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Abstract
The present research is aimed to analyze the existence of strict fixed points (SFPs) and
fixed points of multivalued generalized contractions on the platform of controlled
metric spaces (CMSs). Wardowski-type multivalued nonlinear operators have been
introduced employing auxiliary functions, modifying a new contractive requirement
form. Well-posedness of obtained fixed point results is also established. Moreover,
data dependence result for fixed points is provided. Some supporting examples are
also available for better perception. Many existing results in the literature are
particular cases of the results established.
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1 Introduction
The fixed point theory has significant applications in numerous branches of pure and ap-
plied mathematics, as it offers many considerable tools to find fixed points. The theory
has remarkable implications since it provides a criterion for the existence of solutions for
many differential and integral equations. The famous Banach contraction principle (BCP)
[4] was established on metric spaces by Stephan Banach in 1922. Two directions for con-
structing new fixed point results use a more generalized space or modifying the contrac-
tion inequality. BCP is extended and modified in many directions in numerous ways. For
example, the authors of [2, 9] considered Kannan-type contractions to prove certain fixed
point results, and in [3, 17] the underlined space is changed.

It is worth mentioning that many authors used F-contractions to extend many existing
results. In 2015, an F-contraction was extended in terms of nonlinear F-contractions by
Klim and Wardowski [11]. The authors extended the notion of F-contractive mappings to
the case of nonlinear F-contractions and proved a fixed point theorem via the dynamic
processes. Following this, Wardowski [19] introduced nonlinear F-contractions by omit-
ting one of the conditions on the F-mappings. In another paper by Wardowski [20], we can
find some theorems concerning the existence of fixed points of nonlinear F-contractions
and the sum of mappings of this type with a compact operator.
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In 1989, the concept of a b-metric space (BMS) was given by Bakhtin [3]. It was fur-
ther incorporated by Czerwick [8] to develop certain fixed point results endowed by this
space. Kamran et al. [17] paved a new pathway using a function p : ξ × ξ −→ [1,∞) and
weakened the triangle inequality of a b-metric space. In this perspective, Mlaiki et al. [12]
made another advancement by generalizing the notion of an extended b-metric space and
declaring it a controlled metric-type space.

A data dependence problem is to estimate the distance between the sets of fixed points
of two mappings. This idea is only meaningful if we are sure that there are nonempty
fixed point sets of these two operators. The data dependence problem mostly deals with
set-valued mappings since multivalued mappings often have larger fixed point sets than
single-valued mappings. In 2021, Iqbal et al. [10] discussed data dependence, the existence
of fixed points, strict fixed points, and the well-posedness of some multivalued general-
ized contractions in the setting of complete metric spaces using auxiliary functions. In the
present paper, we extend the results of Iqbal et al. [10] by utilizing the controlled metric
platform.

2 Preliminaries
This section is devoted to refreshing some of the crucial concepts. Let (ξ , d) be a metric
space (MS), and let P(ξ ) contain all subsets of ξ . We denote by CL(ξ ), CB(ξ ), and K(ξ )
the sets of nonempty closed subsets of ξ , nonempty closed bounded subsets of ξ , and
nonempty compact subsets of ξ , respectively.

Let � : ξ −→ P(ξ ) be a multivalued mapping (MVP). An element � ∈ ξ such that � ∈ ��

is called a fixed point of �. The set of all fixed points of � is denoted by Fix�. An element
�̄ ∈ ξ such that {�̄} = �� is called a strict fixed point of �. The set of strict fixed points is
denoted S Fix�.

Definition 2.1 [12] Consider a nonempty set ξ and a function f : ξ × ξ −→ [1,∞). The
mapping d : ξ × ξ −→ [0,∞) is said to be a CMS if for all �1,�2,�3 ∈ ξ ,

(i) d(�1,�2) = 0 ⇔ �1 = �2;
(ii) d(�1,�2) = d(�2,�1);

(iii) d(�1,�2) ≤ f(�1,�3)d(�1,�3) + f(�3,�2)d(�3,�2).

The pair (ξ , d, f) is called a CMS.
Berinde and Pacurar [5] defined the Hausdorff distance as follows. Let X, Y ∈ CB(ξ ). The

mapping H : CB(ξ ) × CB(ξ ) −→ [0,∞) defined by

H(X, Y) = max
{

sup
�∈X

D(�, Y), sup
�̄∈Y

D(�̄, X)
}

is called a Pompei–Hausdorff metric space, where D(�, Y) = inf{d(�, �̄) : �̄ ∈ Y}.
Following definition is due to Wardowski [19]. Let F : (0,∞) −→R satisfy the following

conditions:
(F1) F is strictly increasing;
(F2) For all sequences {�s} ⊆ (0,∞), lims−→∞ �s = 0 iff lims−→∞ F(�s) = –∞;
(F3) There exists k ∈ (0, 1) such that lim�−→0+ �kF(�) = 0.
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Let us denote by �(F) the set of all functions F that satisfy (F1), (F2), and (F3), Also,
assume that

�(O∗) =
{

F ∈ �(F) : (F4) holds for F
}

,

where
(F4) F(inf X) = inf F(X) for all X ⊂ (0,∞) such that inf X > 0.

Turinici [18] replaced (F2) by
(F2′) limt−→0+ F(t) = –∞.

Denote by �(0∗) the set of functions F that satisfy (F1), (F2′), (F3), and (F4), A mapping
� : ξ −→ CB(ξ ) is called a multivalued F-contraction if there exist υ > 0 and F ∈ �(F)
such that for all �, �̄ ∈ ξ , H(��,��̄) > 0 implies υ + F(H(��,��̄)) ≤ F(d(�, �̄)) [1].

Definition 2.2 [13] A mapping � : ξ −→ ξ is called an (α, F)-contraction (or a nonlinear
F-contraction) if there exist F ∈ �(F) and a function 	 : (0,∞) −→ (0,∞) that fulfill the
following conditions:

(H1) lim infs−→�+ 	(s) > 0 for all � > 0;
(H2) 	(d(�, �̄)) + F(d(��,��̄)) ≤ F(d(�, �̄)) for all �, �̄ ∈ ξ such that �� �= ��̄.

Definition 2.3 [10] By 
 we denote the set of functions χ : (0,∞) −→ (0,∞) such that

lim
s−→�+

infχ (s) > 0 for all � ≥ 0.

