\|_{0} \leq k}\|v-\tilde{v}\|_{2} .
$$

If in D-RIP $D=I d$, where $I d$ is the identity matrix, then D-RIP is the traditional RIP. For the traditional RIP, Cai and Zhang provided a sharp bound for $\delta_{2 s}$ in [2] as $\delta_{2 s}<\sqrt{2} / 2$. For D-RIP, Candès, Eldar et al. showed that Gaussian, sub-Gaussian, and boundary matrices satisfy the D-RIP with a high probability in [3]. They also proved that when $\delta_{2 s}<0.08$, the solution of the ℓ_{1}-minimization satisfies

$$
\|\hat{x}-x\|_{2} \leq C_{0} \frac{\left\|D^{*} x-\left(D^{*} x\right)_{\max (s)}\right\|_{1}}{\sqrt{k}}+C_{1} \epsilon,
$$

where C_{0} and C_{1} are constants, \hat{x} is the recovered signal and x is the true signal. As shown, the upper boundary of $\|\hat{x}-x\|_{2}$ is controlled by $\left\|D^{*} x-\left(D^{*} x\right)_{\max (s)}\right\|_{1}$ and ϵ. If $D^{*} x$ is s-sparse or approximately s-sparse and ϵ is sufficiently small, the error between the recovered signal and the true signal can be regulated within an acceptable range.

The dynamic relation between ℓ_{0} and ℓ_{1}-minimization is not clear. Thus, we studied ℓ_{q}-minimization with $0<q<1[18,19,22]$. The ℓ_{q}-minimization problem is

$$
\begin{equation*}
\hat{x}=\arg \min _{x \in \mathbb{R}^{N}}\left\{\left\|D^{*} x\right\|_{q}:\|A x-y\|_{2} \leq \epsilon\right\} . \tag{3}
\end{equation*}
$$

When $q \rightarrow 0, \ell_{q^{\prime}}$-minimization approximates ℓ_{0}-minimization, while if $q \rightarrow 1, \ell_{q^{-}}$ minimization approximates ℓ_{1}-minimization.
In general, the recovery condition by the ℓ_{q}-minimization $(0<q<1)$ is less restrictive than the ℓ_{1}-minimization. In [34], Zhang and Li proved that if the sensing matrix A satisfies the D-RIP condition $\delta_{2 s}<\sqrt{2} / 2$, then all signals x with s-sparse with a tight frame can be recovered exactly via the constrained ℓ_{1}-minimization. For ℓ_{q}-minimization with tight frame, in [17], Li and Lin showed that for a tight frame D, if $\delta_{2 s}<1 / 2$, then there exists $q_{0}=q_{0}\left(\delta_{2 k}\right) \in(0,1]$, such that for any $q \in\left(0, q_{0}\right)$, the recovered signal \hat{x} via ℓ_{q}-minimization and the true signal x satisfy

$$
\|\hat{x}-x\|_{2} \leq C_{0} \frac{\left\|D^{*} x-\left(D^{*} x\right)_{\max (s)}\right\|_{1}}{s^{\frac{1}{q}-\frac{1}{2}}}+C_{1} \epsilon,
$$

where C_{0} and C_{1} are constants that depend on $\delta_{2 s}$ and q. However, this result does not provide the exact value for q_{0}. Subsequently, the D-RIP conditions for ℓ_{q}-minimization with a tight frame are improved. In [35], Zhang and Li showed that if the sensing matrix A satisfies the D-RIP with

$$
\begin{equation*}
\delta_{2 s}<\frac{\eta}{2-q-\eta}:=\delta(q), \tag{4}
\end{equation*}
$$

where $\eta \in\left(1-q, 1-\frac{q}{2}\right)$ is the only positive solution of the equation

$$
\frac{q}{2} \eta^{\frac{2}{q}}+\eta-1+\frac{q}{2}=0
$$

then any s-sparse signal x with a tight frame can be exactly and stably recovered via $\ell_{q^{-}}$ minimization in noiseless and noisy cases, respectively. D-RIP condition (4) for ℓ_{q} minimization is less restrictive than $\delta_{2 s}<\sqrt{2} / 2$ for ℓ_{1} minimization. If let $p=1 / 2$, we have $\delta_{2 s}<0.859$ by (4), which is less restrictive than $\delta_{2 s}<\sqrt{2} / 2$ for ℓ_{1}-minimization.

We provide an example to illustrate that if $\delta_{2 s}>\sqrt{2} / 2, \ell_{1}$-minimization may fail, but ℓ_{q}-minimization works. We construct a measurement matrix $A \in \mathbb{R}^{2 \times 3}$, and a tight frame $D \in \mathbb{R}^{3 \times 5}$, as follows

$$
A=\frac{1}{\sqrt{4}}\left(\begin{array}{ccc}
\sqrt{2} & \sqrt{2} & \sqrt{2} \tag{5}\\
0 & \sqrt{3} & -\sqrt{3}
\end{array}\right), \quad D=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 / 2 & -\frac{2+\sqrt{2}}{4} & \frac{\sqrt{6-4 \sqrt{2}}}{4} & 0 \\
0 & \frac{2+\sqrt{2}}{4} & 1 / 2 & 0 & \frac{\sqrt{6-4 \sqrt{2}}}{4}
\end{array}\right) .
$$

We can calculate that $\delta_{2}=0.75>\sqrt{2} / 2$. Vectors $x^{(1)}=(2,0,0)^{T}$ and $x^{(2)}=(0,1,1)^{T}$ have the same observed vector, namely $A x^{(1)}=A x^{(2)}$. We have

$$
D^{*} x^{(1)}=(2,0,0,0,0)^{T},
$$

$$
D^{*} x^{(2)}=\left(0, \frac{1}{2}+\frac{2+\sqrt{2}}{4}, \frac{1}{2}-\frac{2+\sqrt{2}}{4}, \frac{\sqrt{6-4 \sqrt{2}}}{4}, \frac{\sqrt{6-4 \sqrt{2}}}{4}\right)^{T} .
$$

$D^{*} x^{(1)}$ and $D^{*} x^{(2)}$ have the same ℓ_{1}-norm, which means that signal recovery for $x^{(1)}$ through ℓ_{1}-minimization fails. ℓ_{q}-minimization is necessary in this case. The general solution of the equations $A x=A x^{(1)}$ is $x=(2-2 c, c, c)^{T}$, where c is arbitrary real number. We can derive

$$
\left\|D^{*} x^{(1)}\right\|_{q}^{q}=2^{q}=(2-2 c+c+c)^{q} \leq|2-2 c|^{q}+|c|^{q}+|c|^{q}=\left\|D^{*} x\right\|_{q}^{q},
$$

where the first inequality uses the conclusion: if $a>0, b>0$ and $0<q<1$, then $(a+b)^{q} \leq$ $a^{q}+b^{q}$. Hence, we have $\left\|D^{*} x^{(1)}\right\|_{q}<\left\|D^{*} x\right\|_{q}$ for $0<q<1$ and any solution x of the equations $A x=A x^{(1)}$. Therefore, ℓ_{q}-minimization can recover signal $x^{(1)}$.

This study examines signal recovery with a tight frame via ℓ_{q}-minimization for the case of a restricted isometry constant $\delta_{2 s}<1 / 2$. The main contribution shows not only the existence of q_{0}, such that for any $q \in\left(0, q_{0}\right]$, any s-sparse signal with a tight frame can be recovered via ℓ_{q}-minimization, but also the exact value $q_{0}=2 / 3$. A computer also demonstrated that the value of q_{0} can be increased to $q_{0}=0.97$.