3 Main results
The following definitions are indispensable before proving the main result.

Definition 3.1 By P we denote the set of all continuous mappings ρ : [0,∞)5 −→ [0,∞)
that satisfy the following conditions:

(i) ρ(1, 1, 1, ζ + η, 0) ∈ (0, 1] for ζ ,η ≥ 1,
(ii) ρ is subhomogeneous, that is, for all (�1,�2,�3,�4,�5) ∈ (0,∞]5 and λ ≥ 0, we have

ρ(λ�1,λ�2,λ�3,λ�4,λ�5) ≤ λρ(�1,�2,�3,�4,�5),
(iii) ρ is a nondecreasing function, i.e., for �i, �̄i ∈R

+�i such that ≤ �̄i, i = 1, 2, 3, 4, 5, we
have ρ(�1,�2,�3,�4,�5) ≤ ρ(�̄1, �̄2, �̄3, �̄4, �̄5). If �i, �̄i ∈R

+ are such that �i < �̄i for
i = 1, 2, 3, 4, then

ρ(�1,�2,�3,�4, 0) < ρ(�̄1, �̄2, �̄3, �̄4, 0),

and

ρ(�1,�2,�3, 0,�4) < ρ(�̄1, �̄2, �̄3, 0, �̄4).

Also, define P = {ρ ∈P : ρ(1, 0, 0, ζ ,η) ∈ (0, 1]}. Note that P⊆P .

Example 3.1
1. Define ρ1 : [0,∞)5 −→ [0,∞) by ρ1(�1,�2,�3,�4,�5) = g min{�1, 1

2 (�2,�3), 1
2 (�4,�5)},

where g ∈ (0, 1). Then ρ1 ∈P , as ρ1(1, 0, 0, ζ ,η) = 0 /∈ (0, 1]. Hence ρ1 /∈ P.
2. Define ρ2 : [0,∞)5 −→ [0,∞) by ρ2(�1,�2,�3,�4,�5) = �1

2 + �2+�3
4 . Then ρ2 ∈ P.
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3. Define ρ3 : [0,∞)5 −→ [0,∞) by ρ3(�1,�2,�3,�4,�5) = g min{ 1
2 (�1 + �3), 1

2 (�4 + �5)},
where g ∈ (0, 1). Then ρ3 ∈ P.

Lemma 3.1 If ρ ∈P , γ , δ ∈ [0,∞), and ζ ,η ∈ R be such that ζ ,η ≥ 1 and

γ ≤ max
{
ρ(δ, δ,γ ,ηδ + ζγ , 0),ρ(δ, δ,γ , 0,ηδ + ζγ ),

ρ(δ,γ , δ,ηδ + ζγ , 0),ρ(δ,γ , δ, 0,ηδ + ζγ )
}

.

Then γ ≤ δ.

Proof Without loss of generality, we can assume that

γ ≤ ρ(δ, δ,γ ,ηδ + ζγ , 0). (1)

On the contrary, suppose that δ < γ . Now consider

ρ(δ, δ,γ ,ηδ + ζγ , 0) < ρ(γ ,γ ,γ ,ηγ + ζγ , 0)

≤ γρ(1, 1, 1,η + ζ , 0)

≤ γ (1),

ρ(δ, δ,γ ,ηδ + ζγ , 0) < γ ,

which is a contradiction to (1). Hence our supposition is wrong, so γ ≤ δ. �

Definition 3.2 (χF-contraction) Let F1, F2 be real-valued functions on (0,∞), and let
ρ ∈P and χ ∈ 
. The mapping � : ξ −→ CB(ξ ) is called a χF-contraction if

(Ni) F1(c) ≤ F2(c) for all c > 0,
(Nii) H(��,��̄) > 0 implies

χ
(
d(�, �̄)

)
+F2

(
H(��,��̄)

) ≤ F1
{
ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

)}

for all �, �̄ ∈ ξ .

Theorem 3.1 Suppose that (ξ , d, f) is a complete CMS. Let � : ξ −→ K(ξ ) be a χF-
contraction. Suppose that F1 is nondecreasing and F2 satisfies conditions (F2′) and (F3).
For �0 ∈ ξ , define the Picard sequence {�s = �s�0} so that

sup
m≥1

lim
i−→∞

f(�i+1,�i+2)f(�i+1,�m)
f(�i,�i+1)

< 1. (2)

Also, suppose

lim
s−→∞ f(�s,�) ≤ 1 for all � ∈ ξ . (3)

Then Fix� is nonempty.
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Proof Let �0 ∈ ξ and �1 ∈ ��0. If �1 ∈ ��1 then �1 ∈ Fix�. Suppose �1 /∈ ��1, which im-
plies D(�1,��1) > 0, and, consequently, H(��0,��1) > 0. As ��1 is compact, there exists
�2 ∈ ��1 such that d(�1,�2) = D(�1,��1). Now

F1
(
d(�1,�2)

)
= F1

(
D(�1,��1)

) ≤ F1
(
H(��0,��1)

) ≤ F2
(
H(��0,��1)

)

≤ F1
{
ρ(d(�0,�1), D(�0,��0), D(�1,��1), D(�0,��1), D(�1,��0)

}

– χ
(
d(�0,�1)

)

< F1
{
ρ
(
d(�0,�1), d(�0,�1), d(�1,�2), d(�0,�2), d(�1,�1)

)}
.

As F1 is nondecreasing, we have

d(�1,�2) < ρ
(
d(�0,�1), d(�0,�1), d(�1,�2), d(�0,�2), 0

)

≤ ρ
(
d(�0,�1), d(�0,�1), d(�1,�2), f(�0,�1)

)
d(�0,�1) + f(�1,�2)d(�1,�2), 0).

By Lemma 3.1

d(�1,�2) < d(�0,�1).

Similarly, we get �3 ∈ ��2 such that d(�2,�3) = D(�2,��2) with D(�2,��2) > 0, and we
have

d(�2,�3) < d(�1,�2).

By induction we get a sequence {�s}s∈N ⊂ ξ such that �s+1 ∈ ��s satisfies d(�s,�s+1) =
D(�s,��s) with D(�s,��s) > 0 and

d(�s,�s+1) < d(�s–1,�s) for all s ∈N.

So {d(�s,�s+1)}s∈N is a decreasing sequence of real numbers. Now

χ
(
d(�s,�s+1)

)
+ F2

(
H(��s,��s+1)

)

≤ F1
{
ρ
(
d(�s,�s+1), D(�s,��s), D(�s+1,��s+1), D(�s,��s+1), D(�s+1,��s)

)}

= F1
{
ρ
(
d(�s,�s+1)

)
, d(�s,�s+1), d(�s+1,�s+2), d(�s,�s+2), d(�s+1,�s+1))

}

≤ F1
{
ρ
(
d(�s,�s+1), d(�s,�s+1), d(�s+1,�s+2), f(�s,�s+1)d(�s,�s+1) + f(�s+1,�s+2)

d(�s+1,�s+2), 0
)}

< F1
{
ρ
(
d(�s,�s+1), d(�s,�s+1), d(�s,�s+1), f(�s,�s+1)d(�s,�s+1) + f(�s+1,�s+2)

d(�s,�s+1), 0
)}

≤ F1
{

d(�s,�s+1)ρ
(
1, 1, 1, f(�s,�s+1) + f(�s+1,�s+2), 0

)}

≤ F1
(
d(�s,�s+1)

)

= F1
(
D(�s,��s)

)
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≤ F1
(
H(��s–1,��s)

)

≤ F2
(
H(��s–1,��s)

)
.