The remainder of this paper is organized as follows. In Sect. 2, some useful lemmas and their proofs are outlined, and Sect. 3 presents the main theorems. We provide the proofs of these main theorems in Sect. 4. Conclusions are presented in Sect. 5.
Notations: Given a signal $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T}$, the ℓ_{0}-norm is the number of its nonzero entries, that is, $\|x\|_{0}=\operatorname{Card}(\operatorname{supp}(x))$. Here, $\operatorname{Card}(\cdot)$ is the cardinality of a vector and $\operatorname{supp}(x)$ is the support set of x. The ℓ_{1}-norm of vector x is the sum of the absolute values of its entries, that is, $\|x\|_{1}=\sum_{i \geq 1}\left|x_{i}\right|$. We can define its ℓ_{q}-norm with $0<q<1$ as $\|x\|_{q}=\left(\sum_{i \geq 1}\left|x_{i}\right|^{q}\right)^{1 / q}$. We can also define ℓ_{∞}-norm of x as $\|x\|_{\infty}=\max _{1 \leq i \leq N}\left\{\left|x_{i}\right|\right\}$ and $\ell_{-\infty^{-}}$ pseudonorm of x as $\|x\|_{-\infty}=\min _{1 \leq i \leq N}\left\{\left|x_{i}\right|\right\}$, respectively. Given $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)^{T} \in \mathbb{R}^{N}$, $x_{\max (s)}$ denotes the vector that maintains the largest s entries in absolute value, and sets the others to zero. For a matrix $D \in \mathbb{R}^{N \times d}$ and index subset $T \subset\{1,2, \ldots, d\}, D_{T}$ is used as the matrix D restricted to the columns indexed by T, D_{T}^{*} is the conjugate transpose of D_{T} and T^{C} is the complement of T in $\{1,2, \ldots, d\}$. Given a vector $h \in \mathbb{R}^{N}$, then $D^{*} h=\left(\left(D^{*} h\right)_{1},\left(D^{*} h\right)_{2}, \ldots,\left(D^{*} h\right)_{d}\right)^{T} \in \mathbb{R}^{d}$. Suppose $\left\{j_{1}, j_{2}, \ldots, j_{d}\right\}$ is the rearrangement of $\{1,2, \ldots, d\}$ such that vector $D^{*} h$ is monotonically decreasing in absolute value, that is, $\left|\left(D^{*} h\right)_{j_{1}}\right| \geq\left|\left(D^{*} h\right)_{j_{2}}\right| \geq \cdots \geq\left|\left(D^{*} h\right)_{j_{d}}\right|$, then divide the set $\left\{j_{1}, j_{2}, \ldots, j_{d}\right\}$ into some subsets with cardinality s starting from its head, if the cardinality of the last subset is less than s then just keep it, that is $T_{0}=\left\{j_{1}, j_{2}, \ldots, j_{s}\right\}, T_{1}=\left\{j_{s+1}, j_{s+2}, \ldots, j_{2 s}\right\}, T_{2}=\left\{j_{2 s+1}, j_{2 s+2}, \ldots, j_{3 s}\right\}$, \ldots. Here, let $T=T_{0}$.

2 Some useful lemmas

First, we provide the relationship between ℓ_{1} and the ℓ_{q}-norm, which is used to estimate the error bound.

Lemma 3 ([17]) Let $0<q \leq 1, x \in \mathbb{R}^{N}$,then

$$
\begin{equation*}
0 \leq\|x\|_{1}-\frac{\|x\|_{q}}{N^{1 / q-1}} \leq Q_{q} N\left(\|x\|_{\infty}-\|x\|_{-\infty}\right) \tag{6}
\end{equation*}
$$

where $Q_{q}=q^{\frac{q}{1-q}}-q^{\frac{1}{1-q}}$. Additionally, Q_{q} is a monotonous and convex function. The two limitations of this function with $q \rightarrow 0^{+}$and $q \rightarrow 1^{-}$, are respectively:

$$
Q_{0}:=\lim _{q \rightarrow 0^{+}} Q_{q}=1, \quad Q_{1}:=\lim _{q \rightarrow 1^{-}} Q_{q}=0
$$

The relationship between ℓ_{2} and the ℓ_{q}-norm is also required during the estimation of the error bound.

Lemma 4 For a fixed $x \in \mathbb{R}^{N}$ and $0<q \leq 1$, the following inequalities hold

$$
\begin{equation*}
0 \leq\|x\|_{2}-N^{\frac{1}{2}-\frac{1}{q}}\|x\|_{q} \leq \sqrt{N}\left(Q_{q}+\frac{1}{4}\right)\left(\|x\|_{\infty}-\|x\|_{-\infty}\right) . \tag{7}
\end{equation*}
$$

Proof According to the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\|x\|_{2} \geq \frac{\|x\|_{1}}{\sqrt{N}} \tag{8}
\end{equation*}
$$

In [13], the relationship between the ℓ_{1} and ℓ_{2} norms is

$$
\begin{equation*}
\|x\|_{2} \leq \frac{\|x\|_{1}}{\sqrt{N}}+\frac{\sqrt{N}}{4}\left(\|x\|_{\infty}-\|x\|_{-\infty}\right) \tag{9}
\end{equation*}
$$

Using Lemma 3, inequalities (8) and (9), we can derive the result.
For index set $T \subset\{1,2, \ldots, N\}$, denote $D_{T}^{*} x:=\left(D_{T}\right)^{*} x$. Suppose that \hat{x} is the solution to problem (3) and $x \in \mathbb{R}^{N}$ satisfies $\|y-A x\|_{2} \leq \epsilon$. Let

$$
\begin{equation*}
h=\hat{x}-x, \tag{10}
\end{equation*}
$$

then $D^{*} h=\left(\left(D^{*} h\right)_{1},\left(D^{*} h\right)_{2}, \ldots,\left(D^{*} h\right)_{d}\right)^{T}$. Without generality, let $\left\{j_{1}, j_{2}, \ldots, j_{d}\right\}$ be a rearrangement of $\{1,2, \ldots, d\}$ such that

$$
\left|\left(D^{*} h\right)_{j_{1}}\right| \geq\left|\left(D^{*} h\right)_{j_{2}}\right| \geq \cdots \geq\left|\left(D^{*} h\right)_{j_{d}}\right|
$$

Then denote

$$
\begin{array}{ll}
T=T_{0}=\left\{j_{1}, j_{2}, \ldots, j_{s}\right\}, & T_{1}=\left\{j_{s+1}, j_{s+2}, \ldots, j_{2 s}\right\}, \tag{11}\\
T_{2}=\left\{j_{2 s+1}, j_{2 s+2}, \ldots, j_{3 s}\right\}, & \ldots
\end{array}
$$

Clearly, $D^{*} h=\sum_{j \geq 0} D_{T_{i}}^{*} h$. Define ω and Ψ as follows

$$
\begin{align*}
\omega & :=\frac{\left\|D_{T_{1}}^{*} h\right\|_{q}^{q}}{\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}}, \tag{12}\\
\Psi & :=\sqrt{\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2}^{2}+\delta_{2 s}\left(\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2}\right)^{2} .} \tag{13}
\end{align*}
$$

Thus, $0 \leq \omega \leq 1$ and $\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}=(1-\omega)\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*}\right\|_{q}^{q}\right)$.

Li showed the following lemma in [17], which gives the bound of the ℓ_{2}-norm square of $D_{T_{i}}^{*} h$ with $i \geq 2$. These results can be obtained from Lemma 4.1 and (3.5) of [17].

Lemma 5 (Lemma 4.1 and inequality (3.5) in [17]) Let $0<q \leq 1, h,\left\{T_{i}, i \geq 0\right\}$, and Ψ be defined as (10),(11), and (13), respectively, then the following inequalities hold:

$$
\begin{align*}
& \sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2}^{2} \leq \frac{(1-\omega) \omega^{(2-q) / q}}{s^{(2-q) / q}}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{2 / q}, \tag{14}\\
& \left\|D_{T_{0} \cup T_{1}}^{*} h\right\|_{2}^{2} \leq \frac{(2 \epsilon+\Psi)^{2}}{1-\delta_{2 s}} \tag{15}
\end{align*}
$$

where s denotes sparsity.

The bound of the ℓ_{2}-norm of $D_{T_{i}}^{*} h$ with $i \geq 2$ is also required and is given by the following lemma.

Lemma 6 Let $0<q \leq 1, h,\left\{T_{i}, i \geq 0\right\}$, and ω be defined by (10), (11), and (12). Then,

$$
\begin{equation*}
\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2} \leq \frac{(1-\omega)^{1 / q}+\left(Q_{q}+1 / 4\right) \omega^{1 / q}}{s^{1 / q-1 / 2}}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{1 / q} \tag{16}
\end{equation*}
$$

Proof According to the relation between the ℓ_{2}-norm and ℓ_{q}-norm in Lemma 4, we have

$$
\left\|D_{T_{i}}^{*} h\right\|_{2} \leq s^{1 / 2-1 / q}\left\|D_{T_{i}}^{*} h\right\|_{q}+\sqrt{s}\left(Q_{q}+1 / 4\right)\left(\left\|D_{T_{i}}^{*} h\right\|_{\infty}-\left\|D_{T_{i}}^{*} h\right\|_{-\infty}\right) .
$$

Summing up for i, we have

$$
\begin{align*}
\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2} & \leq s^{1 / 2-1 / q} \sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{q}+\sqrt{s}\left(Q_{q}+1 / 4\right) \sum_{i \geq 2}\left(\left\|D_{T_{i}}^{*} h\right\|_{\infty}-\left\|D_{T_{i}}^{*} h\right\|_{-\infty}\right) \tag{17}\\
& \leq s^{1 / 2-1 / q} \sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{q}+\sqrt{s}\left(Q_{q}+1 / 4\right)\left\|D_{T_{2}}^{*} h\right\|_{\infty}
\end{align*}
$$

Note that

$$
\left\|D_{T_{1}}^{*} h\right\|_{q}=\left(\left|\left(D^{*} h\right)_{s+1}\right|^{q}+\cdots+\left|\left(D^{*} h\right)_{2 s}\right|^{q}\right)^{1 / q} \geq\left(s\left\|D_{T_{2}}^{*} h\right\|_{\infty}^{q}\right)^{1 / q}=s^{1 / q}\left\|D_{T_{2}}^{*} h\right\|_{\infty} .
$$

We have

$$
\begin{equation*}
\left\|D_{T_{2}}^{*} h\right\|_{\infty} \leq s^{-1 / q}\left\|D_{T_{1}}^{*} h\right\|_{q} . \tag{18}
\end{equation*}
$$

By substituting (18) into (17) and combining (12), we can derive

$$
\begin{aligned}
& \sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2} \\
& \quad \leq s^{1 / 2-1 / q} \sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{q}+s^{1 / 2-1 / q}\left(Q_{q}+\frac{1}{4}\right)\left\|D_{T_{1}}^{*} h\right\|_{q}
\end{aligned}
$$

$$
\begin{align*}
& \leq s^{1 / 2-1 / q}\left(\left(\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{1 / q}+\left(Q_{q}+\frac{1}{4}\right)\left(\left\|D_{T_{1}}^{*} h\right\|_{q}^{q}\right)^{1 / q}\right) \\
& \leq s^{1 / 2-1 / q}\left((1-\omega)^{1 / q}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{1 / q}+\left(Q_{q}+\frac{1}{4}\right) \omega^{1 / q}\left(\sum_{i \geq 1}\left\|D_{T_{1}}^{*} h\right\|_{q}^{q}\right)^{1 / q}\right) \\
& \leq \frac{(1-\omega)^{1 / q}+\left(Q_{q}+\frac{1}{4}\right) \omega^{1 / q}}{s^{1 / q-1 / 2}}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{1 / q} . \tag{19}
\end{align*}
$$

Note that the second inequality in (19) uses the following conclusion: if $a>0, b>0$ and $0<q<1$, then $(a+b)^{q} \leq a^{q}+b^{q}$. The third inequality in (19) uses the definition of ω in (12). Moreover, in the first term of the second line in (19),

$$
\begin{aligned}
\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q} & =\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}-\left\|D_{T_{1}}^{*} h\right\|_{q}^{q}=\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}-\omega \sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q} \\
& =(1-\omega) \sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}
\end{aligned}
$$

Then we obtain the third line in the inequalities (19). The proof is completed.

Two functions are defined as follows: $0 \leq \omega \leq 1$ and

$$
\begin{align*}
& \alpha(\omega):=(1-\omega) \omega^{\frac{2-q}{q}}+\delta_{2 s}\left[(1-\omega)^{\frac{1}{q}}+\left(Q_{q}+\frac{1}{4}\right) \omega^{\frac{1}{q}}\right]^{2}, \tag{20}\\
& \beta(\omega):=\alpha(\omega)-\left(1-\delta_{2 s}\right) \omega^{2 / q} . \tag{21}
\end{align*}
$$

According to the definition of Ψ and lemmas 5 and 6, we derive

$$
\begin{align*}
\Psi^{2}= & \sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2}^{2}+\delta_{2 s}\left(\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2}\right)^{2} \tag{22}\\
\leq & s^{1-2 / q}(1-\omega) \omega^{2 / q-1}\left(\sum_{i \geq, 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{2 / q} \\
& +\delta_{2 s} s^{1-2 / q}\left((1-\omega)^{1 / q}+\left(Q_{q}+\frac{1}{4}\right) \omega^{1 / q}\right)^{2}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{2 / q} \\
= & s^{1-2 / q} \alpha(\omega)\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{2 / q},
\end{align*}
$$

and we have

$$
\begin{equation*}
s^{2 / q-1} \Psi^{2}-\left(1-\delta_{2 s}\right)\left\|D_{T_{1}}^{*} h\right\|_{q}^{2} \leq \beta(\omega)\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{2 / q} \tag{23}
\end{equation*}
$$

From the fact below

$$
\left\|D_{T_{0} \cup T_{1}}^{*} h\right\|_{2}^{2}=\left\|D_{T_{0}}^{*} h\right\|_{2}^{2}+\left\|D_{T_{1}}^{*} h\right\|_{2}^{2} \geq s^{1-2 / q}\left(\left\|D_{T_{0}}^{*} h\right\|_{q}^{2}+\left\|D_{T_{1}}^{*} h\right\|_{q}^{2}\right)
$$

and by combining Lemma 5, we can derive

$$
\left\|D_{T_{0}}^{*} h\right\|_{q}^{2} \leq s^{2 / q-1}\left\|D_{T_{0} \cup T_{1}}^{*} h\right\|_{2}^{2}-\left\|D_{T_{1}}^{*} h\right\|_{q}^{2} \leq \frac{s^{2 / q-1}(2 \epsilon+\Psi)^{2}}{1-\delta_{2 s}}-\left\|D_{T_{1}}^{*} h\right\|_{q^{\prime}}^{2}
$$

which means that

$$
\left(1-\delta_{2 s}\right)\left\|D_{T_{0}}^{*} h\right\|_{q}^{2} \leq 4 s^{2 / q-1} \epsilon^{2}+4 s^{2 / q-1} \epsilon \Psi+\left(s^{2 / q-1} \Psi^{2}-\left(1-\delta_{2 s}\right)\left\|D_{T_{1}}^{*} h\right\|_{q}^{2}\right) .
$$