Hence, for all s ∈N, we have

F2
(
H(�s,��s+1)

)
< F2(H

(
(��s–1,��s)

)
– χ

(
d(�s,�s+1)

)
. (4)

As χ ∈ 
, there exist h > 0 and s0 ∈N such that χ (d(�s,�s+1)) > h for all s≥ s0. Now from
(4) we have

F2
(
H(��s,��s+1)

)
< F2(H

(
(��s–1,��s)

)
– χ

(
d(�s,�s+1)

)

< F2
(
H(��s–2,��s–1)

)
– χ

(
d(�s–1,�s)

)
– χ

(
d(�s,�s+1)

)

...

< F2
(
H(��0,��1)

)
–

s∑
i=1

χ
(
d(�i,�i+1)

)

= F2
(
H(��0,��1)

)
–

s0–1∑
i=1

χ
(
d(�i,�i+1)

)
–

s∑
i=s0

χ
(
d(�i,�i+1)

)

< F2
(
H(��0,��1)

)
– (s – s0)h, s≥ s0

⇒ F2
(
H(��s,��s+1)

)
< F2(H

(
(��0,��1)

)
– (s – s0)h for all s≥ s0. (5)

Taking the limit in (5) as s−→ ∞, we get F2(H(��s,��s+1)) −→ –∞ and then by (F2′) we
have

lim
s−→∞H(��s,��s+1) = 0,

which further implies that

lim
s−→∞d(�s,�s+1) = lim

s−→∞D(�s,��s) ≤ lim
s−→∞H(��s–1,��s) = 0. (6)

Now by (F3) there exists k ∈ (0, 1) such that

lim
s−→∞

(
H(��s,��s+1)

)kF2
(
H(��s,��s+1)

)
= 0. (7)

Then from (5), for all s≥ s0, we have

(
H(��s,��s+1)

)kF2
(
H(��s,��s+1)

)
–

(
H(��s,��s+1)

)kF2
(
H(��0,��1)

)

≤ (
H(��s,��s+1)

)k(F2
(
H(��0,��1)

)
– (s – s0)h

)

–
(
H(��s,��s+1)

)kF2
(
H(��0,��1)

)

= –
(
H(��s,��s+1)

)k(s – s0)h

≤ 0.
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Taking the limit as s−→ ∞ and using (6) and (7), we get that

0 ≤ lim
s−→∞s

(
H(��s,��s+1)

)k ≤ 0

implies lim
s−→∞s

(
H(��s,��s+1)

)k = 0.

By the above equation there exists s1 ∈ N such that s(H(��s,��s+1))k ≤ 1 for all s ≥ s1.
Thus for all s ≥ s1, we have H(�s,��s+1) ≤ 1

s
1
k

.
Now

d(�s,�s+1) = D(�s,��s) ≤ H(��s–1,��s) ≤ 1

s
1
k

for all s≥ s1.

To prove that {�s}s∈N is a Cauchy sequencem consider τ , s ∈N such that τ > s > s1. Then

d(�s,�τ ) ≤ f(�s,�s+1)d(�s,�s+1) + f(�s+1,�τ )d(�s+1,�τ )

≤ f(�s,�s+1)d(�s,�s+1) + f(�s+1,�τ )f(�s+1,�s+2)d(�s+1,�s+2)

+ f(�s+1,�τ )f(�s+2,�τ )d(�s+2,�τ )

≤ f(�s,�s+1)d(�s,�s+1) + f(�s+1,�τ )f(�s+1,�s+2)d(�s+1,�s+2)

+ f(�s+1,�τ )f(�s+2,�τ )f(�s+2,�s+3)d(�s+2,�s+3)

+ f(�s+1,�τ )f(�s+2,�τ )f(�s+3,�τ )d(�s+3,�τ )

...

≤ f(�s,�s+1)d(�s,�s+1) +
τ–2∑

i=s+1

( i∏
j=s+1

f(�j,�τ )

)
f(�i,�i+1)d(�i,�i+1)

+

(
τ–1∏

j=s+1

f(�i,�τ )

)
d(�τ–1,�τ )

≤ f(�s,�s+1)d(�s,�s+1) +
τ–2∑

i=s+1

( i∏
j=s+1

f(�j,�τ )

)
f(�i,�i+1)d(�i,�i+1)

+

(
τ–1∏

j=s+1

f(�i,�τ )

)
f(�τ–1,�τ )d(�τ–1,�τ )

= f(�s,�s+1)d(�s,�s+1) +
τ–1∑

i=s+1

( i∏
j=s+1

f(�j,�τ )

)
f(�i,�i+1)d(�i,�i+1)

≤ f(�s,�s+1)d(�s,�s+1) +
τ–1∑

i=s+1

( i∏
j=0

f(�j,�τ )

)
f(�i,�i+1)d(�i,�i+1).

Therefore

d(�s,�τ ) ≤ f(�s,�s+1)d(�s,�s+1) +
τ–1∑

i=s+1

( i∏
j=0

f(�j,�τ )

)
f(�i,�i+1)

1

i
1
k

. (8)
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Now

τ–1∑
i=s+1

( i∏
j=0

f(�j,�τ )

)
f(�i,�i+1)

1

i
1
k

≤
∞∑

i=s+1

1

i
1
k

( i∏
j=0

f(�j,�τ )

)
f(�i,�i+1)

=
∞∑

i=s+1

UiVi,

where Ui = 1

i
1
k

and Vi = (
∏i

j=0 f(�j,�τ ))f(�i,�i+1). Since 1
k > 0, the series

∑∞
i=s+1( 1

i
1
k

) con-

verges. Also, {Vi}i is increasing and bounded above, so limi−→∞{Vi}i (which is nonzero)
exists. Hence {limi−→∞ UiVi}s converges.

Consider the partial sums Sq =
∑q

i=0(
∏i

j=0 f(�j,�τ ))f(�i,�i+1) 1

i
1
k

. From (8) we have

d(�s,�τ ) ≤ f(�s,�s+1)d(�s,�s+1) + (Sτ–1 – Ss). (9)

By using the ratio test and condition (2) we get that lims−→∞{Ss} exists. By taking in (9)
the limit as s−→ ∞ we get lims−→∞ d(�s,�τ ) = 0. Therefore {�s} is a Cauchy sequence,
and the completeness of ξ implies that there exists �∗ ∈ ξ such that

lim
s−→∞�s = �∗.

Now

F1
(
H(��,��̄)

) ≤ F2
(
H(��,��̄)

) ≤ χ
(
d(�, �̄)

)
+ F2

(
H(��,��̄)

)

≤ F1
{
ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

)}
.