Substituting inequalities (22) and (23) into the inequality above, we obtain

$$
\begin{align*}
& \left(1-\delta_{2 s}\right)\left\|D_{T_{0}}^{*} h\right\|_{q}^{2} \\
& \quad \leq 4 s^{2 / q-1} \epsilon^{2}+4 \epsilon s^{1 / q-1 / 2} \sqrt{\alpha(\omega)}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{1 / q}+\beta(\omega)\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{2 / q} . \tag{24}
\end{align*}
$$

Now, let

$$
\begin{aligned}
& \omega_{0}:=\arg \max \{\alpha(\omega): 0 \leq \omega \leq 1\}, \\
& \omega_{1}:=\arg \max \{\beta(\omega): 0 \leq \omega \leq 1\},
\end{aligned}
$$

and

$$
\begin{equation*}
\lambda:=\frac{\alpha\left(\omega_{0}\right)}{\beta\left(\omega_{1}\right)} . \tag{25}
\end{equation*}
$$

Because of

$$
\alpha\left(\omega_{0}\right) \geq \alpha\left(\omega_{1}\right)=\beta\left(\omega_{1}\right)+\left(1-\delta_{2 s}\right) \omega_{1}^{2 q} \geq \beta\left(\omega_{1}\right)
$$

we have $\lambda \geq 1$ and

$$
\begin{aligned}
\left(1-\delta_{2 s}\right)\left\|D_{T_{0}}^{*} h\right\|_{q}^{2} \leq & 4 s^{\frac{2-q}{q}} \epsilon^{2}+4 \epsilon s^{1 / q-1 / 2} \sqrt{\alpha\left(\omega_{0}\right)}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{1 / q} \\
& +\beta\left(\omega_{1}\right)\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{2 / q} \\
\leq & \left(2 s^{1 / q-1 / 2} \epsilon \sqrt{\lambda}\right)^{2}+2\left(2 s^{1 / q-1 / 2} \epsilon \sqrt{\lambda}\right)\left(\sqrt{\beta\left(\omega_{1}\right)}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{1 / q}\right) \\
& +\left(\sqrt{\beta\left(\omega_{1}\right)}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{1 / q}\right)^{2} .
\end{aligned}
$$

The above inequalities imply that

$$
\begin{equation*}
\left\|D_{T_{0}}^{*} h\right\|_{q} \leq 2 \sqrt{\frac{\lambda}{1-\delta_{2 s}}} s^{1 / q-1 / 2} \epsilon+\sqrt{\frac{\beta\left(\omega_{1}\right)}{1-\delta_{2 s}}}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{1 / q} . \tag{26}
\end{equation*}
$$

Therefore, the following conclusion is drawn:

$$
\begin{equation*}
\left\|D_{T_{0}}^{*} h\right\|_{q}^{q} \leq 2^{q} s^{1-q / 2}\left(\frac{\lambda}{1-\delta_{2 s}}\right)^{q / 2} \epsilon^{q}+\left(\frac{\beta\left(\omega_{1}\right)}{1-\delta_{2 s}}\right)^{q / 2}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right) \tag{27}
\end{equation*}
$$

Here, the inequality is used again, that is, if $a>0, b>0$, and $0<q<1$, then $(a+b)^{q} \leq a^{q}+b^{q}$. For any index set Ω with $|\Omega| \leq s$, we have

$$
\begin{aligned}
& \left\|D^{*} x\right\|_{q}^{q} \geq\left\|D^{*} \hat{x}\right\|_{q}^{q}, \\
& \left\|D^{*} x\right\|_{q}^{q}=\left\|D_{\Omega^{*}}^{*} x\right\|_{q}^{q}+\left\|D_{\Omega^{c}}^{*}\right\|_{q^{\prime}}^{q}, \\
& \left\|D^{*} \hat{x}\right\|_{q}^{q}=\left\|D_{\Omega^{*}}^{*} \hat{x}\right\|_{q}^{q}+\left\|D_{\Omega^{c}}^{*} \hat{x}\right\|_{q^{\prime}}^{q}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|D_{\Omega^{*}}^{*} \hat{x}\right\|_{q}^{q}=\left\|D_{\Omega^{*}}^{*} h+D_{\Omega^{2}}^{*} x\right\|_{q}^{q} \geq\left\|D_{\Omega^{*}}^{*} x\right\|_{q}^{q}-\left\|D_{\Omega^{*}}^{*} h\right\|_{q^{\prime}}^{q} \\
& \left\|D_{\Omega^{c}}^{*} \hat{x}\right\|_{q}^{q}=\left\|D_{\Omega^{c}}^{*} h+D_{\Omega^{c}}^{*} x\right\|_{q}^{q} \geq\left\|D_{\Omega^{c}}^{*} h\right\|_{q}^{q}-\left\|D_{\Omega^{c}}^{*} x\right\|_{q^{\prime}}^{q}
\end{aligned}
$$

which means that

$$
\begin{equation*}
\left\|D_{\Omega^{c}}^{*} h\right\|_{q}^{q} \leq 2\left\|D_{\Omega^{c}}^{*} c\right\|_{q}^{q}+\left\|D_{\Omega^{*}}^{*} h\right\|_{q^{*}}^{q} . \tag{28}
\end{equation*}
$$

Specifically, if the cardinality of Ω is s, that is, $|\Omega|=s$, and it satisfies $D_{\Omega}^{*} x=D^{*} x-$ $\left(D^{*} x\right)_{\max (s)}$, then we have

$$
\begin{aligned}
\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}= & \left\|D_{T_{0}^{c}}^{*} h\right\|_{q}^{q} \leq 2\left\|D_{\Omega^{c}}^{*} x\right\|_{q}^{q}+\left\|D_{\Omega}^{*} h\right\|_{q}^{q} \\
\leq & 2\left\|D^{*} x-\left(D^{*} x\right)_{\max (s)}\right\|_{q}^{q}+2^{q} s^{1-q / 2}\left(\frac{\lambda}{1-\delta_{2 s}}\right) \epsilon^{q} \\
& +\left(\frac{\beta\left(\omega_{1}\right)}{1-\delta_{2 s}}\right)^{q / 2}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)
\end{aligned}
$$

We can derive

$$
\begin{align*}
& {\left[1-\left(\frac{\beta\left(\omega_{1}\right)}{1-\delta_{2 s}}\right)^{q / 2}\right]\left[\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right]} \\
& \quad \leq 2^{q} s^{1-q / 2}\left(\frac{\lambda}{1-\delta_{2 s}}\right)^{q / 2} \epsilon^{q}+2\left\|D^{*} x-\left(D^{*} x\right)_{\max (s)}\right\|_{q^{*}}^{q} \tag{29}
\end{align*}
$$

Define

$$
\begin{equation*}
\rho(q):=\min _{0 \leq \omega \leq 1}\left\{\frac{1-\omega^{2 / q-1}+2 \omega^{2 / q}}{1+\omega^{2 / q}+\left[(1-\omega)^{1 / q}+\left(Q_{q}+1 / 4\right) \omega^{1 / q}\right]^{2}}\right\} . \tag{30}
\end{equation*}
$$

Denote $\left(\frac{\beta\left(\omega_{1}\right)}{1-\delta_{2 s}}\right)^{q / 2}$ by σ, that is, $\sigma=\left(\frac{\beta\left(\omega_{1}\right)}{1-\delta_{2 s}}\right)^{q / 2}$. When $\delta_{2 s}<\rho(q)$, to prove $1-\sigma>0$ is equivalent to prove $\beta\left(\omega_{1}\right) /\left(1-\delta_{2 s}\right)<1$. By the definitions of $\alpha(\omega)$ and $\beta(\omega)$, we have

$$
\begin{aligned}
& \beta\left(\omega_{1}\right) /\left(1-\delta_{2 s}\right)<1 \\
& \Leftrightarrow \quad \frac{\left(1-\omega_{1}\right) \omega_{1}^{\frac{2-q}{q}}}{1-\delta_{2 s}}+\frac{\delta_{2 s}}{1-\delta_{2 s}}\left[\left(1-\omega_{1}\right)^{\frac{1}{q}}+\left(Q_{q}+\frac{1}{4}\right) \omega_{1}^{\frac{1}{q}}\right]^{2}-\omega_{1}^{\frac{2}{q}}<1 \\
& \Leftrightarrow \quad\left(1-\omega_{1}\right) \omega_{1}^{\frac{2-q}{q}}+\delta_{2 s}\left[\left(1-\omega_{1}\right)^{\frac{1}{q}}+\left(Q_{q}+\frac{1}{4}\right) \omega_{1}^{\frac{1}{q}}\right]^{2}-\left(1-\delta_{2 s}\right) \omega_{1}^{\frac{2}{q}}<1-\delta_{2 s} \\
& \Leftrightarrow \quad \delta_{2 s}\left\{1+\omega_{1}^{2 / q}+\left[\left(1-\omega_{1}\right)^{1 / q}+\left(Q_{q}+1 / 4\right) \omega_{1}^{1 / q}\right]^{2}\right\}<1-\omega_{1}^{2 / q-1}+2 \omega_{1}^{2 / q} \\
& \Leftrightarrow \quad \delta_{2 s}<\frac{1-\omega_{1}^{2 / q-1}+2 \omega_{1}^{2 / q}}{1+\omega_{1}^{2 / q}+\left[\left(1-\omega_{1}\right)^{1 / q}+\left(Q_{q}+1 / 4\right) \omega_{1}^{1 / q}\right]^{2}} .
\end{aligned}
$$

If $\delta_{2 s}<\rho(q)$, we have

$$
\delta_{2 s}<\rho(q) \leq \frac{1-\omega_{1}^{2 / q-1}+2 \omega_{1}^{2 / q}}{1+\omega_{1}^{2 / q}+\left[\left(1-\omega_{1}\right)^{1 / q}+\left(Q_{q}+1 / 4\right) \omega_{1}^{1 / q}\right]^{2}}
$$

Then we can derive that $\beta\left(\omega_{1}\right) /\left(1-\delta_{2 s}\right)<1$. Hence, we know that $1-\sigma>0$, if $\delta_{2 s}<\rho(q)$. Therefore, by the inequality (29), we have

$$
\begin{equation*}
\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q} \leq \frac{2^{q} s^{1-q / 2}}{1-\sigma}\left(\frac{\lambda}{1-\delta_{2 s}}\right)^{q / 2} \epsilon^{q}+\frac{2}{1-\sigma}\left\|D^{*} x-\left(D^{*} x\right)_{\max (s)}\right\|_{q}^{q} \tag{31}
\end{equation*}
$$

The following lemma is simple, but useful for estimating the error bound in the signal recovery.

Lemma 7 Let $0<q \leq 1$, then

$$
\begin{align*}
& \left(a^{q}+b^{q}\right)^{1 / q} \leq 2^{1 / q-1}(a+b) \tag{32}\\
& \sqrt{(a+\sqrt{b})^{2}+c} \leq a+\sqrt{b+c} \tag{33}
\end{align*}
$$

hold for all $a \geq 0, b \geq 0$, and $c \geq 0$.

Proof Inequality (32) can be shown using Lemma 3 with $N=2$, whereas (33) holds if both sides of the inequality are squared.

3 Main results

We provide the error bound between the recovered signal \hat{x} and any solution to $A x=y$. This error bound is measured by the noise term ϵ and sparse term $\left\|D^{*} x-\left(D^{*} x\right)_{\max (s)}\right\|_{q}$.

Theorem 8 Let D be the matrix with the columns forming a tight frame and \hat{x} be the solution of ℓ_{q}-minimization. Then, for any fixed $0<q \leq 1$ and D-RIP constant $\delta_{2 s}<\rho(q)$, we have

$$
\begin{equation*}
\|\hat{x}-x\|_{2} \leq C_{0} \epsilon+C_{1} \frac{\left\|D^{*} x-\left(D^{*} x\right)_{\max (s)}\right\|_{q}}{s^{1 / q-1 / 2}} \tag{34}
\end{equation*}
$$

where

$$
\begin{align*}
& C_{0}=\frac{1}{\sqrt{1-\delta_{2 s}}}\left\{2+\left(\frac{2}{1-\sigma}\right)^{1 / q} \sqrt{\lambda\left(1+\frac{\alpha\left(\omega_{0}\right)}{1-\delta_{2 s}}\right)}\right\} \\
& C_{1}=2^{1 / q-1}\left(\frac{2}{1-\sigma}\right)^{1 / q} \sqrt{1+\frac{\alpha\left(\omega_{0}\right)}{1-\delta_{2 s}}} . \tag{35}
\end{align*}
$$

In this error bound, if the noise term $\epsilon=0$, it is a noiseless setting. If there exists a solution x that is s-sparse with tight frame D, the true signal x is recovered exactly in a noiseless setting.

Remark 9 In [17], Li and Lin solved the existence problem of q_{0} to recover a signal with coherent tight frames via ℓ_{q}-minimization. However, the q_{0} was not provided in their paper. Actually, the value of q_{0} can be estimated.

If $\omega=0$, then $D^{*} x=0$, Theorem 8 holds true. For $0<\omega \leq 1$, the following conclusion can be drawn.

Theorem 10 If the measurement matrix A satisfies the restricted isometry property with tight frame D and $\delta_{2 s}<0.3317$, then for any $q \in(0,1]$, we have

$$
\begin{equation*}
\|\hat{x}-x\|_{2} \leq C_{0} \varepsilon+C_{1} \frac{\left\|D^{*} x-\left(D^{*} x\right)_{\max (s)}\right\|_{q}}{s^{1 / q-1 / 2}} \tag{36}
\end{equation*}
$$

where C_{0} and C_{1} are the constants in Theorem 8.

Remark 11 In fact, $\delta_{2 s}$ can take values much larger than 0.3317 , i.e., if $\delta_{2 s}<0.493, q$ can be arbitrary in the range of $(0,1]$, then ℓ_{q}-minimization recovers the signal robustly with a coherent tight frame. Thus, the conclusion of Theorem 10 holds. However, this requires different proof.

In [17], Li and Lin showed that if $\delta_{2 s}<1 / 2$, there exists a value q_{0} such that the signals can be recovered via ℓ_{q}-minimization. The following theorem improves this result and provides an exact value for q_{0}.

Theorem 12 If the measurement matrix A satisfies the restricted isometry property with tight frame D and $\delta_{2 s}<1 / 2$, then there exists a value $q_{0}=2 / 3$, such that for any $q \in(0,2 / 3]$, $\delta_{2 s}<1 / 2 \leq \rho(q)$ holds. Furthermore,

$$
\begin{equation*}
\|\hat{x}-x\|_{2} \leq C_{0} \varepsilon+C_{1} \frac{\left\|D^{*} x-\left(D^{*} x\right)_{\max (s)}\right\|_{q}}{s^{1 / q-1 / 2}} \tag{37}
\end{equation*}
$$

where C_{0} and C_{1} are the constants in Theorem 8.