Since F1 is a nondecreasing function, we obtain that for all �, �̄ ∈ ξ ,

H(��,��̄) ≤ ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

)
.

To prove that �∗ is a fixed point of ξ , on the contrary, assume that D(�∗,��∗) > 0. Now
due to the compactness of ��∗, there exists � ∈ ��∗ such that

D
(
�∗,��∗) = d

(
�∗,�

)

≤ f
(
�∗,�s+1

)
d
(
�∗,�s+1

)
+ f(�s+1,�)d(�s+1,�)

= f
(
�∗,�s+1

)
d
(
�∗,�s+1

)
+ f(�s+1,�)D

(
�s+1,��∗)

≤ f
(
�∗,�s+1

)
d
(
�∗,�s+1

)
+ f(�s+1,�)H

(
��s,��∗)

≤ f
(
�∗,�s+1

)
d
(
�∗,�s+1

)
+ f(�s+1,�)ρ

(
d
(
�s,�∗), D(�s,��s), D

(
�∗,��∗),

D
(
�s,��∗), D

(
�∗,��s

))

≤ f
(
�∗,�s+1

)
d
(
�∗,�s+1

)
+ f(�s+1,�)ρ

(
d
(
�s,�∗), d(�s,�s+1), D

(
�∗,��∗),

f
(
�s,�∗)d

(
�s,�∗) + f

(
�∗,�

)
D

(
�∗,��∗), d

(
�∗,�s+1

))
.
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Taking the limit as s−→ ∞ in the above inequality and using (3), we have

D
(
�∗,��∗) ≤ (1)ρ

(
0, 0, D

(
�∗,��∗), 0 + f

(
�∗, �̄

)
D

(
�∗,��∗), 0

)
.

Using Lemma 3.1, we get D(�∗,��∗) ≤ 0, and hence D(�∗,��∗) = 0. As ��∗ is closed, we
have �∗ ∈ ��∗. Hence Fix� is nonempty. �

Example 3.2 Let ξ = {0, 1
2 , 1

3 , 1
4 }. Define d : ξ × ξ −→ R

+ and f : ξ × ξ −→ [1,∞) by
d(�1,�2) = (�1 – �2)2 and

f(�1,�2) =

⎧
⎨
⎩

1 if �1 = �2 = 0,
1

(�1+�2)4 if �1 �= 0 or �2 �= 0.

Then (ξ , d, f) is a complete CMS.

Define F1, F2 : (0,∞) −→R by

F1(u) =

⎧⎨
⎩

–1
u

if u ∈ (0, 1),

u if u ∈ [1,∞),

and F2(u) = ln(u) + u for u ∈ (0,∞). Then F1 is nondecreasing, F2 satisfies (F2′ ) and (F3),
and F1(u) ≤ F2(u) for all u > 0. Now define � : ξ −→ K(ξ ), ρ : [0,∞)5 −→ [0,∞), and χ :
(0,∞) −→ (0,∞) by

�� =

⎧⎨
⎩

{0} if � = 0,

{0, 1
2 } if � �= 0,

ρ(�1,�2,�3,�4,�5) = �1
2 + 28�5, and χ (t) = 1

t , t ∈ (0,∞). Then ρ ∈ P and χ ∈ 
. Since
H(��,��̄) > 0, it follows that,

χ
(
d(�, �̄)

)
+F2

(
H(��,��̄)

) ≤ F1
{
ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

)}
.

Note that limn−→∞ f(�n,�) ≤ 1. Hence the assumptions of Theorem 3.1 are fulfilled, and
Fix� = {0, 1

2 }.

Theorem 3.2 Let (ξ , d, f) be a complete CMS. Let � : ξ −→ K(ξ ) be an MVM, and let F1,
F2 be functions satisfying χF-contraction. Suppose that F1 is nondecreasing and F2 satisfies
condition (F2′). Also, suppose limk−→∞ f(�τk ,�sk ) ≤ 1. Then Fix� is nonempty.

Proof Let �0 ∈ ξ and �1 ∈ ��0. As in proof of Theorem 3.1, let {�s} ⊂ ξ be a sequence
such that �s+1 ∈ ��s. It satisfies d(�s,�s+1) = D(�s,��s) with D(�s,��s) > 0 and

d(�s,�s+1) < d(�s–1,�s) for all s ∈N, (10)

F2
(
H(��s,��s+1)

)
< F2

(
H(��0,��1)

)
– (s – s0)h for all s≥ s0. (11)
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Taking the limit as s−→ ∞ in (11), we get F2(H(��s,��s+1)) −→ –∞, and by (F2′)

lim
s−→∞ H(��s,��s+1) = 0, (12)

which further implies

lim
s−→∞ d(�s,�s+1) = lim

s−→∞ D(�s,��s) ≤ lim
s−→∞ H(�s–1,��s) = 0.

Also, we claim that

lim
s,τ−→∞ d(�s,�τ ) = 0. (13)

If not, then there exists δ > 0 such that for all r ≥ 0, there are τk > sk > r such that

d(�sk ,�τk ) > δ.

Moreover, there exists r0 ∈N such that

λr0 = d(�s–1,�s) < δ for all s≥ r0.

There are two sub sequences {�sk } and {�τk } of {�s} such that

r0 ≤ sk ≤ τk + 1 and d(�sk ,�τk ) > δ for all k > 0. (14)

Note that

d(�τk –1,�sk ) ≤ δ for all k. (15)

Also, τk is the minimal index for which (15) is fulfilled.
Note that sk + 2 ≤ τk for all k, because the case sk + 1 ≤ sk is impossible due to equations

(14) and (15). This shows that

sk + 1 < τk < τk + 1 for all k.

By the triangle inequality, using (14) and (15), we have

δ < d(�τk ,�sk ) ≤ f(�τk ,�τk –1)d(�τk ,�τk –1) + f(�τk –1,�sk )d(�τk –1,�sk )

≤ f(�τk ,�τk –1)d(�τk ,�τk –1) + δf(�τk –1,�sk ).