Remark 13 In [17], Li and Lin proved the existence of q_{0}. However, there has been no estimation of q_{0} in [17]. For this problem, we not only prove a result similar to that in [17], but also estimate $q_{0}=2 / 3$.

Remark $14 q_{0}=2 / 3$ is not the best value for q_{0}, and can be much larger. The curve of $\rho(q)$ drawn using MATLAB demonstrates that there exists $q_{0}=0.97$ such that $\delta_{2 s}<1 / 2 \leq \rho(q)$ holds; thus, Theorem 12 holds. However, this is considerably more difficult to achieve.

4 Proof of main results

We give here the proof procedure for each theorem.

4.1 Proof of theorem 8

Proof Using inequality (15) in Lemma 5, we have

$$
\begin{aligned}
\|\hat{x}-x\|_{2}^{2} & =\|h\|_{2}^{2}=\left\|D_{T_{0} \cup T_{1}}^{*} h\right\|_{2}^{2}+\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2}^{2} \leq \frac{(2 \epsilon+\Psi)^{2}}{1-\delta_{2 s}}+\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2}^{2} \\
& \leq\left(\frac{2 \epsilon}{\sqrt{1-\delta_{2 s}}}+\sqrt{\frac{s^{1-2 / q} \alpha(\omega)\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{2 / q}}{1-\delta_{2 s}}}\right)^{2}+\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2}^{2},
\end{aligned}
$$

where the last inequality uses the result in (22). Therefore, by Lemma 7, we have

$$
\begin{aligned}
\|h\|_{2} \leq & \sqrt{\left(\frac{2 \epsilon}{1-\delta_{2 s}}+\sqrt{\frac{s^{1-2 / q} \alpha(\omega)\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{2 / q}}{1-\delta_{2 s}}}\right)^{2}+\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2}^{2}} \\
\leq & \frac{2 \epsilon}{\sqrt{1-\delta_{2 s}}}+\sqrt{\frac{s^{1-2 / q} \alpha(\omega)\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{2 / q}}{1-\delta_{2 s}}+\sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2}^{2}} \\
= & \frac{2 \epsilon}{\sqrt{1-\delta_{2 s}}}+\frac{1}{\sqrt{1-\delta_{2 s}}} \sqrt{s^{1-2 / q} \alpha(\omega)\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{2 / q}+\left(1-\delta_{2 s}\right) \sum_{i \geq 2}\left\|D_{T_{i}}^{*} h\right\|_{2}^{2}} \\
\leq & \frac{2 \epsilon}{\sqrt{1-\delta_{2 s}}}+s^{1 / 2-1 / q} \sqrt{\frac{\alpha(\omega)}{1-\delta_{2 s}}+(1-\omega) \omega^{2 / q-1}\left(\sum_{i \geq 1}\left\|D_{T_{i}}^{*} h\right\|_{q}^{q}\right)^{1 / q}} \\
\leq & {\left[2+\left(\frac{2}{1-\sigma}\right)^{1 / q} \sqrt{\left.\lambda\left(\frac{\alpha(\omega)}{1-\delta_{2 s}}+(1-\omega) \omega^{2 / q-1}\right)\right]} \frac{\epsilon}{\sqrt{1-\delta_{2 s}}}\right.} \\
& +2^{1 / q-1} \sqrt{\frac{\alpha(\omega)}{1-\delta_{2 s}}+(1-\omega) \omega^{2 / q-1}\left(\frac{2}{1-\sigma}\right)^{1 / q} \frac{\left\|D^{*} x-\left(D^{*} x\right)_{\max (s)}\right\|_{q}}{s^{1 / q-1 / 2}}} \\
\leq & C_{0} \epsilon+C_{1} \frac{\| D^{*} x-\left(D^{*} x\right)_{\max (s) \|_{q}}}{s^{1 / q-1 / 2}}
\end{aligned}
$$

where C_{0} and C_{1} are given by (35), the second inequality uses the inequality (33) in Lemma 7 , the third inequality uses inequality (14) in Lemma 5 , and the fourth inequality uses inequality (32) in Lemma 7 and (31).

4.2 Proof of theorem 10

Proof We discuss the case where $0<\omega \leq 1$. Theorem 8 shows that this conclusion holds as long as $\delta_{2 s}<0.3317 \leq \rho(q)$. According to the definition of $\rho(q)$,

$$
\frac{1-\omega^{2 / q-1}+2 \omega^{2 / q}}{1+\omega^{2 / q}+\left[(1-\omega)^{1 / q}+\left(Q_{q}+1 / 4\right) \omega^{1 / q}\right]^{2}} \geq \frac{1-\omega^{2 / q-1}+2 \omega^{2 / q}}{1+\omega^{2 / q}+\left[(1-\omega)^{1 / q}+\frac{5}{4} \omega^{1 / q}\right]^{2}}
$$

Therefore, Theorem 10 holds if for any $0<\omega \leq 1$ and all $q \in(0,1]$, the following inequality holds:

$$
\begin{equation*}
\frac{1-\omega^{2 / q-1}+2 \omega^{2 / q}}{1+\omega^{2 / q}+\left[(1-\omega)^{1 / q}+\frac{5}{4} \omega^{1 / q}\right]^{2}} \geq 0.3317 \tag{38}
\end{equation*}
$$

Let $a:=1 / q \in[1,+\infty)$, then let

$$
\begin{equation*}
\frac{1-\omega^{2 a-1}+2 \omega^{2 a}}{1+\omega^{2 a}+\left[(1-\omega)^{a}+\frac{5}{4} \omega^{a}\right]^{2}} \geq \frac{n_{1}}{n_{2}}, \tag{39}
\end{equation*}
$$

for all $0<\omega \leq 1$ and all $a \in[1,+\infty)$, where $n_{1}, n_{2} \in N^{+}$and $n_{1} \leq n_{2}$.
The following procedure estimates the lower bound of n_{1} / n_{2}. Inequality (39) is equivalent to

$$
\begin{equation*}
\left(n_{2}-n_{1}\right)-n_{2} \omega^{2 a-1}+\left(2 n_{2}-n_{1}\right) \omega^{2 a} \geq n_{1}\left[(1-\omega)^{a}+\frac{5}{4} \omega^{a}\right]^{2} . \tag{40}
\end{equation*}
$$

Inequality (40) holds if the infimum on the left is greater than or equal to the supremum on the right side. Let $f(\omega, a)=\left(n_{2}-n_{1}\right)-n_{2} \omega^{2 a-1}+\left(2 n_{2}-n_{1}\right) \omega^{2 a}, g(\omega, a)=(1-\omega)^{a}+\frac{5}{4} \omega^{a}$, calculate the partial derivatives of the two functions and let them be zeros. Then, we have

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{\partial f}{\partial \omega}=-n_{2}(2 a-1) \omega^{2 a-2}+2\left(2 n_{2}-n_{1}\right) a \omega^{2 a-1}=0, \\
\frac{\partial f}{\partial a}=-2 n_{2} \omega^{2 a-1} \ln \omega+2\left(2 n_{2}-n_{1}\right) \omega^{2 a} \ln \omega=0,
\end{array}\right. \tag{41}\\
& \left\{\begin{array}{l}
\frac{\partial g}{\partial \omega}=-a(1-\omega)^{a-1}+\frac{5}{4} a \omega^{a-1}=0, \\
\frac{\partial g}{\partial a}=(1-\omega)^{a} \ln (1-\omega)+\frac{5}{4} \omega^{a} \ln \omega=0 .
\end{array}\right. \tag{42}
\end{align*}
$$

From equations (41) it can be derived that $2 a n_{2}=2 a n_{2}-n_{2}$, which does not hold because $n_{2} \in N^{+}$. Therefore, $f(\omega, a)$ has no stationary points. In equations (42), because $\frac{\partial g}{\partial a}<0$, $g(\omega, a)$ also has no stationary points.