Taking the limit as k −→ ∞,

δ < lim
k−→∞

d(�τk ,�sk ) ≤ 0 + δ lim
k−→∞

f(�τk –1,�sk )

⇒ δ < lim
k−→∞

d(�τk ,�sk ) ≤ δ lim
k−→∞

f(�τk –1,�sk ) ≤ δ

⇒ lim
k−→∞

d(�τk ,�sk ) = δ. (16)
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Now using (12) and (16), we get

lim
k−→∞

d(�τk +1,�sk +1) = δ. (17)

Consider

χ
(
d(�τk ,�sk )

)
+ F1

(
d(�τk +1,�sk +1)

)

= χ
(
d(�τk ,�sk )

)
+ F1

(
D(�τk+1,��sk )

)

≤ χ
(
d(�τk ,�sk )

)
+ F1

(
H(��τk ,��sk )

)

≤ χ
(
d(�τk ,�sk )

)
+ F2

(
H(��τk ,��sk )

)

≤ F1
{
ρ
(
d(�τk ,�sk ), D(�τk ,��τk ), D(�sk ,��sk ), D(�τk ,��sk ), D(�sk ,��τk )

)}

= F1
{
ρ
(
d(�τk ,�sk ), d(�τk ,�τk+1 ), d(�sk ,�sk+1 ), d(�τk ,�sk+1 ), d(�sk ,�τk+1 )

)}

≤ F1
{
ρ
(
d(�τk ,�sk ), d(�τk ,�τk+1 ), d(�sk ,�sk+1 ), f(�sk+1 ,�sk )d(�sk+1 ,�sk )

+ f(�sk ,�τk )d(�sk ,�τk ), f(�sk ,�sk+1 )d(�sk ,�sk+1 ) + f(�sk+1 ,�τk+1 )d(�sk+1 ,�τk+1 )
)}

.

As F1 is continuous, taking the limit as k −→ ∞ and using (16) and (17), we obtain

lim
k−→∞

χ
(
d(�τk ,�sk )

)
+ F1(δ) ≤ F1

{
ρ
(
δ, 0, 0, 0 + δf(�sk ,�τk ), 0 + δf(�sk+1 ,�τk+1 )

)}

≤ F1
(
ρ
(
δ, 0, 0, δf(�sk ,�τk ), δf(�sk+1 ,�τk+1 )

)}

≤ F1
{
δρ

(
1, 0, 0, f(�sk ,�τk ), f(�sk+1 ,�τk+1 )

)}
.

Since ρ ∈ P, we have ρ(1, 0, 0, f(�sk ,�τk ), f(�sk+1 ,�τk+1 )) ∈ (0, 1]

⇒ lim
k−→∞

χ
(
d(�τk ,�sk )

)
+ F1(δ) ≤ F1(δ),

⇒ lim
k−→∞

χ
(
d(�τk ,�sk )

) ≤ 0,

⇒ lim
S−→δ+

infχ (S) ≤ 0,

which is a contradiction, and hence (13) holds. Therefore {�s} is a Cauchy sequence, and
thus there exists �∗ ∈ ξ such that lims−→∞ �s = �∗. The rest of the proof follows from
Theorem 3.1, and we get �∗ ∈ ��∗. �

Theorem 3.3 Let (ξ , d, f) be a complete CMS, and let � : ξ −→ C(ξ ) be an MVM. Assume
that there are χ ∈ 
, F ∈ �(0∗), and a real-valued function L on (0,∞) such that following
conditions hold:

(G1) F(�) ≤ L(�) for all � > 0;
(G2) H(��,��̄) > 0 implies,

χ
(
d(�, �̄)

)
+L

(
H(��,��̄)

) ≤ F
{
ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

)}
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for all �, �̄ ∈ ξ and ρ ∈P . Let �0 ∈ ξ . Define the Picard sequence {�s = �s�s} such that

sup
m≥1

lim
i−→∞

f(�i+1,�i+2)f(�i+1,�m)
f(�i,�i+1)

< 1. (18)

Also, suppose that lims−→∞ f(�s,�) ≤ 1 for all � ∈ ξ . Then Fix� is nonempty.

Proof Let �0 ∈ ξ and �1 ∈ ��0. If �1 ∈ ��1 then �1 ∈ fix�. Suppose �1 /∈ ��1. This implies
D(�1,��1) > 0, and, consequently, H(��0,��1) > 0. Due to (F4), we obtain

F
(
D(�1,��1)

)
= inf

z∈��1
F
(
d(�1, z)

)
. (19)

Then (19) with (G1) and (G2) imply that

inf
z∈��1

F
(
d(�1, z)

)
= F

(
D(�1,��1)

)

≤ F
(
H(��0,��1)

)

≤ L
(
H(��0,��1)

)

≤ F
{
ρ
(
d(�0,�1), D(�0,��0), D(�1,��1), D(�0,��1), D(�1,��0)

)}

– χ
(
d(�0,�1)

)

⇒ inf
z∈��1

F
(
d(�1, z)

)
< F

{
ρ
(
d(�0,�1), d(�0,�1), d(�1,�2), d(�0,�2), 0

)}
.

Hence there exists �2 ∈ ��1 such that

F
(
d(�1,�2)

)
< F

{
ρ
(
d(�0,�1), d(�0,�1), d(�1,�2), d(�0,�2), 0

)}
. (20)

Since F is a nondecreasing function, so (20) with (ρ3) yield that

d(�1,�2) < ρ
(
d(�0,�1), d(�0,�1), d(�1,�2), d(�0,�2), 0

)

≤ ρ
(
d(�0,�1), d(�0,�1), d(�1,�2), f(�0,�1)

)
d(�0,�1) + f(�1,�2)d(�1,�2), 0).

By Lemma 3.1

d(�1,�2) < d(�0,�1).

Next, arguing as previously, we get �3 ∈ ��2 with D(�2,��2) > 0. By Lemma 3.1, using
(G1) and (G2), we have

d(�2,�3) < d(�1,�2).

By induction we have a sequence {�s} ⊂ ξ such that �s+1 ∈ ��s with D(�s,��s) > 0 and

d(�s,�s+1) < d(�s–1,�s) for all s ∈N. (21)
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Now (21) implies that {d(�s,�s+1)}s∈N is a decreasing sequence of positive real numbers.
Hence from (F4)

inf
z∈��s

F
(
d(�s, z)

)

= F
(
D(�s,��s)

) ≤ F
(
H(��s–1,��s)

) ≤ L
(
H(��s–1,��s)

)

≤ F
{
ρ
(
d(�s–1,�s), D(�s–1,��s–1), D(�s,��s), D(�s–1,��s), D(�s,��s–1)

)}

– χ
(
d(�s–1,�s)

)

≤ F
{
ρ
(
d(�s–1,�s), d(�s–1,�s), d(�s,�s+1), f(�s–1,�s)d(�s–1,�s) + f(�s,�s+1)

d(�s,�s+1), 0
)
)
}

– χ
(
d(�s–1,�s)

)

≤ F
{
ρ
(
d(�s–1,�s), d(�s–1,�s), d(�s–1,�s), f(�s–1,�s)d(�s–1,�s) + f(�s,�s+1)

d(�s–1,�s), 0
)
)
}

– χ
(
d(�s–1,�s)

)

≤ F
{

d(�s–1,�s)ρ
(
1, 1, 1, f(�s–1,�s) + f(�s,�s+1), 0

)
)
}

– χ (d(�s–1,�s)

≤ F
(
d(�s–1,�s)

)
– χ

(
d(�s–1,�s)

)

⇒ inf
z∈��s

F
(
d(�s, z)

) ≤ F
(
d(�s–1,�s)

)
– χ

(
d(�s–1,�s)

)
for all s ∈ N. (22)

Since ξ ∈ φ, there exist h > 0 and s0 ∈ N such that χ (d(�s,�s+1)) < h for all s ≥ s0. From
(22)

F
(
d(�s,�s+1)

) ≤ F
(
d(�s–1,�s)

)
– χ

(
d(�s–1,�s)

)

≤ F
(
d(�s–2,�s–1)

)
– χ

(
d(�s–2,�s–1)

)
– χ

(
d(�s–1,�s)

)

...