By calculating the value of the bounds, we know that $f(\omega, a)$ achieves its minimum value at $a=1$, whereas $g(\omega, a)$ has its maximum value at $\omega=1$. It is not difficult to compute this for all $0<\omega \leq 1$ and all $a \in[1,+\infty)$,

$$
\begin{aligned}
& \inf _{\omega, a} f(\omega, a)=\frac{7 n_{2}^{2}+4 n_{1}^{2}-12 n_{1} n_{2}}{4\left(2 n_{2}-n_{1}\right)}, \\
& \sup _{\omega, a} g(\omega, a)=\frac{25}{16} n_{1} .
\end{aligned}
$$

Inequality $\inf _{\omega, a} f(\omega, a) \geq \sup _{\omega, a} g(\omega, a)$, i.e., $\frac{7 n_{2}^{2}+4 n_{1}^{2}-12 n_{1} n_{2}}{4\left(2 n_{2}-n_{1}\right)} \geq \frac{25}{16} n_{1}$, is equivalent to

$$
\begin{equation*}
41\left(\frac{n_{1}}{n_{2}}\right)^{2}-98\left(\frac{n_{1}}{n_{2}}\right)+28 \geq 0 \tag{43}
\end{equation*}
$$

Because $0<n_{1} / n_{2} \leq 1$, inequality (43) holds when $0<n_{1} / n_{2} \leq 0.3317$. In other words, 0.3317 is the lower bound of $\rho(q)$, so $\delta_{2 s}<0.3317 \leq \rho(q)$ holds. The proof is complete.

4.3 Proof of theorem 12

Proof Let $a:=1 / q \in[3 / 2,+\infty)$. According to the definitions of $\rho(q)$ and a, we only need to prove that for all $0<\omega \leq 1$ and all $a \in[3 / 2,+\infty)$, the following inequality holds:

$$
\begin{equation*}
\frac{1-\omega^{2 a-1}+2 \omega^{2 a}}{1+\omega^{2 a}+\left[(1-\omega)^{a}+\frac{5}{4} \omega^{a}\right]^{2}} \geq \frac{1}{2} . \tag{44}
\end{equation*}
$$

Inequality (44) is equivalent to

$$
\begin{equation*}
1-2 \omega^{2 a-1}+3 \omega^{2 a}-\left[(1-\omega)^{a}+\frac{5}{4} \omega^{a}\right]^{2} \geq 0 \tag{45}
\end{equation*}
$$

Let $f(\omega, a)=1-2 \omega^{2 a-1}+3 \omega^{2 a}-\left[(1-\omega)^{a}+\frac{5}{4} \omega^{a}\right]^{2}$, then its partial derivative with respect to a is calculated as

$$
\begin{align*}
\frac{\partial f}{\partial a} & =-4 \omega^{2 a-1} \ln \omega+\frac{23}{8} \omega^{2 a} \ln \omega-2(1-\omega)^{2 a} \ln (1-\omega)-\frac{5}{2} \omega^{a}(1-\omega)^{a} \ln [\omega(1-\omega)] \\
& =\left(\frac{23}{8} \omega-4\right) \omega^{2 a-1} \ln \omega-2(1-\omega)^{2 a} \ln (1-\omega)-\frac{5}{2} \omega^{a}(1-\omega)^{a} \ln [\omega(1-\omega)] \tag{46}\\
& >0
\end{align*}
$$

Therefore, $f(\omega, a)$ has no stationary point and an extreme point at the bounds, and it is known that $f(\omega, a)$ reaches its minimum value at $a=3 / 2$. To prove that $f(\omega, a) \geq 0$ for all ω and a, we must prove that for all ω, the following inequality holds,

$$
\begin{equation*}
f\left(\omega, \frac{3}{2}\right)=3 \omega-5 \omega^{2}+\frac{39}{16} \omega^{3}-\frac{5}{2}[\omega(1-\omega)]^{\frac{3}{2}} \geq 0 \tag{47}
\end{equation*}
$$

Inequality (47) is equivalent to

$$
\left(3-5 \omega+\frac{39}{16} \omega^{2}\right)^{2} \geq \frac{25}{4} \omega(1-\omega)^{3}
$$

and we derive,

$$
\begin{equation*}
9-\frac{145}{4} \omega+58 \omega^{2}-\frac{85}{2} \omega^{3}+\left(\frac{39^{2}}{16^{2}}+\frac{25}{4}\right) \omega^{4} \geq 0 \tag{48}
\end{equation*}
$$

The coefficient of ω^{4} is separated into two parts,

$$
\begin{equation*}
9-\frac{145}{4} \omega+58 \omega^{2}-\frac{85}{2} \omega^{3}+\left(\frac{38^{2}}{16^{2}}+\frac{25}{4}\right) \omega^{4}+\frac{39^{2}-38^{2}}{16^{2}} \omega^{4} \geq 0 \tag{49}
\end{equation*}
$$

Let $g(\omega)=9-\frac{145}{4} \omega+58 \omega^{2}-\frac{85}{2} \omega^{3}+\left(\frac{38^{2}}{16^{2}}+\frac{25}{4}\right) \omega^{4}$, and its derivative is

$$
\frac{d g}{d \omega}=\frac{1}{16}\left(-580+1856 \omega-2040 \omega^{2}+761 \omega^{3}\right) .
$$

For $0<\omega \leq 1$, because $\frac{d^{2} g}{d \omega^{2}}>0$, we have $\frac{d g}{d \omega}<0$, which means that $g(\omega)$ decreases monotonically. Therefore, we know that $g(\omega)>0$, for any $0<\omega \leq 1$. Because $\frac{39^{2}-38^{2}}{16^{2}} \omega^{4}>0$, inequality (49) holds for any $0<\omega \leq 1$. The proof is complete.

5 Conclusion

As for the q value problem of sparse signal recovery using ℓ_{q}-minimization, the existence of q value has been proven, that is, if the measurement matrix satisfies D-RIP with $\delta_{2 s} \leq$ $1 / 2$, then there exists a value q_{0} such that for any $q \in\left(0, q_{0}\right]$, any signal that is s-sparse with a tight frame can be robustly recovered to the true signal. In this work, we mainly estimated q_{0} as $q_{0}=2 / 3$ in the case of $\delta_{2 s} \leq 1 / 2$ and discussed that the value of q_{0} can be much higher. We also proved that if $\delta_{2 s} \leq 0.3317$, for any $q \in(0,1]$, robust recovery for signals via ℓ_{q}-minimization holds, which is consistent with the case of ℓ_{q}-minimization without a tight frame.