≤ F
(
d(�0,�1)

)
–

s–1∑
i=1

χ
(
d(�i–1,�i)

)

= F
(
d(�0,�1)

)
–

s0–1∑
i=1

χ
(
d(�i–1,�i)

)
–

s–1∑
i=s0

χ
(
d(�i–1,�i)

)

= F
(
d(�0,�1)

)
– (s – s0)h, s≥ s0. (23)

Taking the limit as s−→ ∞ in (23), we get F(d(�s–1,�s)) −→ –∞, and from (F2′)

lim
s−→∞ d(�s–1,�s) = 0. (24)

Now by (F3) there exists 0 < k < 1 such that

lim
s−→∞

(
d(�s–1,�s)

)kF
(
d(�s–1,�s)

)
= 0. (25)
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Thus from (23) for all s≥ s0, we have

(
d(�s–1,�s)

)kF
(
d(�s–1,�s)

)
–

(
d(�s–1,�s)

)kF
(
d(�0,�1)

)

≤ (
d(�s–1,�s)

)k(F
(
d(�0,�1)

)
– (s – s0)h

)
–

(
d(�s–1,�s)

)kF
(
d(�0,�1)

)

= –
(
d(�s–1,�s)

)k(s – s0)h ≤ 0. (26)

Taking the limit as s−→ ∞ in (26) and using (24) and (25), we get

0 ≤ – lim
s−→∞ s

(
d(�s–1,�s)

)k ≤ 0 (27)

⇒ lim
s−→∞ s

(
d(�s–1,�s)

)k = 0 (28)

Note that by (28) there exists s1 ∈N such that s(d(�s–1,�s))k ≤ 1 for all s≥ s1. We get

d(�s–1,�s) ≤ 1

s
1
k

for all s≥ s1.

Now to prove that {�s}s∈N is a Cauchy sequence, consider τ , s ∈N such that τ > s > s1. The
rest of the proof follows from Theorem 3.1, and by using (18) with ratio test we deduce
that {�s} is a Cauchy sequence, and thus there exists �∗ ∈ ξ such that

lim
s−→∞�s = �∗.

Now

F
(
H(��,��̄)

) ≤ L
(
H(��,��̄)

) ≤ χ
(
d(�, �̄)

)
+ L

(
H(��,��̄)

)

≤ F
{
ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

)}
.

Since F is a nondecreasing function, we get

H(��,��̄)) ≤ ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

)
for all �, �̄ ∈ ξ .

Let �∗ be a fixed point of ξ . On the contrary, we have D(�∗,��∗) > 0. Then by following
the proof of Theorem 3.1, D(�∗,��∗) = 0. Since ��∗ is closed, �∗ ∈ ��∗. Hence Fix� is
nonempty. �

Theorem 3.4 Let (ξ , d, f) be a complete CMS, and let � : ξ −→ C(ξ ) be a multivalued
mapping. Suppose there exist χ ∈ φ, ρ ∈ P, and a nondecreasing continuous real-valued
function F : (0,∞) −→ R that satisfy (F2′). Moreover, L be a real-valued function on (0,∞)
such that the following conditions hold:

(G1) F(�) ≤ L(�) for all � > 0;
(G2) H(��,��̄) > 0 implies

χ
(
d(�, �̄)

)
+L

(
H(��,��̄)

) ≤ F
{
ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

)}

for all �, �̄ ∈ ξ .
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Also, suppose

lim
s−→∞ f(�s,�) ≤ 1 for all � ∈ ξ .

Then Fix� is non-empty.

Proof Let �0 ∈ ξ be an arbitrary point, and let �1 ∈ ��0. As in proof of Theorem 3.1, we
get a sequence {�s} ⊂ ξ such that �s+1 ∈ ��s with D(�s,��s+1) > 0,

d(�s,�s+1) < d(�s–1,�s),

and

F
(
d(�s–1,�s)

) ≤ F
(
d(�0,�1)

)
– (s – s0)h for all s≥ s0. (29)

Taking the limit as s−→ ∞ in (29), we get F(d(�s–1,�s)) −→ –∞, and by (F2′)

lim
s−→∞ d(�s–1,�s) = 0.

Now we claim that

lim
s,τ−→∞ d(�s,�τ ) = 0. (30)

If (30) does not hold, then there exists δ > 0 such that for all r ≥ 0, we have τk > sk > r,

d(�s,�τ ) < δ.

Also, there exists r0 ∈N such that

λr0 = d(�s–1,�s) < δ for all s≥ r0.

There exist two subsequences {�τk } and {�sk } of {�s}. Then following the proof of Theo-
rem 3.2, we get limk−→∞ d(�τk ,�sk ) = δ and also

lim
k−→∞

d(�τk+1 ,�sk+1 ) = δ. (31)

By the monotonicity of F , using (G1) and (G2), we get

χ
(
d(�τk ,�sk )

)
+ F

(
d(�τk+1 ,��sk+1 )

)

= χ
(
d(�τk ,�sk )

)
+ F

(
D(�τk+1 ,��sk )

)

≤ χ
(
d(�τk ,�sk )

)
+ F

(
H(��τk ,��sk )

)

≤ χ
(
d(�τk ,�sk )

)
+ L

(
H(��τk ,��sk )

)

≤ F
{
ρ
(
d(�τk ,�sk ), d(�τk ,�τk+1 ), d(�sk ,�sk+1 ), f(�sk+1 ,�sk )d(�sk+1 ,�sk )
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+ f(�sk ,�τk )d(�sk ,�τk ), f(�sk ,�sk+1 )d(�sk ,�sk+1 ) + f(�sk+1 ,�τk+1 )d(�sk+1 ,�τk+1 )
)}

.
(32)

By the continuity of F , taking the limit as k −→ ∞ and using (31) and (32), we have

lim
k−→∞

χ
(
d(�τk ,�sk )

)
+ F(δ) ≤ F

{
ρ
(
δ, 0, 0, δ lim

k−→∞
f(�sk ,�τk ), δ lim

k−→∞
f(�sk+1 ,�τk+1 )

)}

≤ F
{
δρ

(
1, 0, 0, δV lim

k−→∞
f(�sk ,�τk ), δ lim

k−→∞
f(�sk+1 ,�τk+1 )

)}
.