Acknowledgements

This research was partly supported by the NSF of China under grant nos. 11471012 and 11971491 , the NSF of Guangdong under grant nos. 2018A0303130136 and 2017A030310650, the Science and Technology Planning Project of Guangdong under grant nos. 2015A070704059 and 2015A030402008, project of Education Department of Guangdong Province under grant no. 2020KZDZX1120, the college students' innovation and entrepreneurship training program under grant no. 202211347036 , the Common Technical Innovation Team of Guangdong Province on Preservation and Logistics of Agricultural Products under grant nos. 2021KJ145 and 2023KJ145, Guangzhou Science and Technology Project under grant no. 201704030131, and the Characteristic Innovation Project of Universities in Guangdong (Natural Science) under grant no. 2018KTSCX094. The authors gratefully acknowledge all the sponsors. This paper is one of the achievements of the Agri-product Digital Logistics Research Center of Guangdong-Hong Kong-Macao Greater Bay Area. The corresponding authors of this paper are Kaihao Liang and Wenfeng Zhang.

Funding

This research was partly supported by the NSF of Guangdong under grant nos. 2018A0303130136 and 2017A030310650, the Science and Technology Planning Project of Guangdong under grant nos. 2015A070704059 and 2015A030402008, project of Education Department of Guangdong Province under grant no. 2020KZDZX1120, the college students' innovation and entrepreneurship training program under grant no. 202211347036, the Common Technical Innovation Team of Guangdong Province on Preservation and Logistics of Agricultural Products under grant nos. 2021KJ145 and 2023KJ145, Guangzhou Science and Technology Project under grant no. 201704030131, and the Characteristic Innovation Project of Universities in Guangdong (Natural Science) under grant no. 2018KTSCX094. This paper is one of the achievements of Agri-product Digital Logistics Research Center of Guangdong-Hong Kong-Macao Greater Bay Area.

Data availability

Not applicable.

Declarations

Competing interests

The authors declare no competing interests.

Author contributions

Kaihao Liang proved the main theorem and wrote the manuscript, Chaolong Zhang provided the proof of some lemmas and the discussion of the result of the main theorem, Wenfeng Zhang provided the funding for this project, as well as the research ideas. All authors reviewed the manuscript.

Author details

${ }^{1}$ Department of Mathematics, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
${ }^{2}$ Agricultural Digital Logistics Research Center for Guangdong-Hong Kong-Macao Greater Bay Area, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.

References

1. Bi, N., Liang, K.H.: Iteratively reweighted algorithm for signals recovery with coherent tight frame. Math. Methods Appl. Sci. 41(14), 5481-5492 (2018)
2. Cai, T., Zhang, A.: Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl. Comput. Harmon. Anal. 35, 74-93 (2013)
3. Candès, E., Eldar, Y., Needell, D.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31(1) 59-73 (2011)
4. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489-509 (2006)
5. Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207-1223 (2006)
6. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33-61 (1999)
7. Christensen, O.: Frames and bases: an introductory course. Appl. Numer. Harmon. Anal. 32(5), 368-392 (2008)
8. Donoho, D., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ_{1} minimization. Proc. Natl. Acad. Sci. USA 100, 2197-2202 (2003)
9. Erkoc, M., Karaboga, N.: A novel sparse reconstruction method based on multi-objective artificial bee colony algorithm. Signal Process. 189(12), 108283 (2021)
10. Gribonval, R., Nielsen, M.: Highly sparse representations from dictionaries are unique and independent of the sparseness measure. IEEE Trans. Inf. Theory 49(6), 1579-1581 (2003)
11. Huang, W., Zhang, C., Wu, S.: Nonconvex regularized sparse representation in a tight frame for gear fault diagnosis. Meas. Sci. Technol. 33, 085901 (2022)
12. Jyothi, R., Babu, P.: A monotonic algorithm to design large dimensional equiangular tight frames for applications in compressed sensing. Signal Process. 169(1), 1-17 (2022)
13. Lai, M., Liu, L.: A new estimate of restricted isometry constants for sparse solutions. Appl. Comput. Harmon. Anal. 30, 402-406 (2011)
14. Lal, B., Gravina, R., Spagnolo, F., et al.: Compressed sensing approach for physiological signals: a review. IEEE Sens. J. 23(6), 5513-5534 (2023)
15. Lee, B., Ko, K., Hong, J., et al.: Information bottleneck measurement for compressed sensing image reconstruction. IEEE Signal Process. Lett. 29, 1943-1947 (2022)
16. Li, P., Ge, H., Geng, P.: Signal and image reconstruction with tight frames via unconstrained $\ell_{1}-\alpha \ell_{2}$-analysis minimizations (2021). arXiv:2112.14510
17. Li, S., Lin, J.: Compressed sensing with coherent tight frames via ℓ_{q}-minimization for $0<q \leq 1$. Inverse Probl. Imaging 8, 761-777 (2017)
18. Liang, K.H., Bi, N.: A new upper bound of p for L_{p}-minimization in compressed sensing. Signal Process. 176(1), 1-12 (2020)
19. Liang, K.H., Clay, M.: Iterative re-weighted least squares algorithm for L_{p}-minimization with tight frame and $0<p \leq 1$. Linear Algebra Appl. 581(1), 413-434 (2019)
20. Liang, K.H., Li, S., Zhang, W., et al.: Reconstruction of enterprise debt networks based on compressed sensing. Sci. Rep. 13, 2514-2522 (2023)
21. Loss, T., Colbrook, M., Hansen, A.: Stratified sampling based compressed sensing for structured signals. IEEE Trans. Signal Process. 70, 3530-3539 (2022)
22. Luo, X., Yang, W., Ha, J., et al.: Non-convex block-sparse compressed sensing with coherent tight frames. EURASIP J. Adv. Signal Process. 12(2), 1-13 (2020)
23. Mi, M., Che, Y., Li, H., Zhao, S.: Identification of rotor position of permanent magnet spherical motor based on compressed sensing. IEEE Trans. Ind. Inform. 19(8), 9157-9164 (2023)
24. Natarajan, B.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227-234 (1995)
25. Needell, D., Tropp, J.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301-321 (2008)
26. Nguyen, T., Jagatap, G., Hegde, C.: Provable compressed sensing with generative priors via Langevin dynamics. IEEE Trans. Inf. Theory 68(11), 7410-7422 (2022)
27. Okabe, Y., Kanemoto, D., Maida, O., Hirose, T.: Compressed sensing EEG measurement technique with normally distributed sampling series. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 105(10), 1429-1433 (2022)
28. Rauhut, H., Schnass, K., Vandergheynst, P.: Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 54, 2210-2219 (2008)
29. Rudelson, M., Vershynin, R.: On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61, 1025-1045 (2008)
30. Sekar, K., Devi, K., Srinivasan, P.: Compressed tensor completion: a robust technique for fast and efficient data reconstruction in wireless sensor networks. IEEE Sens. J. 22(11), 10794-10807 (2022)
31. Wang, Y., Liu, Y., Bai, X., et al.: Sequential color ghost imaging based on compressed sensing algorithm of post-processing measurement matrix. Phys. Scr. 98, 045110 (2023)
32. Wei, P., He, F.: The compressed sensing of wireless sensor networks based on Internet of things. IEEE Sens. J. 21(22), 25267-25273 (2021)
33. Yang, H., Yu, N.: A fast algorithm for joint sparse signal recovery in 1-bit compressed sensing. AEÜ, Int. J. Electron. Commun. 138(8), 153856 (2021)
34. Zhang, R., Li, S.: Optimal D-RIP bounds in compressed sensing. Acta Math. Sin. 31(6), 755-766 (2015)
35. Zhang, R., Li, S.: Optimal RIP bounds for sparse signals recovery via ℓ_{p} minimization. Appl. Comput. Harmon. Anal. 47(3), 566-584 (2019)
36. Zhou, J., Kato, B., Wang, Y.: Operational modal analysis with compressed measurements based on prior information. Measurement 211, 112644 (2023)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