Since ρ ∈ P, we have ρ(1, 0, 0, limk−→∞ f(�sk ,�τk ), limk−→∞ f(�sk+1 ,�τk+1 )) ∈ (0, 1]. Hence

lim
S−→δ+

infχ (s) ≤ 0,

which is a contradiction to definition of 
. Therefore (30) is fulfilled and ensures that {�s}
is a Cauchy sequence. Hence there exists �∗ ∈ ξ such that

lim
s−→∞�s = �∗.

By following the proof of Theorem 3.3 we get �∗ ∈ ��∗. �

4 Data dependence
For a metric space (ξ , d) and mappings �1,�2 : ξ → P(ξ ), the fixed points sets Fix�1

and Fix�2 are nonempty. The problem of finding the Pomeiu–Hausdroff distance H be-
tween Fix�1 and Fix�2 under the condition that for s > 0, H(�1�,�2�) < s for all � ∈ ξ ,
is addressed by many authors. See, for example, [6, 7, 16]. In this section, we give a data
dependence result of the established result.

Definition 4.1 Let (ξ , d) be an MS, and let � : ξ −→ CL(ξ ) be a multivalued operator.
Supopse that for all � ∈ ξ and �̄ ∈ ��, there exists sequence {�s}s∈N such that

(i) �0 = � and �1 = �̄,
(ii) �s+1 = ��s for all s ∈ N, and
(iii) the sequence {�s}s∈N is convergent, and the fixed point of � is its limit.

Then � is said to be a multivalued weakly Picard operator (MWP operator). The sequence
of successive approximations is defined as a sequence {�s}s∈N that satisfies conditions (ii)
and (ii) of Definition 4.1.

The main result of this section is as follows.

Theorem 4.1 Let (ξ , d) be a CMS, let �1,�2 : ξ −→ K(ξ ) be multivalued mappings, and
let χ ∈ 
. Let F1 be a real-valued nondecreasing function on (0,∞), and let F2 be a real-
valued function on (0,∞) satisfying (F2′) and (F3) such that χF-contraction is satisfied for
�i, where i ∈ {1, 2}, and there exists λ > 0 such that H(�1(�),�2(�)) ≤ λ for all � ∈ ξ . For
�0 ∈ ξ , define a Picard sequence {�s = �s�0} such that

sup
m≥1

lim
i−→∞

f(�i+1,�i+2)f(�i+1,�m)
f(�i,�i+1)

< 1. (33)

Also, suppose that lims−→∞ f(�s,�) ≤ 1 for all � ∈ ξ . Then



Sagheer et al. Journal of Inequalities and Applications         (2024) 2024:31 Page 17 of 21

(a) Fix�i ∈ CL(ξ ) for i ∈ {1, 2},
(b) �1, �2 are MWP operators, and

H(Fix�1, Fix�2) ≤ λ

1 – max{ρ1(1, 1, 1, ζ + η, 0),ρ2(1, 1, 1, ζ + η, 0)} ,

where ζ ,η ≥ 1.

Proof (a) Using Theorem 3.1, we have that Fix�i is not empty for i ∈ {1, 2}. Now we prove
that for i ∈ {1, 2}, the fixed point set of �i is closed. Consider a sequence {�s} in Fix�i such
that �s −→ � as s −→ ∞. Now

F1(H(��,��̄) ≤ F2(H(��,��̄) ≤ χ (d(�, �̄) + F2
(
H(��,��̄)

)

≤ F1
(
ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

))
.

Since F1 is a nondecreasing function, we have thatfor all �, �̄ ∈ ξ ,

H(��,��̄) ≤ ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

)
. (34)

Assume that D(�̄,��̄) > 0. Then there exists � ∈ ��̄ such that

D(�̄,��̄) = d(�̄,�)

≤ f(�̄,�s+1)d(�̄,�s+1) + f(�s+1,�)d(�s+1,�)

= f(�̄,�s+1)d(�̄,�s+1) + f(�s+1,�)D(�s+1,��̄)

≤ f(�̄,�s+1)d(�̄,�s+1) + f(�s+1,�)H(��s,��̄)

≤ f(�̄,�s+1)d(�̄,�s+1) + f(�s+1,�)ρ
(
d(�s, �̄), D(�s,��s), D(�̄,��̄), D(�s,��̄),

D(�̄,��s)
)

≤ f(�̄,�s+1)d(�̄,�s+1) + f(�s+1,�)ρ
(
d(�s, �̄), d(�s,�s+1), D(�̄,��̄),

f(�s, �̄)d(�s, �̄) + f(�̄,�)D(�̄,��̄), d(�̄,�s+1)
)
.

Taking the limit as s−→ ∞ in the above inequality, we get

D(�̄,��̄) ≤ (1)ρ
(
0, 0, D(�̄,��̄), 0 + f(�̄,�1)D(�̄,��̄), 0

)
.

Using Lemma 3.1, D(�̄,��̄) ≤ 0, and hence D(�̄,��̄) = 0. As ��̄ is closed, �̄ ∈ ��̄.
(b) Using Theorem 3.1, we get that �1, �2 are MWP operators. So we have to prove that

H(Fix�1, Fix�2) ≤ λ

1 – max{ρ1(1, 1, 1, ζ + η, 0),ρ2(1, 1, 1, ζ + η, 0)} .

Suppose q > 1 and �0 ∈ Fix�2. Then there exists �1 ∈ �2(�0) such that d(�0,�1) =
D(�0,�2(�0)) and d(�1,�2) ≤ qH(�1(�0),�2(�0)). Now there exists �2 ∈ �2(�1) such
that d(�0,�1) = D(�0,�2(�0)) and d(�1,�2) ≤ qH(�2(�0),�2(�1)). Also, we get d(�1,�2) ≤
d(�0,�1) and

d(�1,�2) ≤ qH
(
�2(�0),�2(�1)

)
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≤ qρ(d(�0,�1), D
(
�0,�(�0)

)
, D

(
�1,�(�1)

)
, D

(
�0,�(�1)

)
, D

(
�1,�(�0)

)

≤ qρ
(
d(�0,�1), d(�0,�1), d(�1,�2), d(�0,�2), d(�1,�1)

)

≤ qρ
(
d(�0,�1), d(�0,�1), d(�1,�2), f(�0,�1)

)
d(�0,�1) + f(�1,�2)

d(�1,�2), 0)

< qρ
(
d(�0,�1), d(�0,�1), d(�0,�1), f(�0,�1)

)
d(�0,�1) + f(�1,�2)

d(�0,�1), 0)

≤ qd(�0,�1)ρ
(
1, 1, 1, f(�0,�1)

)
+ f(�1,�2), 0).

Hence we get a sequence of successive approximations of � starting from �0 that satisfies

d(�s,�s+1) ≤ (
qρ1(1, 1, 1, ζ + η, 0)

)sd(�0,�1) for all s ∈N

⇒ d(�s,�s+m) ≤ (qρ1(1, 1, 1, ζ + η, 0))s

1 – qρ1(1, 1, 1, ζ + η, 0)
d(�0,�1) for all s ∈N. (35)

Taking the limit as s −→ ∞, we conclude that {�s} is a Cauchy sequence in (ξ , d) and thus
converges to some v ∈ ξ . Using the proof of Theorem 3.1, we have v ∈ Fix�2. Taking the
limit as m −→ ∞, we get

d(�s, v) ≤ (qρ1(1, 1, 1, ζ + η, 0))s

1 – qρ1(1, 1, 1, ζ + η, 0)
d(�0,�1) for all s ∈N.

Letting s = 0,

d(�0, v) ≤ 1
1 – qρ1(1, 1, 1, ζ + η, 0)

d(�0,�1) ≤ qλ

1 – qρ1(1, 1, 1, ζ + η, 0)
.

Interchange the role of �1 and �2, for each v0 ∈ Fix�1, we get

d(v0, c) ≤ 1
1 – qρ2(1, 1, 1, , ζ + η, 0)

d(v0, v1) ≤ qλ

1 – qρ2(1, 1, 1, , ζ + η, 0)
.

So

H(Fix�1, Fix�2) ≤ qλ

1 – max(qρ1(1, 1, 1, , ζ + η, 0), qρ2(1, 1, 1, , ζ + η, 0))
.

By taking the limit as q −→ 1 the result is proved. �

5 Strict fixed point and well-posedness
Definition 5.1 Consider an MS (ξ , d), B ∈ P(ξ ), and a multivalued mapping � : B −→
C(ξ ). The fixed point problem is said to be well posed for � with respect to D if

(a) Fix� = {�∗},
(b) if �s ∈ B, s ∈N and D(�s,��s) −→ 0 as s−→ ∞,

then �s −→ �∗ ∈ Fix� as s−→ ∞ [14, 15].

Definition 5.2 Consider an MS (ξ , d), B ∈ P(ξ ), and a multivalued mapping � : B −→
C(ξ ). The fixed point problem is said to be well posed for � with respect to H if
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(a) S Fix� = {�∗},
(b) if �s ∈ B, s ∈N, and H(�s,��s) −→ 0 as s −→ ∞,

then �s −→ �∗ ∈ S Fix� as s−→ ∞ [14, 15].

Theorem 5.1 Let (ξ , d, f) be a complete CMS, let � : ξ −→ K(ξ ) be a multivalued map-
ping, and let F1, F2 be functions satisfying a χF-contraction. Suppose F1 is nondecreas-
ing, F2 satisfies condition (F2′) with ρ(1, 0, 0, 1, 1) ∈ (0, 1), and S Fix� �= φ. Also, suppose
lims−→∞ f(�s,�) ≤ 1 for all � ∈ ξ . Then

(a) Fix� = S Fix� = {�∗};
(b) The fixed point problem is well posed for the multivalued mapping � with respect to

H .

Proof (a) Using Theorem 3.2, we conclude that Fix� �= φ. Now we prove that Fix� = {�∗}.
Using (Ni) and (Nii), we have

F1
(
H(��,��̄)

) ≤ F2
(
H(��,��̄)

) ≤ χ
(
d(�, �̄)

)
+ F2

(
H(��,��̄)

)

≤ F1
{
ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

)}
.

Since F1 is a nondecreasing function, we obtain that for all �, �̄ ∈ ξ ,

H(��,��̄) ≤ ρ
(
d(�, �̄), D(�,��), D(�̄,��̄), D(�,��̄), D(�̄,��)

)
.

Let v ∈ Fix� with v �= �∗. Then D(�∗,�v) > 0. Now we have

D
(
�∗,�v

)
= H

(
��∗,�v

)

≤ ρ
(
d
(
�∗, v

)
, D

(
�∗,��∗), D(v,�v), D

(
�∗,�v

)
, D

(
v,��∗))

≤ ρ
(
d
(
�∗, v

)
, 0, 0, d

(
�∗, v

)
, d

(
v,�∗))

≤ d
(
�∗, v

)
ρ(1, 0, 0, 1, 1).

As ρ(1, 0, 0, 1, 1) ∈ (0, 1), we have

d
(
�∗, v

)
= D

(
�∗,�v

)
< d

(
�∗, v

)
,

which is a contradiction, and hence d(�∗, v) = 0 and �∗ = v.
(b) Let �s ∈ B and s ∈ N be such that

lim
s−→∞ D(�s,��s) = 0. (36)

Now we claim that

lim
s−→∞ d

(
�s,�∗) = 0,

where �∗ ∈ Fix�. If the above equation is not true, then for every s ∈N, there exists ε > 0
such that

d
(
�s,�∗) > ε.
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But (36) implies that there exists sε ∈N – {0} such that

lim
s−→∞ D(�s,��s) < ε

for each s > sε . Hence for each s > sε , we obtain

d
(
�s,�∗) = D

(
�s,��∗).

The compactness of ��∗ implies that there exists � ∈ ��∗ such that

d
(
�s,�∗) = D

(
�s,��∗) = d(�s,�)

≤ f(�s,�s+1)d(�s,�s+1) + f(�s+1,�)d(�s+1,�)

= f(�s,�s+1)D(�s,��s) + f(�s+1,�)D
(
�s+1,��∗)

≤ f(�s,�s+1)D(�s,��s) + f(�s+1,�)H
(
��s,��∗)

< f(�s,�s+1)D(�s,��s) + f(�s+1,�)ρ
(
d
(
�s,�∗), D(�s,��s), D

(
�∗,��∗),

D
(
�s,��∗), D

(
�∗,��s

))

≤ f(�s,�s+1)D(�s,��s) + f(�s+1,�)ρ
(
d
(
�s,�∗), D(�s,��s), d

(
�∗,�∗),

d
(
�s,�∗), f

(
�∗,�s

)
d
(
�∗,�s

)
+ f(�s,�s+1)D(�s,��s)

)
.

As lims−→∞ f(�s,�) ≤ 1 and ρ(1, 0, 0, 1, 1) ∈ (0, 1), taking the limit as s−→ ∞, we get
d(�s,�∗) −→ 0 as s −→ ∞, which is a contradiction. Hence the fixed point problem is
well posed for the multivalued mapping � with respect to D. Also, Fix� = S Fix�, and
hence the fixed point problem is well posed with respect to H . �

6 Conclusion
In this research, we have established some fixed and strict fixed point results on controlled
metric spaces. We followed the scheme of Iqbal et al. [10] and used the platform of con-
trolled metric setting, and hence results given in [10] are particular cases of those given
in the present paper. We have also provided the well-posedness of the theorems. The data
dependence problem of fixed points of the considered mappings is also established. Many
nontrivial examples are provided for authentication purposes.
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